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Abstract
We derive analytical expressions for the gener-
alization performance of kernel regression as a
function of the number of training samples us-
ing theoretical methods from Gaussian processes
and statistical physics. Our expressions apply to
wide neural networks due to an equivalence be-
tween training them and kernel regression with
the Neural Tangent Kernel (NTK). By computing
the decomposition of the total generalization error
due to different spectral components of the kernel,
we identify a new spectral principle: as the size of
the training set grows, kernel machines and neural
networks fit successively higher spectral modes of
the target function. When data are sampled from
a uniform distribution on a high-dimensional hy-
persphere, dot product kernels, including NTK,
exhibit learning stages where different frequency
modes of the target function are learned. We ver-
ify our theory with simulations on synthetic data
and MNIST dataset.

1. Introduction
Finding statistical patterns in data that generalize beyond a
training set is a main goal of machine learning. Generaliza-
tion performance depends on factors such as the number of
training examples, the complexity of the learning task, and
the nature of the learning machine. Identifying precisely
how these factors impact the performance poses a theoreti-
cal challenge. Here, we present a theory of generalization
in kernel machines (Schölkopf & Smola, 2001) and neural
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networks (LeCun et al., 2015) with wide hidden layers that
addresses these questions.

The goal of our theory is not to provide worst case bounds
on generalization performance in the sense of statistical
learning theory (Vapnik, 1999), but to provide analytical ex-
pressions that explain the average or a typical performance
in the spirit of statistical physics. The techniques we use are
a continuous approximation to learning curves previously
used in Gaussian processes (Sollich, 1999; 2002; Sollich &
Halees, 2002) and the replica method of statistical physics
(Sherrington & Kirkpatrick, 1975; Mézard et al., 1987).

We first develop an approximate theory of generalization in
kernel regression that is applicable to any kernel. We then
use our theory to gain insight into neural networks by us-
ing a correspondence between kernel regression and neural
network training. When the hidden layers of a neural net-
work are taken to infinite width with a certain initialization
scheme, recent influential work (Jacot et al., 2018; Arora
et al., 2019; Lee et al., 2019) showed that training a feedfor-
ward neural network with gradient descent to zero training
loss is equivalent to kernel interpolation (or ridgeless kernel
regression) with a kernel called the Neural Tangent Kernel
(NTK) (Jacot et al., 2018). Our kernel regression theory con-
tains kernel interpolation as a special limit (ridge parameter
going to zero).

Our contributions and results are summarized below:

• Using a continuous approximation to learning curves
adapted from Gaussian process literature (Sollich, 1999;
2002), we derive analytical expressions for learning
curves for each spectral component of a target function
learned through kernel regression.

• We present another way to arrive at the same analytical
expressions using the replica method of statistical physics
and a saddle-point approximation (Sherrington & Kirk-
patrick, 1975; Mézard et al., 1987).

• Analysis of our theoretical expressions show that differ-
ent spectral modes of a target function are learned with
different rates. Modes corresponding to higher kernel
eigenvalues are learned faster, in the sense that a marginal
training data point causes a greater percent reduction in
generalization error for higher eigenvalue modes than for
lower eigenvalue modes.
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• When data is sampled from a uniform distribution on a
hypersphere, dot product kernels, which include NTK,
admit a degenerate Mercer decomposition in spherical
harmonics, Ykm. In this case, our theory predicts that
generalization error of lower frequency modes of the tar-
get function decrease more quickly than higher frequency
modes as the dataset size grows. Different learning stages
are visible in the sense described below.

• As the dimensions of data, d, go to infinity, learning
curves exhibit different learning stages. For a training
set of size p ⇠ O(dl), modes with k < l are perfectly
learned, k = l are being learned, and k > l are not
learned.

• We verify the predictions of our theory using numerical
simulations for kernel regression and kernel interpolation
with NTK, and wide and deep neural networks trained
with gradient descent. Our theory fits experiments re-
markably well on synthetic datasets and MNIST.

1.1. Related Work

Our main approximation technique comes from the literature
on Gaussian processes, which is related to kernel regression
in a certain limit. Total learning curves for Gaussian pro-
cesses, but not their spectral decomposition as we do here,
have been studied in a limited teacher-student setting where
both student and teacher were described by the same Gaus-
sian process and the same noise in (Opper & Vivarelli, 1998;
Sollich, 1999). We allow arbitrary teacher distributions.
Sollich also considered mismatched models where teacher
and student kernels had different eigenspectra and different
noise levels (Sollich, 2002). The total learning curve from
this model is consistent with our results when the teacher
noise is sent to zero, but we also consider, provide expres-
sions for, and analyze generalization in spectral modes. We
use an analogue of the “lower-continuous” approximation
scheme introduced in (Sollich & Halees, 2002), the results
of which we reproduce through the replica method (Mézard
et al., 1987).

Generalization bounds for kernel ridge regression have
been obtained in many contexts (Schölkopf & Smola, 2001;
Cucker & Smale, 2002; Vapnik, 1999; Gyorfi et al., 2003),
but the rates of convergence often crucially depend on the ex-
plicit ridge parameter � and do not provide guarantees in the
ridgeless case. Using a teacher-student setting, Spigler et al.
(2019) showed that learning curves for kernel regression
asymptotically decay with a power law determined by the
decay rate of the teacher and the student. Such power law
decays have been observed empirically on standard datasets
(Hestness et al., 2017; Spigler et al., 2019). Recently, inter-
est in explaining the phenomenon of interpolation has led
to the study of generalization bounds on ridgeless regres-
sion (Belkin et al., 2018b;a; 2019b; Liang & Rakhlin, 2018).
Here, our aim is to capture the average case performance of

kernel regression, as opposed to a bound on it, that remains
valid for the ridgeless case and finite sample sizes.

In statistical physics domain, Dietrich et al. (1999) calcu-
lated learning curves for support vector machines, but not
kernel regression, in the limit of number of training samples
going to infinity for dot product kernels with binary inputs
using a replica method. Our theory applies to general ker-
nels and finite size datasets. In the infinite training set limit,
they observed several learning stages where each spectral
mode is learned with a different rate. We observe similar
phenomena in kernel regression. In a similar spirit, (Cohen
et al., 2019) calculates learning curves for infinite-width neu-
ral networks using a path integral formulation and a replica
analysis but does not discuss the spectral dependence of the
generalization error.

In the infinite width limit, neural networks have many more
parameters than training samples yet they do not overfit
(Zhang et al., 2017). Some authors suggested that this is
a consequence of the training procedure since stochastic
gradient descent is implicitly biased towards choosing the
simplest functions that interpolate the training data (Belkin
et al., 2019a; 2018b; Xu et al., 2019a; Jacot et al., 2018).
Other studies have shown that neural networks fit the low
frequency components of the target before the high fre-
quency components during training with gradient descent
(Xu et al., 2019b; Rahaman et al., 2019; Zhang et al., 2019;
Luo et al., 2019). In addition to training dynamics, recent
works such as (Yang & Salman, 2019; Bietti & Mairal, 2019;
Cao et al., 2019) have discussed how the spectrum of kernels
impacts its smoothness and approximation properties. Here
we explore similar ideas by explicitly calculating average
case learning curves for kernel regression and studying its
dependence on the kernel’s eigenspectrum.

2. Kernel Regression Learning Curves
We start with a general theory of kernel regression. Implica-
tions of our theory for dot product kernels including NTK
and trained neural networks are described in Section 3.

2.1. Notation and Problem Setup

We start by defining our notation and setting up our prob-
lem. Our initial goal is to derive a mathematical expression
for generalization error in kernel regression, which we will
analyze in the subsequent sections using techniques from
the Gaussian process literature (Sollich, 1999; 2002; Sol-
lich & Halees, 2002) and statistical physics (Sherrington &
Kirkpatrick, 1975; Mézard et al., 1987).

The goal of kernel regression is to learn a function f : X !
RC from a finite number of observations (Wahba, 1990;
Schölkopf & Smola, 2001). In developing our theory, we
will first focus on the case where C = 1, and later extend



Learning Curves in Kernel Regression and Wide Neural Networks

our results to C > 1 as we discuss in Section 2.5. Let
{xi, yi} 2 X ⇥ R, where X ✓ Rd, be one of the p training
examples and let H be a Reproducing Kernel Hilbert space
(RKHS) with inner product h·, ·i

H
. To avoid confusion with

our notation for averaging, we will always decorate angular
brackets for Hilbert inner product with H and a comma.
Kernel ridge regression is defined as:

min
f2H

pX

i=1

(f(xi)� yi)
2 + �||f ||2

H
. (1)

The � ! 0 limit is referred to as interpolating kernel re-
gression, and, as we will discuss later, relevant to training
wide neural networks. The unique minimum of the convex
optimization problem is given by

f(x) = y>(K+ �I)�1k(x), (2)

where K(·, ·) is the reproducing kernel for H, K is the
p ⇥ p kernel gram matrix Kij = K(xi,xj), and k(x)i =
K(x,xi). Lastly, y 2 Rp is the vector of target values
yi = f⇤(xi). For interpolating kernel regression, when
the kernel is invertible, the solution is the same except that
� = 0, meaning that training data is fit perfectly. The proof
of this optimal solution is provided in the Supplementary
Information (SI) Section 1.

Let p(x) be the probability density function from which the
input data are sampled. The generalization error is defined
as the expected risk with expectation taken over new test
points sampled from the same density p(x). For a given
dataset {xi} and target function f⇤(x), let fK(x; {xi}, f⇤)
represent the function learned with kernel regression. The
generalization error for this dataset and target function is

Eg({xi}, f⇤) =

Z
dx p(x) (fK(x; {xi}, f⇤)� f⇤(x))2 .

(3)
To calculate the average case performance of kernel regres-
sion, we average this generalization error over the possible
datasets {xi} and target functions f⇤

Eg = hEg({xi}, f⇤)i
{xi},f⇤ . (4)

Our aim is to calculate Eg for a general kernel and a general
distribution over teacher functions.

For our theory, we will find it convenient to work with
the feature map defined by the Mercer decomposition. By
Mercer’s theorem (Mercer, 1909; Rasmussen & Williams,
2005) , the kernel admits a representation in terms of its M
kernel eigenfunctions {�⇢(x)},

K(x,x0) =
MX

⇢=1

�⇢�⇢(x)�⇢(x
0) =

MX

⇢=1

 ⇢(x) ⇢(xi),

(5)

where  ⇢(x) =
p
�⇢�(x) is the feature map we will work

with. In our analysis, M will be taken to be infinite, but for
the derivation of the learning curves, we will first consider
M as a finite integer. The eigenfunctions and eigenvalues
are defined with respect to the probability measure that
generates the data dµ(x) = p(x)dx

Z
dx0 p(x0)K(x,x0)�⇢(x

0) = �⇢�⇢(x). (6)

We will also find it convenient to work with a vector repre-
sentation of the RKHS functions in the feature space. Kernel
eigenfunctions form a complete orthonormal basis, allowing
the expansion of the target function f⇤ and learned function
f in terms of features { ⇢(x)}

f⇤(x) =
X

⇢

w⇢ ⇢(x), f(x) =
X

⇢

w⇢ ⇢(x). (7)

Hence, M -dimensional vectors w and w constitute a repre-
sentation of f and f⇤ respectively in the feature space.

We can also obtain a feature space expression for the optimal
kernel regression function (2). Let 2 RM⇥p be feature
matrix for the sample so that  ⇢,i =  ⇢(xi). With this
representation, kernel ridge regression (1) can be recast
as the optimization problem minw2RM , kwk2<1 k >w �
yk2 + �kwk2, whose solution is

w = (  > + �I)�1 y. (8)

Another novelty of our theory is the decomposition of the
generalization error into its contributions from different
eigenmodes. The feature space expression of the generaliza-
tion error after averaging over the data distribution can be
written as:

Eg =
X

⇢

E⇢, E⇢ ⌘ �⇢
⌦
(w⇢ � w⇢)

2
↵
{xi},w

, (9)

where we identify E⇢ as the generalization error in mode ⇢.

Proof.

Eg =
⌦
(f(x)� f⇤(x))2

↵
x,{xi},f⇤

=
X

⇢,�

h(w⇢ � w⇢)(w� � w�)i{xi},f⇤
h ⇢(x) �(x)ix

=
X

⇢

�⇢
⌦
(w⇢ � w⇢)

2
↵
{xi},w

=
X

⇢

E⇢. (10)

We introduce a matrix notation for RKHS eigenvalues
⇤⇢,� ⌘ �⇢,��⇢ for convenience. Finally, with our notation
set up, we can present our first result about generalization
error.
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Proposition 1. For the w that minimizes the training error
(eq. (8)), the generalization error (eq. (4)) is given by

Eg = Tr
⇣
D
⌦
G2
↵
{xi}

⌘
, (11)

which can be decomposed into modal generalization errors

E⇢ =
X

�

D⇢,�

⌦
G2

�,⇢

↵
{xi}

, (12)

where

G =

✓
1

�
��> +⇤�1

◆�1

, � = ⇤�1/2 . (13)

and
D = ⇤�1/2

⌦
ww>

↵
w
⇤�1/2. (14)

We leave the proof to SI Section 2 but provide a few cur-
sory observations of this result. First, note that all of the
dependence on the teacher function comes in the matrix D
whereas all of the dependence on the empirical samples is
in G. In the rest of the paper, we will develop multiple the-
oretical methods to calculate the generalization error given
by expression (11).

Averaging over the target weights in the expression for D
is easily done for generic weight distributions. The case
of a fixed target is included by choosing a delta-function
distribution over w.

We present two methods for computing the nontrivial aver-
age of the matrix G2 over the training samples {xi}. First,
we consider the effect of adding a single new sample to G
to derive a recurrence relation for G at different number
of data points. This method generates a partial differential
equation that must be solved to compute the generalization
error. Second, we use a replica method and a saddle point
approximation to calculate the matrix elements of G. These
approaches give identical predictions for the learning curves
of kernel machines.

For notational simplicity, in the rest of the paper, we will
use h. . .i to mean h. . .i

{xi},w
unless stated otherwise. In all

cases, the quantity inside the brackets will depend either on
the data distribution or the distribution of target weights, but
not both.

2.2. Continuous Approximation to Learning Curves

First, we adopt a method following Sollich (1999; 2002)
and Sollich & Halees (2002) to calculate the generalization
error. We generalize the definition of G by introducing an
auxiliary parameter v, and make explicit its dataset size, p,
dependence:

G̃(p, v) =

✓
1

�
��> +⇤�1 + vI

◆�1

. (15)

Note that the quantity we want to calculate is given by

⌦
G2(p)

↵
= � @

@v

D
G̃(p, v)

E����
v=0

. (16)

By considering the effect of adding a single randomly sam-
pled input x0, and treating p as a continuous parameter, we
can derive an approximate quasi-linear partial differential
equation (PDE) for the average elements of G as a function
of the number of data points p (see below for a derivation):

@
D
G̃(p, v)

E

@p
=

1

�+ Tr
D
G̃(p, v)

E @

@v

D
G̃(p, v)

E
, (17)

with the initial condition G̃(0, v) = (⇤�1 + vI)�1, which
follows from ��> = 0 when there is no data. Since G̃ is
initialized as a diagonal matrix, the off-diagonal elements
will not vary under the dynamics and

D
G̃(p, v)

E
will remain

diagonal for all (p, v). We will use the solutions to this PDE
and relation (16) to arrive at an approximate expression for
the generalization error Eg and the mode errors E⇢.

Derivation of the PDE approximation (17). Let � 2 RM

represent the new feature to be added to G�1 so that
�⇢ = �⇢(x0) where x0 ⇠ p(x0) is a random sample from
the data distribution. Let

D
G̃(p, v)

E

�
denote the matrix

G̃ averaged over it’s p-sample design matrix �. By the
Woodbury matrix inversion formula

D
G̃(p+ 1, v)

E

�,�
=

*✓
G̃(p, v)�1 +

1

�
��>

◆�1
+

�,�

=
D
G̃(p, v)

E

�
�
*
G̃(p, v)��>G̃(p, v)

�+ �>G̃(p, v)�

+

�,�

. (18)

Performing the average of the last term on the right hand
side is difficult so we resort to an approximation, where the
numerator and denominator are averaged separately.

D
G̃(p+ 1, v)

E

�,�
⇡
D
G̃(p, v)

E

�
�

D
G̃(p, v)2

E

�

�+ Tr
D
G̃(p, v)

E

�

,

(19)

where we used the fact that h�⇢(x0)��(x0)ix0⇠p(x0) = �⇢,� .

Treating p as a continuous variable and taking a continuum
limit of the finite differences given above, we arrive at (17).

Next, we present the solution to the PDE (17) and the result-
ing generalization error.
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Proposition 2. Let g⇢(p, v) =
D
G̃(p, v)⇢⇢

E
represent the

diagonal elements of the average matrix
D
G̃(p, v)

E
. These

matrix elements satisfy the implicit relationship

g⇢(p, v) =

 
1

�⇢
+ v +

p

�+
PM

�=1 g�(p, v)

!�1

. (20)

This implicit solution is obtained from the method of char-
acteristics which we provide in Section 3 of the SI.

Proposition 3. Under the PDE approximation (17), the
average error E⇢ associated with mode ⇢ is

E⇢(p) =
hw2

⇢i
�⇢

✓
1

�⇢
+

p

�+ t(p)

◆�2✓
1� p�(p)

(�+ t(p))2

◆�1

,

(21)
where t(p) ⌘

P
⇢ g⇢(p, 0) is the solution to the implicit

equation

t(p) =
X

⇢

✓
1

�⇢
+

p

�+ t(p)

◆�1

, (22)

and �(p) is defined as

�(p) =
X

⇢

✓
1

�⇢
+

p

�+ t(p)

◆�2

. (23)

The full proof of this proposition is provided in Section 3 of
the SI. We show the steps required to compute theoretical
learning curves numerically in Algorithm 1.

Algorithm 1 Computing Theoretical Learning Curves
Input: RKHS spectrum {�⇢}, target function weights
{w⇢}, regularizer �, sample sizes {pi}, i = 1, ...,m;
for i = 1 to m do

Solve numerically ti =
P

⇢

⇣
1
�⇢

+ pi

�+ti

⌘�1

Compute �i =
P

⇢

⇣
1
�⇢

+ pi

�+ti

⌘�2

E⇢,i =
hw2

⇢i

�⇢

⇣
1
�⇢

+ pi

�+ti

⌘�2 ⇣
1� pi�i

(�+ti)2

⌘�1

end for

In eq. (21), the target function sets the overall scale of E⇢.
That E⇢ depends only on w̄⇢, but not other target modes,
is an artifact of our approximation scheme, and in a full
treatment may not necessarily hold. The spectrum of the
kernel affects all modes in a nontrivial way. When we apply
this theory to neural networks in Section 3, the information
about the architecture of the network will be in the spectrum
{�⇢}. The dependence on number of samples p is also
nontrivial, but we will consider various informative limits
below.

We note that though the mode errors fall asymptotically
like p�2 (SI Section 4), the total generalization error Eg

can scale with p in a nontrivial manner. For instance, if
w2

⇢�⇢ ⇠ ⇢�a and �⇢ ⇠ ⇢�b then a simple computation (SI
Section 4) shows that Eg ⇠ p�min{1�a,2b} as p ! 1 for
ridgeless regression and Eg ⇠ p�min{1�a,2b}/b for explic-
itly regularized regression. This is consistent with recent
observations that total generalization error for neural net-
works and kernel regression falls in a power law Eg ⇠ p��

with � dependent on kernel and target function (Hestness
et al., 2017; Spigler et al., 2019).

2.3. Computing Learning Curves with Replica Method

The result of the continuous approximation can be obtained
using another approximation method, which we outline here
and detail in SI Section 5. We perform the average of ma-
trix G(p, v) over the training data, using the replica method
(Sherrington & Kirkpatrick, 1975; Mézard et al., 1987) from
statistical physics and a finite size saddle-point approxima-
tion, and obtain identical learning curves to Proposition 3.
Our starting point is a Gaussian integral representation of
the matrix inverse

hG(p, v)⇢,�i =
@2

@h⇢@h�
R(p, v,h)|h=0,

R(p, v,h) ⌘
⌧
1

Z

Z
du e�

1
2u

>( 1
���>+⇤�1+vI)u+h·u

�
,

(24)

where Z =
R
du e�

1
2u

>( 1
���>+⇤�1+vI)u. Since Z also

depends on the dataset (quenched disorder) �, to make the
average over � tractable, we use the following limiting
procedure: Z�1 = limn!0 Zn�1. As is common in the
physics of disordered systems (Mézard et al., 1987), we
compute R(p, v,h) for integer n and analytically continue
the expressions in the n ! 0 limit under a symmetry ansatz.
This procedure produces the same average matrix elements
as the continuous approximation discussed in Proposition 2,
and therefore the same generalization error given in Propo-
sition 3. Further detail is provided in SI Section 5.

2.4. Spectral Dependency of Learning Curves

We can get insight about the behavior of learning curves by
considering ratios between errors in different modes:

E⇢

E�
=

hw2
⇢i

hw2
�i
��
�⇢

( 1
��

+ p
�+t )

2

( 1
�⇢

+ p
�+t )

2
. (25)

For small p this ratio approaches E⇢

E�
⇠ �⇢hw

2
⇢i

��hw2
�i

. For large

p, E⇢

E�
⇠ hw2

⇢i/�⇢

hw2
�i/��

, indicating that asymptotically (p !
1), the amount of relative error in mode ⇢ grows with the
ratio hw2

⇢i /�⇢, showing that the asymptotic mode error is
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relatively large if the teacher function places large amounts
of power in modes that have small RKHS eigenvalues �⇢.

We can also examine how the RKHS spectrum affects the
evolution of the error ratios with p. Without loss of general-
ity, we take �� > �⇢ and show in SI Section 6 that

d

dp
logE⇢ >

d

dp
logE� . (26)

In this sense, the marginal training data point causes a
greater percent reduction in generalization error for modes
with larger RKHS eigenvalues.

2.5. Multiple Outputs

The learning curves we derive for a scalar function can be
straightforwardly extended to the case where the function
outputs are multivariate: f : Rd ! RC . For least squares
regression, this case is equivalent to solving C separate
learning problems for each component functions fc(x), c =
1, ..., C. Let yc 2 Rp be the corresponding vectors of target
values possibly generated by different target functions, f⇤

c .
The learning problem in this case is

min
f2Hc

CX

c=1

"
pX

i=1

(fc(xi)� yc,i)
2 + �||fc||2H

#
. (27)

The solution to the learning problem depends on the same
kernel but different targets for each function:

fc(x) = y>

c (K+ �I)�1k(x), c = 1, . . . , C. (28)

Our theory can be used to generate predictions for the gen-
eralization error of each of the C learned functions, fc(x),
and then summed to obtain the total error.

3. Dot Product Kernels on Sd�1 and NTK
For the remainder of the paper, we specialize to the case
where our inputs are drawn uniformly on X = Sd�1, a
(d� 1)-dimensional unit hyper-sphere. In addition, we will
assume that the kernel is a dot product kernel (K(x,x0) =
(x>x0)), as is the case for NTK. In this setting, the kernel
eigenfunctions are spherical harmonics {Ykm} (Bietti &
Mairal, 2019; Efthimiou & Frye, 2014), and the Mercer
decomposition is given by

K(x,x0) =
1X

k=0

�k

N(d,k)X

m=1

Ykm(x)Ykm(x0). (29)

Here, N(d, k) is the dimension of the subspace spanned by
d-dimensional spherical harmonics of degree k. Rotation
invariance renders the eigenspectrum degenerate since each
of the N(d, k) modes of frequency k share the same eigen-
value �k. A review of these topics is given in SI Sections 7
and 8.

Figure 1. Spectrum of 10-layer NTK multiplied by degeneracy
as a function of dimension for various k, calculated by numerical
integration (SI Section 8). �kN(d, k) stays constant as input
dimension increases, confirming that �kN(d, k)�1

⇠ Od(1) at
large d.

We briefly comment on another fact that will later be
used in our numerical simulations. Dot product kernels
admit an expansion in terms of Gegenbauer polynomials
{Qk}, which form a complete and orthonormal basis for
the uniform measure on the sphere (Dai & Xu, 2013):
(z) =

P
1

k=0 �kN(d, k)Qk(z). The Gegenbauer poly-
nomials are related to spherical harmonics {Ykm} through
Qk(x>x0) = 1

N(d,k)

PN(d,k)
m=1 Ykm(x)Ykm(x0) (Dai & Xu,

2013) (see SI Sections 7 and 8 for a review).

3.1. Frequency Dependence of Learning Curves

In the special case of dot product kernels with monotoni-
cally decaying spectra, results given in Section 2.4 indicate
that the marginal training data point causes greater reduc-
tion in relative error for low frequency modes than for high
frequency modes. Monotonic RKHS spectra represent an
inductive bias that preferentially favors fitting lower frequen-
cies as more data becomes available. More rapid decay in
the spectrum yields a stronger bias to fit low frequencies
first.

To make this intuition more precise, we now discuss an
informative limit d ! 1 where the degeneracy factor ap-
proaches to N(d, k) ⇠ dk/k!. In the following, we replace
eigenfunction index ⇢ with index pair (k,m). Eigenvalues
of the kernel scales with d as �k ⇠ N(d, k)�1 (Smola et al.,
2001) in the d ! 1 limit, as we verify numerically in Fig-
ure 1 for NTK. If we take p = ↵d` for some integer degree
`, then Ekm exhibits three distinct learning stages. Leaving
the details to SI Section 9, we find that in this limit, for large
↵:

Ekm(↵)

Ekm(0)
⇡

8
<

:

1, k > `
const.
↵2 , k = `
0, k < `

, (30)
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where the constant is given in SI Section 9. In other words,
k < l modes are perfectly learned, k = l are being learned
with an asymptotic 1/↵2 rate, and k > l are not learned.

This simple calculation demonstrates that the lower modes
are learned earlier with increasing sample complexity since
the higher modes stays stationary until p reaches to the
degeneracy of that mode.

3.2. Neural Tangent Kernel and its Spectrum

For fully connected architectures, the NTK is a rotation
invariant kernel that describes how the predictions of in-
finitely wide neural networks evolve under gradient flow
(Jacot et al., 2018). Let ✓i index all of the parameters of the
neural network and let f✓(x) be the output of the network.
Here, we focus on scalar network outputs for simplicity,
but generalization to multiple outputs is straightforward, as
discussed in Section 2.5. Then the neural tangent kernel is
defined as

KNTK(x,x
0) =

X

i

D@f✓(x)
@✓i

@f✓(x0)

@✓i

E

✓
. (31)

Let u✓ 2 Rp be the current predictions of f✓ on the training
data. If the parameters of the model are updated via gradient
flow on a quadratic loss, d✓

dt = �r✓u✓ · (u✓ � y), then the
predictions on the training data evolve with the following
dynamics (Pehlevan et al., 2018; Jacot et al., 2018; Arora
et al., 2019; Lee et al., 2019)

du✓

dt
= �KNTK · (u✓ � y) . (32)

When the width of the neural network is taken to infinity
with proper initialization, where the weights at layer ` are
sampled W (`) ⇠ N

�
0, 1/n(`)

�
where n(`) is the number

of hidden units in layer `, the NTK becomes independent
of the particular realization of parameters and approaches
a deterministic function of the inputs and the nonlinear
activation function (Jacot et al., 2018). Further, the kernel
is approximately fixed throughout gradient descent (Jacot
et al., 2018; Arora et al., 2019). If we assume that u✓ = 0
at t = 0, then the final learned function is

f(x) = y>K�1
NTKk(x). (33)

Note that this corresponds to ridgeless, interpolating regres-
sion where � = 0. We will use this correspondence and our
kernel regression theory to explain neural network learning
curves in the next section. For more information about NTK
for fully connected architectures see SI Sections 10 and 11.

To generate theoretical learning curves, we need the eigen-
spectrum of the kernels involved. For X = Sd�1, it suffices
to calculate the projections of the kernel on the Gegenbauer
basis hKNTK(x), Qk(x)ix, which we evaluate numerically
with Gauss-Gegenbauer quadrature (SI Section 8). Further
details on NTK spectrum is presented in SI Section 11.

4. Experiments
In this section, we test our theoretical results for kernel re-
gression, kernel interpolation and wide networks for various
kernels and datasets.

4.1. NTK Regression and Interpolation

We first test our theory in a kernel regression task with
NTK demonstrating the spectral decomposition. In this
experiment, the target function is a linear combination of a
kernel evaluated at randomly sampled points {xi}:

f⇤(x) =
p0X

i=1

↵iK(x,xi), (34)

where ↵i ⇠ B(1/2) are sampled randomly from a Bernoulli
distribution on {±1} and xi are sampled uniformly from
Sd�1. The points xi are independent samples from Sd�1

and are different than the training set {xi}. The student
function is learned with kernel regression by inverting the
Gram matrix K defined on the training samples {xi} ac-
cording to eq. (2). With this choice of target function, exact
computation of the mode wise errors Ek =

P
m Ekm in

terms of Gegenbauer polynomials is possible; the formula
and its derivation are provided in Section 12.2 of the SI. We
compare these experimental mode-errors to those predicted
by our theory and find perfect agreement. For these exper-
iments, both the target and student kernels are taken to be
NTK of a 4-layer fully connected ReLU without bias.

Figure 2 shows the errors for each frequency k as a function
of sample size p. In Figure 2(a), we show that the mode
errors sequentially start falling when p ⇠ N(d, k). Figure
2(b) shows the mode error corresponding to k = 1 for kernel
regression with 3-layer NTK across different dimensions.
Higher input dimension causes the frequency modes to be
learned at larger p. We observe an asymptotic ⇠ 1/↵2 decay
in modal errors. Finally, we show the effect of regularization
on mode errors with a 10-layer NTK in Figure 2(c). With
increasing �, learning begins at larger p values.

4.2. Learning Curves for Finite Width Neural
Networks

Having established that our theory accurately predicts the
generalization error of kernel regression with NTK, we now
compare the generalization error of finite width neural net-
works trained on a quadratic loss with the theoretical learn-
ing curves for NTK. For these experiments, we use the
Neural-Tangents Library (Novak et al., 2020) which sup-
ports training and inference for both finite and infinite width
neural networks.

First, we use “pure mode” teacher functions, meaning the
teacher is composed only of spherical harmonics of the same
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(a) 3-layer NTK d = 15 � = 0 (b) 3-layer NTK k = 1 � = 1 (c) 10-layer NTK d = 15 k = 1

Figure 2. Learning curves for kernel regression with NTK averaged over 50 trials compared to theory. Error bars are standard deviation.
Solid lines are theoretical curves calculated using eq. (21). Dashed vertical lines indicate the degeneracy N(d, k). (a) Normalized learning
curves for different spectral modes. Sequential fitting of mode errors is visible. (b) Normalized learning curves for varying data dimension,
d. (c) Learning curves for varying regularization parameter, �.

(a) 2-layer NN N = 10000 (b) 4-layer NN N = 500 (c) 2-Layer NN Student-Teacher; N = 8000

Figure 3. (a) and (b) Learning curves for neural networks (NNs) on “pure modes” as defined in eq. (35). (c) Learning curve for the student
teacher setup defined in (36). The theory curves shown as solid lines are again computed with eq. (21). The test error for the finite width
neural networks and NTK are shown with dots and triangles respectively. The generalization error was estimated by taking a random test
sample of 1000 data points. The average was taken over 25 trials and the standard deviations are shown with errorbars. The networks
were initialized with the default Gaussian NTK parameterization (Jacot et al., 2018) and trained with stochastic gradient descent (details
in SI Section 13).

degree. For “pure mode” k, the teacher is constructed with
the following rule:

f⇤(x) =
p0X

i=1

↵iQk(x
>xi), (35)

where again ↵i ⇠ B(1/2) and xi ⇠ p(x) are sampled
randomly. Figure 3(a) shows the learning curve for a fully
connected 2-layer ReLU network with width N = 10000,
input dimension d = 30 and p0 = 10000. As before, we
see that the lower k pure modes require less data to be fit.
Experimental test errors for kernel regression with NTK on
the same synthetic datasets are plotted as triangles. Our
theory perfectly fits the experiments.

Results from a 4-layer NN simulation are provided in Figure
3(b). Each hidden layer had N = 500 hidden units. We
again see that the k = 2 mode is only learned for p > 200.

k = 4 mode is not learned at all in this range. Our theory
again perfectly fits the experiments.

Lastly, we show that our theory also works for composite
functions that contain many different degree spherical har-
monics. In this setup, we randomly initialize a two layer
teacher neural network and train a student neural network

f⇤(x) = r>�(⇥x), f(x) = r>�(⇥x), (36)

where⇥,⇥ 2 RM⇥d are the feedforward weights for the
student and teacher respectively, � is an activation function
and r, r 2 RM are the student and teacher readout weights.
Chosen in this way with ReLU activations, the teacher is
composed of spherical harmonics of many different degrees
(Section 13 in SI). The total generalization error for this
teacher student setup as well as the theoretical prediction of
our theory is provided in Figure 3(c) for d = 25, N = 8000.
They agree excellently. Results from additional neural net-
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(a) Gaussian kernel and measure in d = 20 (b) 3-Layer NN on MNIST, N = 800 (c) NTK regression on MNIST, � = 0.

Figure 4. (a) Learning curves for Gaussian kernel in d = 20 dimensions with varying �. For small �, learning stages are visible at
p = N(d, k) for k = 1, 2 (p = 20, 210, vertical dashed lines) but the stages are obscured for non-negligible �. (b) Learning curve for
3-layer NTK regression and a neural network (NN) on a subset of 8000 randomly sampled images of handwritten digits from MNIST. (c)
Aggregated NTK regression mode errors for the setup in (b). Eigenmodes of MNIST with larger eigenvalues are learned more rapidly
with increasing p.

work simulations are provided in Section 13 of the SI.

4.3. Gaussian Kernel Regression and Interpolation

We next test our theory on another widely-used kernel. The
setting where the probability measure and kernel are Gaus-
sian, K(x,x0) = e�

1
2`2

||x�x0
||
2

, allows analytical compu-
tation of the eigenspectrum, {�k} (Rasmussen & Williams,
2005). In d dimensions, the k-th distinct eigenvalue corre-
sponds to a set of N(d, k) =

�d+k�1
k

�
⇠ dk/k! degenerate

eigenmodes. The spectrum itself decays exponentially.

In Figure 4(a), experimental learning curves for d = 20 di-
mensional standard normal random vector data and a Gaus-
sian kernel with ` = 50 are compared to our theoretical
predictions for varying ridge parameters �. The target func-
tion f⇤(x) is constructed with the same rule we used for the
NTK experiments, shown in eq. 34. When � is small, sharp
drops in the generalization error occur when p ⇡ N(d, k)
for k = 1, 2. These drops are suppressed by the explicit
regularization �.

4.4. MNIST: Discrete Data Measure and Kernel PCA

We can also test our theory for finite datasets by defining a
probability measure with equal point mass on each of the
data points {xi}p̃i=1 in the dataset (including training and
test sets):

p(x) =
1

p̃

p̃X

i=1

�(x� xi). (37)

With this measure, the eigenvalue problem (6) becomes a
p̃⇥ p̃ kernel PCA problem (see SI 14)

K�> = p̃�>⇤. (38)

Once the eigenvalues ⇤ and eigenvectors �> have been
identified, we compute the target function coefficients by
projecting the target data yc onto these principal compo-
nents wc = ⇤�1/2�yc for each target c = 1, . . . , C. Once
all of these ingredients are obtained, theoretical learning
curves can be computed using Algorithm 1 and multiple
class formalism described in Section 2.5, providing esti-
mates of the error on the entire dataset incurred when train-
ing with a subsample of p < p̃ data points. An example
where the discrete measure is taken as p̃ = 8000 images
of handwritten digits from MNIST (Lecun et al., 1998)
and the kernel is NTK with 3 layers is provided in Figures
4(c)and 4(b). For total generalization error, we find perfect
agreement between kernel regression and neural network
experiments, and our theory.

5. Conclusion
In this paper, we presented an approximate theory of the
average generalization performance for kernel regression.
We studied our theory in the ridgeless limit to explain the
behavior of trained neural networks in the infinite width
limit (Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019).
We demonstrated how the RKHS eigenspectrum of NTK
encodes a preferential bias to learn high spectral modes
only after the sample size p is sufficiently large. Our theory
fits kernel regression experiments remarkably well. We
further experimentally verified that the theoretical learning
curves obtained in the infinite width limit provide a good
approximation of the learning curves for wide but finite-
width neural networks. Our MNIST result suggests that our
theory can be applied to datasets with practical value.
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1. Background on Kernel Machines
1.1. Reproducing Kernel Hilbert Space

Let X ✓ Rd and p(x) be a probability distribution over
X . Let H be a Hilbert space with inner product h·, ·i

H
. A

kernel K(·, ·) is said to be reproducing for H if function
evaluation at any x 2 X is the equivalent to the Hilbert
inner product with K(·,x): K is reproducing for H if for
all g 2 H and all x 2 X

hK(·,x), gi
H

= g(x). (SI.1)

If such a kernel exists for a Hilbert space, then it is unique
and defined as the reproducing kernel for the RKHS (Evge-
niou et al., 1999; Schölkopf & Smola, 2001).

1.2. Mercer’s Theorem

Let H be a RKHS with kernel K. Mercer’s theorem (Mercer,
1909; Rasmussen & Williams, 2005) allows the eigendecom-
position of K

K(x,x0) =
X

⇢

�⇢�⇢(x)�⇢(x), (SI.2)

where the eigenvalue statement is

Z
dx0p(x0)K(x,x0)�⇢(x

0) = �⇢�⇢(x). (SI.3)

1.3. Representer Theorem

Let H be a RKHS with inner product h., .i
H

. Consider the
regularized learning problem

minf2HL̂[f ] + �||f ||2
H
, (SI.4)

where L̂[f ] is an empirical cost defined on the discrete sup-
port of the dataset and � > 0. The optimal solution to
the optimization problem above can always be written as
(Schölkopf & Smola, 2001)

f(x) =
pX

i=1

↵iK(xi, x). (SI.5)

1.4. Solution to Least Squares

Specializing to the case of least squares regression, let

L̂[f ] =
pX

i=1

(f(xi)� yi)
2. (SI.6)

Using the representer theorem, we may reformulate the
entire objective in terms of the p coefficients ↵i

L[f ] =
pX

i=1

(f(xi)� yi)
2 + �||f ||2

H

=
pX

i=1

(
pX

j=1

↵jK(xi,xj)� yi)
2

+ �
X

ij

↵i↵j

D
K(xi, ·),K(xj , ·)

E

H

= ↵>K2↵� 2y>K↵+ y>y + �↵>K↵. (SI.7)

Optimizing this loss with respect to ↵ gives

↵ = (K+ �I)�1y. (SI.8)

Therefore the optimal function evaluated at a test point is

f(x) = ↵>k(x) = y>(K+ �I)�1k(x). (SI.9)

2. Derivation of the Generalization Error
Let the RKHS H have eigenvalues �⇢ for ⇢ 2 Z+. Define
 ⇢(x) =

p
�⇢�⇢(x), where �⇢ are the eigenfunctions of

the reproducing kernel for H. Let the target function have
the following expansion in terms of the kernel eigenfunc-
tions f⇤(x) =

P
⇢ w⇢ ⇢(x). Define the design matrices

�⇢,i = �⇢(xi) and ⇤⇢� = �⇢�⇢� . Then the average gener-
alization error for kernel regression is

Eg = Tr
⇣
D
⌦
G2
↵
{xi}

⌘
(SI.10)

where

G =

✓
1

�
��> +⇤�1

◆�1

, � = ⇤�1/2 . (SI.11)

and
D = ⇤�1/2

⌦
ww>

↵
w
⇤�1/2. (SI.12)

Proof. Define the student’s eigenfunction expansion
f(x) =

P
⇢ w⇢ ⇢(x) and decompose the risk in the ba-

sis of eigenfunctions:

Eg({xi}, f⇤) =
⌦
(f(x)� y(x))2

↵
x

=
X

⇢,�

(w⇢ � w⇢)(w� � w�) h ⇢(x) �(x)ix

=
X

⇢

�⇢(w⇢ � w⇢)
2

= (w �w)>⇤(w �w). (SI.13)

Next, it suffices to calculate the weights w learned through
kernel regression. Define a matrix with elements  ⇢,i =
 ⇢(xi). The training error for kernel regression is

Etr = || >w � y||2 + �||w||22 (SI.14)
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The `2 norm on w is equivalent to the Hilbert norm on the
student function. If f(x) =

P
⇢ w⇢ ⇢(x) then

||f ||2
H

= hf, fi
H

=
X

⇢�

w⇢w� h ⇢(·), �(·)iH =
X

⇢

w2
⇢, (SI.15)

since h ⇢(·), �(·)iH = �⇢,� (Bietti & Mairal, 2019). This
fact can be verified by invoking the reproducing property
of the kernel and it’s Mercer decomposition. Let g(·) =P

⇢ a⇢ ⇢(·). By the reproducing property

hK(·,x), g(·)i
H

=
X

⇢,�

a� ⇢(x) h ⇢(·), �(·)iH

= g(x) =
X

⇢

a⇢ ⇢(x) (SI.16)

Demanding equality of each term, we find
X

�

a� h ⇢(·), �(·)iH = a⇢ (SI.17)

Due to the arbitrariness of a⇢, we must have
h ⇢(·), �(·)iH = �⇢,� . We stress the difference be-
tween the action of the Hilbert inner product and averaging
feature functions over a dataset h ⇢(x) �(x)ix = �⇢�⇢,�
which produce different results. We will always decorate
angular brackets with H to denote Hilbert inner product.

The training error has a unique minimum

w = (  > + �I)�1 y = (  > + �I)�1  >w

= w � �(  > + �I)�1w, (SI.18)

where the target function is produced according to y =
 >w.

Plugging in the w that minimizes the training error into the
formula for the generalization error, we find

Eg({xi},w) = �2
⌦
w(  > + �I)�1⇤(  > + �I)�1w

↵
.

(SI.19)
Defining

G = �⇤1/2(  >+�I)�1⇤1/2 =

✓
1

�
��> +⇤�1

◆�1

,

(SI.20)
and

D = ⇤�1/2
⌦
ww>

↵
⇤�1/2, (SI.21)

and identifying the terms in (SI.19) with these definitions,
we obtain the desired result. Then each component of the
mode error is given by:

E⇢ =
X

�

D⇢,� hG2
�,⇢i (SI.22)

3. Solution of the PDE Using Method of
Characteristics

Here we derive the solution to the PDE in equation 17 of the
main text by adapting the method used by (Sollich, 1999).
We will prove both Propositions 2 and 3.

Let

g⇢(p, v) ⌘
D
G̃(p, v)⇢⇢

E
, (SI.23)

and

t(p, v) ⌘ Tr hG(p, v)i =
X

⇢

g⇢(p, v). (SI.24)

It follows from equation 17 that t obeys the PDE

@t(p, v)

@p
=

1

�+ t

@t(p, v)

@v
, (SI.25)

with an initial condition t(0, v) = Tr(⇤�1 + vI)�1. The
solution to first order PDEs of the form is given by the
method of characteristics (Arfken, 1985), which we describe
below, and prove Proposition 2.

Proof of Proposition 2. The solution to (SI.25) is a surface
(t, p, v) ⇢ R3 that passes through the line (Tr(⇤�1 +
vI)�1, 0, v) and satisfies the PDE at all points. The
tangent plane to the solution surface at a point (t, p, v)
is span{( @t

@p , 1, 0), (
@t
@v , 0, 1)}. Therefore a vector a =

(at, ap, av) 2 R3 normal to the solution surface must satisfy

at
@t

@p
+ ap = 0, at

@t

@v
+ av = 0.

One such normal vector is (�1, @t
@p ,

@t
@v ).

The PDE can be written as a dot product involving this
normal vector,

✓
�1,

@t

@p
,
@t

@v

◆
·
✓
0, 1,� 1

�+ t

◆
= 0, (SI.26)

demonstrating that (0, 1,� 1
�+t ) is tangent to the solution

surface. This allows us to parameterize one dimensional
curves along the solution in these tangent directions. Such
curves are known as characteristics. Introducing a parameter
s 2 R that varies along the one dimensional characteristic
curves, we get

dt

ds
= 0,

dp

ds
= 1,

dv

ds
= � 1

�+ t
. (SI.27)

The first of these equations indicate that t is constant along
each characteristic curve. Integrating along the parameter,
p = s+ p0 and v = � s

�+t + v0 where p0 is the value of p
when s = 0 and v0 is the value of v at s = 0. Without loss
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of generality, take p0 = 0 so that s = p. At s = 0, we have
our initial condition

t(0, v) = Tr
�
⇤�1 + v0I

��1
. (SI.28)

Since t takes on the same value for each characteristic

t(p, v) = Tr
✓
⇤�1 +

✓
v +

p

�+ t(p, v)

◆
I

◆�1

, (SI.29)

which gives an implicit solution for t(p, v). Now that we
have solved for t(p, v), remembering (SI.24), we may write

g⇢(p, v) =

✓
1

�⇢
+ v +

p

�+ t(p, v)

◆�1

. (SI.30)

This equation proves Proposition 2 of the main text.

Next, we compute the modal generalization errors E⇢ and
prove Proposition 3.

Proof of Proposition 3. Computing generalization error of
kernel regression requires the differentiation with respect to
v at v = 0 (eq.s (11) and (16) of main text). Since

⌦
G2
↵

is
diagonal, the mode errors only depend on the diagonals of
D and on

⌦
G2

⇢,⇢

↵
= �@g⇢

@v |v=0:

E⇢ =
X

�

D⇢,�

⌦
G2

�,⇢

↵
= �

hw2
⇢i

�⇢

@g⇢
@v

����
v=0

. (SI.31)

We proceed with calculating the derivative in the above
equation.

@g⇢(p, 0)

@v
= �

✓
1

�⇢
+

p

�+ t(p, 0)

◆�2

⇥
✓
1� p

(�+ t)2
@t(p, 0)

@v

◆
. (SI.32)

We need to calculate @t(p,v)
@v |v=0

@t(p, 0)

@v
= ��

✓
1� p

(�+ t)2
@t(p, 0)

@v

◆
, (SI.33)

where

� ⌘
X

⇢

✓
1

�⇢
+

p

�+ t(p, 0)

◆�2

. (SI.34)

Solving for the derivative, we get

@t(p, 0)

@v
= � �

1� � p
(�+t)2

, (SI.35)

and

@g⇢(p, 0)

@v
= �

✓
1

�⇢
+

p

�+ t

◆�2✓
1� �p

(�+ t)2

◆�1

.

(SI.36)

The error in mode ⇢ is therefore

E⇢ =
hw2

⇢i
�⇢

✓
1

�⇢
+

p

�+ t(p)

◆�2✓
1� p�(p)

(�+ t(p))2

◆�1

,

(SI.37)

so it suffices to numerically solve for t(p, 0) to recover
predictions of the mode errors. Equations (SI.29) (evaluated
at v = 0), (SI.34) and (SI.37) collectively prove Proposition
3.

4. Learning Curve for Power Law Spectra
For � > 0, the mode errors asymptotically satisfy E⇢ ⇠
O(p�2) since p

�+t ⇠ p
� and (�+t)2

(�+t)2��p ⇠ Op(1) (see be-
low). Although each mode error decays asymptotically like
p�2, the total generalization error can have nontrivial scal-
ing with p that depends on both the kernel and the target
function.

To illustrate the dependence of the learning curves on the
choice of kernel and target function, we consider a case
where both have power law spectra. Specifically, we assume
that �⇢ = ⇢�b and a2⇢ ⌘ w2

⇢�⇢ = ⇢�a for ⇢ = 1, 2, .... We
introduce the variable z = t+� to simplify the computations
below. We further approximate the sums over modes with
integrals

Eg ⇡ z2

z2 � p�

Z
1

1

d⇢ ⇢�a

�p
z⇢

�b + 1
�2 . (SI.38)

We use the same approximation technique to study the be-
havior of z(p)

z = �+
z

p

Z
1

1

d⇢

1 + z
p⇢

b
= �+

✓
z

p

◆1� 1
b
Z

1

(z/p)1/b

du

1 + ub

= �+

✓
z

p

◆1� 1
b

F (b, p, z), (SI.39)

where F (b, p, z) =
R
1

(z/p)1/b
du

1+ub . If p � ��1/(b�1) then
z ⇡ �, otherwise z ⇡ p1�bF (b, p, z)b. Further, the scaling
z ⇠ O(p1�b) is self-consistent since the lower endpoint of
integration (z/p)1/b ⇠ p�1 ! 0 so F (b, z, p) approaches
a constant F (b) for p ! 1

z ⇠ p1�bF (b)b , F (b, z, p) ⇠ F (b) =

Z
1

0

du

1 + ub
.

(SI.40)

We similarly find that p�(p) ⇠ O(p2�2b) if p ⌧ ��1/(b�1).
The mode-independent prefactor is approximately constant

z2

z2��p ⇠ Op(1).

We can use all of these facts to identify scalings of Eg . We
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will first consider the case where p ⌧ ��1/(b�1):

Eg ⇠
Z

1

1

d⇢⇢�a

(pb⇢�b + 1)2

⇡ p�2b

Z p

1
d⇢⇢�a+2b +

Z
1

p
d⇢⇢�a

=
1

a� 1� 2b
p�2b +

2b

(a� 1)(2b+ 1� a)
p�(a�1).

(SI.41)

If 2b > a � 1 then the second term dominates, indicating
that higher frequency modes k > p provide a greater contri-
bution to the error due to the slow decay in the target power.
In this case Eg ⇠ p�(a�1). If, on the other hand, 2b < a�1
then lower frequency modes k < p dominate the error and
Eg ⇠ p�2b.

Now, suppose that p > ��1/(b�1). In this regime

Eg ⇠
Z

1

1

d⇢⇢�a

( p�⇢
�b + 1)2

⇡ �2

p2

Z (p/�)1/b

1
d⇢ ⇢2b�a +

Z
1

(p/�)1/b
d⇢⇢�a

=
�2

p2
1

2b� a+ 1

⇣ p
�

⌘(2b�a+1)/b
� 1

�

+
1

a� 1

⇣ p
�

⌘(1�a)/b
. (SI.42)

Here there are two possible scalings. If 2b > a � 1 then
Eg ⇠ p�(a�1)/b while 2b < a� 1 implies Eg ⇠ p�2.

So the total error scales like

Eg ⇠ p�min{a�1,2b} , p < ��1/(b�1)

Eg ⇠ p�min{a�1,2b}/b , p > ��1/(b�1). (SI.43)

A verification of this scaling is provided in Figure SI.1,
which shows the behavior of z and Eg in these two regimes.
When the explicit regularization is low (or zero) (p <
��1/(b�1)), our equations reproduce the power law scal-
ings derived with Fourier analysis in (Spigler et al., 2019)2.

The slower asymptotic decays in generalization error when
explicit regularization � is large relative to the sample size
indicates that explicit regularization hurts performance. The
decay exponents also indicate that the RKHS eigenspectrum
should decay with exponent at least as large as b⇤ > a�1

2
for optimal asymptotics. Kernels with slow decays in their
RKHS spectra induce larger errors.

2We note that in a recent version of their paper, Spigler et al.
(2019) used our formalism to independently derive the scalings in
(SI.43) for the ridgeless (� = 0) case. Our calculation in an earlier
preprint had missed the possible ⇠ p�2b and ⇠ p�2 scalings,
which we corrected after their paper.

5. Replica Calculation
In this section, we present the replica trick and the saddle-
point approximation summarized in main text Section 2.3.
Our goal is to show that the continuous approximation of
the main paper and previous section can be interpreted as
a finite size saddle-point approximation to the replicated
system under a replica symmetry ansatz. We will present
a detailed treatment of the thermodynamic limit and the
replica symmetric ansatz in a different paper.

Let G̃(p, v) =
�
1
���

> +⇤�1 + vI
��1. To obtain the

average elements
D
G̃(p, v)⇢,�

E
we will use a Gaussian in-

tegral representation of the matrix inverse
D
G̃(p, v)⇢,�

E

=
@2

@h⇢@h�

⌧
1

Z

Z
due�

1
2u(

1
���>+⇤�1+vI)u+h·u

�

�

,

(SI.44)

where

Z =

Z
du e�

1
2u(

1
���>+⇤�1+vI)u, (SI.45)

and make use of the identity Z�1 = limn!0 Zn�1 to
rewrite the entire average in the form

R(h) =

Z nY

a=1

dua
D
e�

1
2

P
a ua( 1

���>+⇤�1+vI)ua+h·u(1)
E

(SI.46)

with the identification that
D
G̃(p, v)⇢,�

E
=

@2

@h⇢@h�
lim
n!0

R(h)|h=0. (SI.47)

Following the replica method from the physics of disordered
systems, we will first restrict ourselves to integer n and then
analytically continue the resulting expressions to take the
limit of n ! 0.

Averaging over the quenched disorder (dataset) with the
assumption that the residual error (w � w) ·  (xi) is a
Gaussian process, we find

D
e�

1
2�

P
a ua��>ua

E
= e�

p
2 log det(I+ 1

�Q), (SI.48)

where order parameters Qab = ua ·ub have been introduced.

To enforce the definition of these order parameters, Dirac
delta functions are inserted into the expression for R. We
then represent each delta function as a Fourier integral so
that integrals over ua can be computed

�(Qab �ua ·ub) =

Z
dQ̂abe

iQabQ̂ab�iQ̂abu
a
·ub

. (SI.49)
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(a) z = t+ � (b) Eg(p)

Figure SI.1. Approximate scaling of learning curve for spectra that decay as power laws �k ⇠ k�b and a2
k ⌘ w2

k�k = k�a. Figure (a)
shows a comparison of the numerical solution to the implicit equation for t+ � as a function of p and its comparison to approximate
scalings. There are two regimes which are separated by p ⇡ ��1/(b�1). For small p, z ⇠ p1�b but for large p, z ⇠ �. The total
generalization error is shown in (b) which scales like p1�a for small p and p(1�a)/b for large p.

After inserting delta functions to enforce order parameter
definitions, we are left with integrals over the thermal de-
grees of freedom

Z nY

a=1

duae�
1
2

P
a ua⇤�1ua

�i
P

ab Q̂abu
aub+u(1)h

= e
�

1
2

P
⇢ log det( 1

�⇢
I+2iQ̂)+ 1

2

P
⇢ h2

⇢(
1
�⇢

I+2iQ̂)�1
11 . (SI.50)

We now make a replica symmetric ansatz Qab = q�ab + q0
and 2iQ̂ab = q̂�ab + q̂0. Under this ansatz R(h) can be
rewritten as

R(h) =
Z

dqdq̂ddq̂dq̂0e
�pnF(q,q0,q̂,q̂0)e

1
2

P
⇢ h2

⇢(
1
�⇢

I+2iQ̂)�1
11 ,

(SI.51)

where the free energy is

2pF(q, q0, q̂, q̂0) =p log
⇣
1 +

q

�

⌘
+ p

q0
�+ q

+ v(q + q0)

� (q + q0)(q̂ + q̂0) + q0q̂0

+
X

⇢

"
log

✓
1

�⇢
+ q̂

◆
+

q̂0
1
�⇢

+ q̂

#
.

(SI.52)

In the limit p ! 1, R(h) is dominated by the saddle point
of the free energy where rF(q, q̂, q0, q̂0) = 0. The saddle

point equations are

q̂⇤ =
p

q⇤ + �
+ v,

q⇤ =
X

⇢

1
1
�⇢

+ q̂⇤
=
X

⇢

1
1
�⇢

+ v + p
q⇤+�

,

q⇤0 = q̂⇤0 = 0. (SI.53)

We see that q⇤ is exactly equivalent to t(p, v) defined in
SI.29 for the continuous approximation. Under the saddle
point approximation we find

R(h) ⇡ e�npF(q⇤,q⇤0 ,q̂
⇤,q̂⇤0 )e

1
2

P
⇢ h2

⇢
1

1
�⇢

+q̂⇤
. (SI.54)

Taking the n ! 0 limit as promised, we obtain the normal-
ized average

R̃(h) ⌘ lim
n!0

R(h) = e
1
2

P
⇢ h2

⇢
1

1
�⇢

+q̂⇤
, (SI.55)

so that the matrix elements are

D
G̃(p, v)⇢,�

E
=

@2

@h⇢@h�
R̃(h)|h=0 =

�⇢,�
1
�⇢

+ v + p
�+q⇤

,

q⇤ =
X

⇢

1
1
�⇢

+ v + p
�+q⇤

. (SI.56)
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Using our formula for the mode errors, we find

E⇢ =
X

�

D⇢,�

D
G̃(p, v)2�,⇢

E

= �D⇢,⇢
@

@v

D
G̃(p, v)⇢,⇢

E
|v=0

=

⌦
w2

⇢

↵

�⇢

(�+ q⇤)2

(�+ q⇤)2 � �p

✓
1

�⇢
+

p

�+ q⇤

◆�2

,
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consistent with our result from the continuous approxima-
tion.

6. Spectral Dependence of Learning Curves
We want to calculate how different mode errors change as
we add one more sample. We study:

1

2

d

dp
log

E⇢

E�
, (SI.58)

where E⇢ is given by eq. (21). Evaluating the derivative,
we find:

1

2

d

dp
log

✓
E⇢

E�

◆

= �
 

1
1
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�+t

� 1
1
��
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p
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◆
. (SI.59)

Using eq. (22),

@t

@p
= � @

@p

✓
p

�+ t

◆X

⇢

✓
1

��
+

p

�+ t

◆�2

= �� @
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✓
p

�+ t

◆
, (SI.60)

where we identified the sum with �. Inserting this, we
obtain:

1

2

d

dp
log

✓
E⇢

E�

◆
=

"
1

1
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+ p
�+t

� 1
1
��
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#
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Finally, solving for @t/@p from (SI.60), we get:

@t

@p
= � 1

�+ t

(�+ t)2�

(�+ t)2 � p�
= � 1

�+ t
Tr
�
G2
�
,

(SI.62)
proving that @t/@p < 0. Taking �� > �⇢ without loss of
generality, it follows that

d

dp
log

✓
E⇢

E�

◆
> 0 ) d

dp
logE⇢ >

d

dp
logE� . (SI.63)

7. Spherical Harmonics
Let �� represent the Laplace-Beltrami operator in Rd.
Spherical harmonics {Ykm} in dimension d are harmonic
(��Ykm(x) = 0), homogeneous (Ykm(tx) = tkYkm(x))
polynomials that are orthonormal with respect to the uni-
form measure on Sd�1 (Efthimiou & Frye, 2014; Dai & Xu,
2013). The number of spherical harmonics of degree k in
dimension d denoted by N(d, k) is

N(d, k) =
2k + d� 2

k

✓
k + d� 3

k � 1

◆
. (SI.64)

The Laplace Beltrami Operator can be decomposed into the
radial and angular parts, allowing

�� = ��r ��Sd�1 (SI.65)

Using this decomposition, the spherical harmonics are eigen-
functions of the surface Laplacian

��Sd�1Ykm(x) = k(k + d� 2)Ykm(x). (SI.66)

The spherical harmonics are related to the Gegenbauer poly-
nomials {Qk}, which are orthogonal with respect to the mea-
sure d⌧(z) = (1�z2)(d�3)/2dz of inner products z = x>x0

of uniformly sampled pairs on the sphere x,x0 ⇠ Sd�1. The
Gegenbauer polynomials can be constructed with the Gram-
Schmidt procedure and have the following properties

Qk(x
>x0) =

1

N(d, k)

N(d,k)X

m=1

Ykm(x)Ykm(x0),

Z 1

�1
Qk(z)Q`(z)d⌧(z) =

!d�1

!d�2

�k,`
N(d, k)

, (SI.67)

where !d�1 = ⇡d/2

�(d/2) is the surface area of Sd�1.

8. Decomposition of Dot Product Kernels on
Sd�1

For inputs sampled from the uniform measure on Sd�1,
dot product kernels can be decomposed into Gegenbauer
polynomials introduced in SI Section 7.

Let K(x,x0) = (x>x0). The kernel’s orthogonal decom-
position is

(z) =
1X

k=0

�kN(d, k)Qk(z),

�k =
!d�2

!d�1

Z 1

�1
(z)Qk(z)d⌧(z). (SI.68)

To numerically calculate the kernel eigenvalues of , we
use Gauss-Gegenbauer quadrature (Abramowitz & Stegun,
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1972) for the measure d⌧(z) so that for a quadrature scheme
of order r
Z 1

�1
(z)Qk(z)d⌧(z) ⇡

rX

i=1

wiQk(zi)(zi), (SI.69)

where zi are the r roots of Qr(z) and the weights wi are
chosen with

wi =
�(r + ↵+ 1)2

�(r + 2↵+ 1)

22r+2↵+1r!

V 0
r (zi)Vr+1(zi)

, (SI.70)

where
Vr(z) = 2rr!(�1)rQr(z) (SI.71)

For our calculations we take r = 1000.

9. Frequency Dependence of Learning Curves
in d ! 1 Limit

Here, we consider an informative limit where the number of
input data dimension, d, goes to infinity.

Denoting the index ⇢ = (k,m), we can write mode error
(SI.37), after some rearranging, as:

Ekm =
(�+ t)2

1� p�
(�+t)2

�k hw2
kmi

(�+ t+ p�k)2
, (SI.72)

where t and �, after performing the sum over degenerate
indices, are:

t =
X

m

N(d,m)(�+ t)�m
�+ t+ p�m

,

� =
X

m

N(d,m)(�+ t)2�2m
(�+ t+ p�m)2

. (SI.73)

In the limit d ! 1, the degeneracy factor (SI.64) ap-
proaches to N(d, k) ⇠ O(dk). We note that for dot-product
kernels �k scales with d as �k ⇠ d�k (Smola et al., 2001)
(Figure 1), which leads us to define the O(1) parameter
�̄k = dk�k. Plugging these in, we get:

Ekm(gk) =
d�k(t+ �)2

1� �̃

�̄k hw̄2
kmi

�
t+ �+ gk�̄k

�2

t =
X

m

(t+ �)�̄m
t+ �+ gm�̄m

,

�̃ =
X

m

gm�̄2m�
t+ �+ gm�̄m

�2 , (SI.74)

where gk = p/dk is the ratio of sample size to the de-
generacy. Furthermore, we want to calculate the ratio
Ekm(p)/Ekm(0) to probe how much the mode errors move
from their initial value:

Ekm(p)

Ekm(0)
=

1

1� �̃

1
⇣
1 + gk�̄k

t+�

⌘2 (SI.75)

Let us consider an integer l such that the scaling P = ↵dl

holds. This leads to three different asymptotic behavior of
gks:

gk ⇠ O(dl�k) � O(1), k < l

gk = ↵ ⇠ O(1), k = l

gk ⇠ O(dl�k) ⌧ O(1), k > l (SI.76)

If we assume t ⇠ O(1), we get an asymptotically consistent
set of equations:

t ⇡
X

m>l

�̄m + a(↵, t,�, �̄l) ⇠ O(1),

�̃ ⇡ b(↵, t,�, �̄l) ⇠ O(1), (SI.77)

where a and b are the lth terms in the sums in t and �̃,
respectively, and are given by:

a(↵, t,�, �̄l) =
(t+ �)�̄l

t+ �+ ↵�̄l
,

b(↵, t,�, �̄l) =
↵�̄2l�

t+ �+ ↵�̄l
�2 (SI.78)

Then using (SI.75), (SI.76) and (SI.77), we find the errors
associated to different modes as:

k < l,
Ekm(↵)

Ekm(0)
⇠ O(d2(k�l)) ⇡ 0,

k > l,
Ekm(↵)

Ekm(0)
⇡ 1

1� �̃(↵)
,

k = l,
Ekm(↵)

Ekm(0)
= s(↵) ⇠ O(1), (SI.79)

where s(↵) is given by:

s(↵) =
1

1� �̃(↵)

1
⇣
1 + ↵ �̄l

t+�

⌘2 . (SI.80)

Note that lim↵!0 �̃(↵) = lim↵!1 �̃(↵) = 0 and non-zero
in between. Then, for large ↵, in the limit we are considering

k < l,
Ekm(↵)

Ekm(0)
⇡ 0,

k > l,
Ekm(↵)

Ekm(0)
⇡ 1,

k = l,
Ekm(↵)

Ekm(0)
⇡

(�+
P

m>l �̄m)2

�̄2l

1

↵2
. (SI.81)

10. Neural Tangent Kernel
The neural tangent kernel is

KNTK(x,x
0) =

X

i

D@f✓(x)
@✓i

@f✓(x0)

@✓i

E

✓
. (SI.82)
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For a neural network, it is convenient to compute this re-
cursively in terms of the Neural Network Gaussian Process
(NNGP) kernel which corresponds to only training the read-
out weights from the final layer (Jacot et al., 2018; Arora
et al., 2019). We will restrict our attention to networks with
zero bias and nonlinear activation function �. Then

K(1)
NTK(x,x0)

= K(1)
NNGP (x,x

0)

K(2)
NTK(x,x0)

= K(2)
NNGP (x,x

0) +K(1)
NTK(x,x0)K̇(2)(x,x0)

. . .

K(L)
NTK(x,x0)

= K(L)
NNGP (x,x

0) +K(L�1)
NTK (x,x0)K̇(L)(x,x0),

(SI.83)

where

K(L)
NNGP (x,x

0) = E
(↵,�)⇠p(L�1)

x,x0
�(↵)�(�),

K̇(L)(x,x0) = E
(↵,�)⇠p(L�1)

x,x0
�̇(↵)�̇(�),

p(L�1)
x,x0 = N

 ✓
0
0

◆
,

✓
K(L�1)(x,x) K(L�1)(x,x0)
K(L�1)(x,x0) K(L�1)(x0,x0)

◆!
,

K(1)
NNGP (x,x

0) = x>x0. (SI.84)

If � is chosen to be the ReLU activation, then we can an-
alytically simplify the expression. Defining the following
function

f(z) = arccos

✓
1

⇡

p
1� z2 +

✓
1� 1

⇡
arccos(z)

◆
z

◆
,

(SI.85)
we obtain

K(L)
NNGP (x,x

0) = cos
⇣
f�(L�1)(x>x0)

⌘

K̇L(x,x
0) =

✓
1� 1

⇡
f�(L�2)(x>x0)

◆
, (SI.86)

where f�(L�1)(z) is the function f composed into itself
L� 1 times.

This simplification gives an exact recursive formula to com-
pute the kernel as a function of z = x>x0, which is what
we use to compute the eigenspectrum with the quadrature
scheme described in the previous section.

11. Spectra of Fully Connected ReLU NTK
A plot of the RKHS spectra of fully connected ReLU NTK’s
of varying depth is shown in Figure SI.2. As the depth in-
creases, the spectrum becomes more white, eventually, the

Figure SI.2. Spectrum of fully connected ReLU NTK without bias
for varying depth `. As the depth increases, the spectrum whitens,
causing derivatives of lower order to have infinite variance. As
` ! 1, �kN(d, k) ⇠ 1 implying that the kernel becomes non-
analytic at the origin.

kernel’s trace hK(x,x)ix =
P

k �kN(d, k) begins to di-
verge. Inference with such a kernel is equivalent to learning
a function with infinite variance. Constraints on the vari-
ance of derivatives

⌦
||rn

Sd�1f(x)||2
↵

correspond to more
restrictive constraints on the eigenspectrum of the RKHS.
Specifically, �kN(d, k) ⇠ O(k�n�1/2) implies that the
n-th gradient has finite variance

⌦
||rn

Sd�1f(x)||2
↵
< 1.

Proof. By the representer theorem, let f(x) =Pp
i=1 ↵iK(x,xi). By Green’s theorem, the variance

of the n-th derivative can be rewritten as

⌦
||rn

Sd�1f(x)||2
↵
= hf(x)(��Sd�1)nf(x)i

=
X

kk0mm0ij

↵i↵j�k�k0Ykm(xi)Yk0m0(xj)

⇥ hYkm(x)(��Sd�1)nYk0m0(x)i

=
X

kij

�2kk
n(k + d� 2)nN(d, k)↵i↵jQk(x

>

i xj)

 Cp2(↵⇤)2
X

k

�2kk
n(k + d� 2)nN(d, k)2,
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where ↵⇤ = maxj |↵j | and |Qk(z)|  CN(d, k) for a uni-
versal constant C. A sufficient condition for this sum to con-
verge is that �2kk

n(k+d�2)nN(d, k)2 ⇠ O(k�1) which is
equivalent to demanding �kN(d, k) ⇠ O(k�n�1/2) since
(k + d� 2)n ⇠ kn as k ! 1.

12. Decomposition of Risk for Numerical
Experiments

As we describe in Section 4.1 of the main text, the teacher
functions for the kernel regression experiments are chosen
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as

f⇤(x) =
p0X

i=1

↵iK(x,xi), (SI.88)

where the coefficients ↵i ⇠ B(1/2) are randomly sampled
from a centered Bernoulli distribution on {±1} and the
points xi ⇠ p(x) are drawn from the same distribution as
the training data. In general p0 is not the same as the number
of samples p. Choosing a function of this form is very
convenient for producing theoretical predictions of mode
errors as we discuss below.

12.1. Theoretical Mode Errors

Since the matrix elements
⌦
G2

⇢⇢

↵
are determined completely

by the kernel eigenvalues {�⇢}, it suffices to calculate the
diagonal elements of D to find the generalization error. For
the teacher function sampled in the way described above,
there is a convenient expression for D⇢⇢.

The teacher function admits an expansion in the basis of
kernel eigenfunctions

f⇤(x) =
X

⇢

w⇢ ⇢(x). (SI.89)

Using the Mercer decomposition of the kernel we can iden-
tify the coefficients

f⇤(x) =
p0X

i=1

↵iK(x,xi) =
X

⇢

⇣X

i

↵i ⇢(xi)
⌘
 ⇢(x)

(SI.90)
Comparing each term in these two expressions, we identify
the coefficient of the ⇢-th eigenfunction

w⇢ =
X

i

↵i ⇢(xi). (SI.91)

We now need to compute the D⇢⇢, by averaging w2
⇢ over all

possible teachers

D⇢⇢ =
1

�⇢

⌦
w2

⇢

↵
=

1

�⇢

X

ij

h↵i↵ji h ⇢(xi) ⇢(xj)i

=
1

�⇢

X

i

h ⇢(xi) ⇢(xi)i =
p0�⇢
�⇢

= p0, (SI.92)

since h ⇢(x) ⇢(x)i = �⇢. Thus it suffices to calculate
@
@v g⇢(p, v) for each mode and then compute mode errors
with

E⇢ = �d⇢
@g⇢(p, v)

@v
|v=0, (SI.93)

where @g⇢
@v |v=0 is evaluated in terms of the numerical solu-

tion for t(p, 0).

12.2. Empirical Mode Errors

By the representer theorem, we may represent the student
function as f(x) =

PP
i=1 ↵iK(x,xi). Then, the general-

ization error is given by

Eg =
⌦
(f(x)� f⇤(x))2

↵

=
X

⇢�

�⇢��

0

@
PX

j=1

↵j�⇢(xj)�
P 0X

i=1

↵i�⇢(xi)

1

A

0

@
PX

j=1

↵j��(xj)�
P 0X

i=1

↵i��(xi)

1

A h�⇢(x)��(x)i

=
X

⇢

�2⇢

0

@
X

j,j0

↵j↵j0�⇢(xj)�⇢(xj)

�2
X

i,j

↵j↵i�⇢(xj)�⇢(xi) +
X

i,i0

↵i↵i0�(xi)�(xi0)

1

A .
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On the d-sphere, by defining Ek =
PN(d,k)

m=1 Ekm we arrive
at the formula

Ek = �2kN(d, k)
�
↵>Qk(X

TX)↵� 2↵>Qk(X
TX)↵

+↵>Qk(X
T
X)↵

⌘
. (SI.95)

We randomly sample the ↵ variables for the teacher and
fit ↵ = (K + �I)�1y to the training data. Once these
coefficients are known, we can obtain empirical mode errors.

13. Neural Network Experiments
For the “pure mode” experiments with neural networks, the
target function was

f⇤(x) =
P 0X

i=1

↵iQk(x
>xi)

=

N(d,k)X

m=1

0

@
P 0X

i=1

↵iYkm(xi)

1

AYkm(x), (SI.96)

whereas, for the composite experiment, the target function
was a randomly sampled two layer neural network with
ReLU activations

f⇤(x) = r>�(⇥x). (SI.97)

This target model is a special case of eq. (SI.90) so the
same technology can be used to compute the theoretical
learning curves. We can use a similar trick as that shown
in equation (SI.92) to determine w⇢ for the NN teacher
experiment. Let the Gegenbauer polynomial expansion of
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�(z) be �(z) =
P

1

k=0 akN(d, k)Qk(z). Then the mode
error for mode k is Ek = a2

k

�2
k

⌦
g2k
↵

where
⌦
g2k
↵

is computed
with equation (SI.37).

A sample of some training error and generalization errors
from pure mode experiments are provided below in Figures
SI.3 and SI.4.

13.1. Hyperparameters

The choice of the number of hidden units N was based
primarily on computational considerations. For two layer
neural networks, the total number of parameters scales lin-
early with N , so to approach the overparameterized regime,
we aimed to have N ⇡ 10pmax where pmax is the largest
sample size used in our experiment. For pmax = 500, we
chose N = 4000, 10000.

For the three and four layer networks, the number of pa-
rameters scales quadratically with N , making simulations
with N > 103 computationally expensive. We chose
N to give comparable training time for the 2 layer case
which corresponded to N = 500 after experimenting with
{100, 250, 500, 1000, 5000}.

We found that the learning rate needed to be quite large
for the training loss to be reduced by a factor of ⇡
106. For the 2 layer networks, we tried learning rates
{10�3, 10�2, 1, 10, 32} and found that a learning rate of
32 gave the lowest training error. For the three and four
layer networks, we found that lower learning rates worked
better and used learning rates in the range from [0.5, 3].

14. Discrete Measure and Kernel PCA
We consider a special case of a discrete probability measure
with equal mass on each point in a dataset of size p̃

p(x) =
1

p̃

p̃X

i=1

�(x� xi). (SI.98)

For this measure, the integral eigenvalue equation becomes
Z

dx p(x)K(x,x0)�⇢(x)

=
1

p̃

p̃X

i=1

Z
dx �(x� xi)K(x,x0)�⇢(x)

=
1

p̃

p̃X

i=1

K(xi,x
0)�⇢(xi) = �⇢�⇢(x

0). (SI.99)

Evaluating x0 at each of the points xi in the dataset yields a
matrix equation. Let �⇢,i = �⇢(xi) and ⇤⇢,� = �⇢,��⇢

K�> = p̃�>⇤. (SI.100)
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(a) 3 Layer Training Loss; lr =2 (b) 4 Layer Training Loss; lr = 0.5

Figure SI.3. Training error for different pure mode target functions on neural networks with 500 hidden units per hidden layer on a sample
of size p = 500. Generally, we find that the low frequency modes have an initial rapid reduction in the training error but the higher
frequencies k � 4 are trained at a slower rate.

(a) 2 layer NN N = 4000 (b) 2 layer NN N = 104 (c) 3 layer N = 500

(d) 4 layer N = 500 (e) 2 Layer NN Student-Teacher; N = 2000 (f) 2 Layer NN Student-Teacher; N = 8000

Figure SI.4. Learning curves for neural networks on “pure modes” and on student teacher experiments. The theory curves shown as solid
lines. For the pure mode experiments, the test error for the finite width neural networks and NTK are shown with dots and triangles
respectively. Logarithms are evaluated with base 10.
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