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ABSTRACT

It is unclear how changing the learning rule of a deep neural network alters its
learning dynamics and representations. To gain insight into the relationship be-
tween learned features, function approximation, and the learning rule, we analyze
infinite-width deep networks trained with gradient descent (GD) and biologically-
plausible alternatives including feedback alignment (FA), direct feedback align-
ment (DFA), and error modulated Hebbian learning (Hebb), as well as gated linear
networks (GLN). We show that, for each of these learning rules, the evolution of
the output function at infinite width is governed by a time varying effective neural
tangent kernel (eNTK). In the lazy training limit, this eNTK is static and does not
evolve, while in the rich mean-field regime this kernel’s evolution can be deter-
mined self-consistently with dynamical mean field theory (DMFT). This DMFT
enables comparisons of the feature and prediction dynamics induced by each of
these learning rules. In the lazy limit, we find that DFA and Hebb can only learn
using the last layer features, while full FA can utilize earlier layers with a scale
determined by the initial correlation between feedforward and feedback weight
matrices. In the rich regime, DFA and FA utilize a temporally evolving and depth-
dependent NTK. Counterintuitively, we find that FA networks trained in the rich
regime exhibit more feature learning if initialized with smaller correlation between
the forward and backward pass weights. GLNs admit a very simple formula for
their lazy limit kernel and preserve conditional Gaussianity of their preactivations
under gating functions. Error modulated Hebb rules show very small task-relevant
alignment of their kernels and perform most task relevant learning in the last layer.

1 INTRODUCTION

Deep neural networks have now attained state of the art performance across a variety of domains
including computer vision and natural language processing (Goodfellow et al., 2016; LeCun et al.,
2015). Central to the power and transferability of neural networks is their ability to flexibly adapt
their layer-wise internal representations to the structure of the data distribution during learning.

In this paper, we explore how the learning rule that is used to train a deep network affects its learn-
ing dynamics and representations. Our primary motivation for studying different rules is that exact
gradient descent (GD) training with the back-propagation algorithm is thought to be biologically im-
plausible (Crick, 1989). While many alternatives to standard GD training were proposed (Whitting-
ton & Bogacz, 2019), it is unclear how modifying the learning rule changes the functional inductive
bias and the learned representations of the network. Further, understanding the learned represen-
tations could potentially offer more insight into which learning rules account for representational
changes observed in the brain (Poort et al., 2015; Kriegeskorte & Wei, 2021; Schumacher et al.,
2022). Our current study is a step towards these directions.

The alternative learning rules we study are error modulated Hebbian learning (Hebb), Feedback
alignment (FA) (Lillicrap et al., 2016) and direct feedback alignment (DFA) (Nøkland, 2016). These
rules circumvent one of the biologically implausible features of GD: the weights used in the back-
ward pass computation of error signals must be dynamically identical to the weights used on the
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forward pass, known as the weight transport problem. Instead, FA and DFA algorithms compute an
approximate backward pass with independent weights that are frozen through training. Hebb rule
only uses a global error signal. While these learning rules do not perform exact GD, they are still
able to evolve their internal representations and eventually fit the training data. Further, experiments
have shown that FA and DFA can scale to certain problems such as view-synthesis, recommendation
systems, and small scale image problems (Launay et al., 2020), but they do not perform as well in
convolutional architectures with more complex image datasets (Bartunov et al., 2018). However,
significant improvements to FA can be achieved if the feedback-weights have partial correlation
with the feedforward weights (Xiao et al., 2018; Moskovitz et al., 2018; Boopathy & Fiete, 2022).

We also study gated linear networks (GLNs), which use frozen gating functions for nonlinearity
(Fiat et al., 2019). Variants of these networks have bio-plausible interpretations in terms of dendritic
gates (Sezener et al., 2021). Fixed gating can mitigate catastrophic forgetting (Veness et al., 2021;
Budden et al., 2020) and enable efficient transfer and multi-task learning Saxe et al. (2022).

Here, we explore how the choice of learning rule modifies the representations, functional biases and
dynamics of deep networks at the infinite width limit, which allows a precise analytical description of
the network dynamics in terms of a collection of evolving kernels. At infinite width, the network can
operate in the lazy regime, where the feature embeddings at each layer are constant through time, or
the rich/feature-learning regime (Chizat et al., 2019; Yang & Hu, 2021; Bordelon & Pehlevan, 2022).
The richness is controlled by a scalar parameter related to the initial scale of the output function.

In summary, our novel contributions are the following:

1. We identify a class of learning rules for which function evolution is described by a dynamical
effective Neural Tangent Kernel (eNTK). We provide a dynamical mean field theory (DMFT) for
these learning rules which can be used to compute this eNTK. We show both theoretically and
empirically that convergence to this DMFT occurs at large width N with error O(N−1/2).

2. We characterize precisely the inductive biases of infinite width networks in the lazy limit by
computing their eNTKs at initialization. We generalize FA to allow partial correlation between
the feedback weights and initial feedforward weights and show how this alters the eNTK.

3. We then study the rich regime so that the features are allowed to adapt during training. In this
regime, the eNTK is dynamical and we give a DMFT to compute it. For deep linear networks,
the DMFT equations close algebraically, while for nonlinear networks we provide a numerical
procedure to solve them.

4. We compare the learned features and dynamics among these rules, analyzing the effect of rich-
ness, initial feedback correlation, and depth. We find that rich training enhances gradient-
pseudogradient alignment for both FA and DFA. Counterintuitively, smaller initial feedback cor-
relation generates more dramatic feature evolution for FA. The GLN networks have dynamics
comparable to GD, while Hebb networks, as expected, do not exhibit task relevant adaptation of
feature kernels, but rather evolve according to the input statistics.

1.1 RELATED WORKS

GLNs were introduced by Fiat et al. (2019) as a simplified model of ReLU networks, allowing the
analysis of convergence and generalization in the lazy kernel limit. Veness et al. (2021) provided a
simplified and biologically-plausible learning rule for deep GLNs which was extended by Budden
et al. (2020) and provided an interpretation in terms of dendritic gating Sezener et al. (2021). These
works demonstrated benefits to continual learning due to the fixed gating. Saxe et al. (2022) derived
exact dynamical equations for a GLN with gates operating at each node and each edge of the network
graph. Krishnamurthy et al. (2022) provided a theory of gating in recurrent networks.

Lillicrap et al. (2016) showed that, in a two layer linear network the forward weights will evolve to
align to the frozen feedback weights under the FA dynamics, allowing convergence of the network
to a loss minimizer. This result was extended to deep networks by Frenkel et al. (2019), who also
introduced a variant of FA where only the direction of the target is used. Refinetti et al. (2021)
studied DFA in a two-layer student-teacher online learning setup, showing that the network first
undergoes an alignment phase before converging to one the degenerate global minima of the loss.
They argued that FA’s worse performance in CNNs is due to the inability of the forward pass
gradients to align under the block-Toeplitz connectivity strucuture that arises from enforced weight
sharing (d’Ascoli et al., 2019). Garg & Vempala (2022) analyzed matrix factorization with FA,
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proving that, when overparameterized, it converges to a minimizer under standard conditions, albeit
more slowly than GD. Cao et al. (2020) analyzed the kernel and loss dynamics of linear networks
trained with learning rules from a space that includes GD, contrastive Hebbian, and predictive
coding rules, showing strong dependence of hierarchical representations on learning rule.

Recent works have utilized DMFT techniques to analyze typical performance of algorithms trained
on high-dimensional random data (Agoritsas et al., 2018; Mignacco et al., 2020; Celentano et al.,
2021; Gerbelot et al., 2022). In the present work, we do not average over random datasets, but rather
over initial random weights and treat data as an input to the theory. Wide NNs have been analyzed
at infinite width in both lazy regimes with the NTK (Jacot et al., 2018; Lee et al., 2019) and rich
feature learning regimes (Mei et al., 2018). In the feature learning limit, the evolution of kernel order
parameters have been obtained with both Tensor Programs framework (Yang & Hu, 2021) and with
DMFT (Bordelon & Pehlevan, 2022). Song et al. (2021) recently analyzed the lazy infinite width
limit of two layer networks trained with FA and weight decay, finding that only one layer effectively
contributes to the two-layer NTK. Boopathy & Fiete (2022) proposed alignment based learning rules
for networks at large width in the lazy regime, which performs comparably to GD and outperform
standard FA. Their Align-Ada rule corresponds to our ρ-FA with ρ = 1 in lazy large width networks.

2 EFFECTIVE NEURAL TANGENT KERNEL FOR A LEARNING RULE

We denote the output of a neural network for input xµ ∈ RD as fµ. For concreteness, in the main
text we will focus on scalar targets fµ ∈ R and MLP architectures. Other architectures such as multi-
class outputs and CNN architectures with infinite channel count can also be analyzed as we show in
the Appendix C. For the moment, we let the function be computed recursively from a collection of
weight matrices θ = Vec{W 0,W 1, ...,wL} in terms of preactivation vectors hℓ

µ ∈ RN where,

fµ =
1

γ0N
wL · ϕ(hL

µ) , h
ℓ+1
µ =

1√
N

W ℓϕ(hℓ
µ) , h

1
µ =

1√
D
W 0xµ (1)

where nonlinearity ϕ is applied element-wise. The scalar parameter γ0 controls how rich the network
training is: small γ0 corresponds to lazy learning while large γ0 generates large changes to the
features (Chizat et al., 2019). For gated linear networks, we follow Fiat et al. (2019) and modify the
forward pass equations by replacing ϕ(hℓ

µ) with a multiplicative gating function ϕ̇(mℓ
µ)h

ℓ
µ where

gating variables mℓ
µ = 1√

D
M ℓxµ are fixed through training with Mij ∼ N (0, 1). To minimize

loss L =
∑

µ ℓ(fµ, yµ), we consider learning rules to the parameters θ of the form

d

dt
wL = γ0

∑
µ

ϕ(hL
µ(t))∆µ ,

d

dt
W ℓ =

γ0√
N

∑
µ

∆µ g̃ℓ+1
µ ϕ(hℓ

µ)
⊤ ,

d

dt
W 0 =

γ0√
D

∑
µ

∆µg̃
1
µx

⊤
µ

(2)

where the error signal is ∆µ(t) = − ∂L
∂fµ
|fµ(t). The last layer weights wL are always updated with

their true gradient. This corresponds to the biologically-plausible and local delta-rule, which merely
correlates the error signals ∆µ and the last layer features ϕ(hL

µ) (Widrow & Hoff, 1960). In interme-
diate layers, the pseudo-gradient vectors g̃ℓ

µ are determined by the choice of the learning rule. For
concreteness, we provide below the recursive definitions of g̃ℓ for our five learning rules of interest.

g̃ℓ
µ =



ϕ̇(hℓ
µ)⊙

[
1√
N
W ℓ(t)⊤g̃ℓ+1

µ

]
, g̃L

µ = ϕ̇(hL
µ)⊙wL GD

ϕ̇(hℓ
µ)⊙

[
1√
N

(
ρW ℓ(0) +

√
1− ρ2W̃ ℓ

)⊤
g̃ℓ+1

]
, W̃ ℓ

ij ∼ N (0, 1) ρ-FA

ϕ̇(hℓ
µ)⊙ z̃ℓ , z̃ℓi ∼ N (0, 1) DFA

ϕ̇(mℓ
µ)⊙

[
1√
N
W ℓ(t)⊤g̃ℓ+1

µ

]
, g̃L = ϕ̇(mℓ

µ)⊙wL(t) GLN

∆µ(t)ϕ(h
ℓ
µ(t)) Hebb

(3)

While GD uses the instantaneous feedforward weights on the backward pass, ρ-FA uses the weight
matrices which do not evolve throughout training. These weights have correlation ρ with the initial
forward pass weights W ℓ(0). This choice is motivated by the observation that partial correlation
between forward and backward pass weights at initialization can improve training (Liao et al., 2016;
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Xiao et al., 2018; Moskovitz et al., 2018), though the cost is partial weight transport at initialization.
However, we consider partial correlation at initialization more biologically plausible than the
demanding weight transport at each step of training, like in GD. For DFA, the weight vectors z̃ℓ are
sampled randomly at initialization and do not evolve in time. For GLN, the gating variables mℓ

µ
are frozen through time but the exact feedforward weights are used in the backward pass. Lastly,
we modify the classic Hebb rule (Hebb, 1949) to get ∆W ℓ ∝

∑
µ ∆µ(t)

2ϕ(hℓ+1
µ )ϕ(hℓ

µ)
⊤, which

weighs each example by its current error. Unlike standard Hebbian updates, this learning rule gives
stable dynamics without regularization (App. G). For all rules, the evolution of the function is
determined by a time-dependent eNTK Kµν which is defined as

∂fµ
∂t

=
∂fµ
∂θ
· dθ
dt

=
∑
ν

∆νKµν(t, t) , Kµν(t, s) =

L∑
ℓ=0

G̃ℓ+1
µν (t, s)Φℓ

µν(t, s)

G̃ℓ
µν(t, s) =

1

N
gℓ
µ(t) · g̃ℓ

ν(s) , Φℓ
µν(t, s) =

1

N
ϕ(hℓ

µ(t)) · ϕ(hℓ
ν(s)), (4)

where the base cases G̃L+1
µν (t, s) = 1 and Φ0

µν(t, s) =
1
Dxµ · xν are time-invariant. The kernel G̃ℓ

computes an inner product between the true gradient signals gℓ
µ = γ0N

∂fµ
∂hℓ

µ
and the pseudo-gradient

g̃ℓ
ν which is set by the chosen learning rule. We see that because G̃ℓ is not necessarily symmetric, K

is also not necessarily symmetric. The matrix G̃ℓ quantifies pseudo-gradient / gradient alignment.

3 DYNAMICAL MEAN FIELD THEORY FOR VARIOUS LEARNING RULES

For each of these learning rules considered, the infinite width N → ∞ limit of network learning
can be described by a dynamical mean field theory (DMFT) (Bordelon & Pehlevan, 2022). At
infinite width, the dynamics of the kernels Φℓ and G̃ℓ become deterministic over random Gaussian
initialization of parameters θ. The activity of neurons in each layer become i.i.d. random variables
drawn from a distribution defined by these kernels, which themselves are averages over these single-
site distributions. Below, we provide DMFT formulas which are valid for all of our learning rules

hℓ
µ(t) = uℓ

µ(t) + γ0

∫ t

0

ds

P∑
ν=1

[
Aℓ−1

µν (t, s)gℓν(s) + Cℓ−1
µν (t, s)g̃ℓν(s) + Φℓ−1

µν (t, s)∆ν(s)g̃
ℓ
ν(s)

]
zℓµ(t) = rℓµ(t) + γ0

∫ t

0

ds

P∑
ν=1

[
Bℓ

µν(t, s) + G̃ℓ+1
µν (t, s)∆ν(s)

]
ϕ(hℓ

ν(s)), g
ℓ
µ(t) = ϕ̇(hℓ

µ(t))z
ℓ
µ(t)

{uℓ
µ(t)} ∼ GP(0,Φℓ−1), Φℓ

µν(t, s) =
〈
ϕ(hℓ

µ(t))ϕ(h
ℓ
ν(s))

〉
, Aℓ

µν(t, s) = γ−1
0

〈
δ

δrℓν(s)
ϕ(hℓ

µ(t))

〉
{rℓµ(t)} ∼ GP(0,Gℓ+1), G̃ℓ

µν(t, s) =
〈
gℓµ(t)g̃

ℓ
ν(s)

〉
, Bℓ

µν(t, s) = γ−1
0

〈
δ

δuℓ+1
ν (s)

gℓ+1
µ (t)

〉
(5)

The definitions of g̃ℓµ(t) depend on the learning rule and are described in Table 1. The zℓµ(t) is the
pre-gradient field defined so that gℓµ(t) = ϕ̇(hℓ

µ(t))z
ℓ
µ(t). The dependence of these DMFT equations

on data comes from the base case Φ0
µν(t, s) =

1
Dxµ · xν and error signal ∆µ = − ∂L

∂fµ
.

Rule GD ρ-FA DFA GLN Hebb
g̃ℓµ(t) ϕ̇(hℓ

µ(t))z
ℓ
µ(t) ϕ̇(hℓ

µ(t))z̃
ℓ
µ(t) ϕ̇(hℓ

µ(t))z̃
ℓ ϕ̇(mℓ

µ)z
ℓ
µ(t) ∆µ(t)ϕ(h

ℓ
µ(t))

Table 1: The field definitions for each learning rule. For ρ-FA, the field has definition z̃ℓµ(t) =

ρvℓµ(t) +
√
1− ρ2ζ̃ℓµ(t) + γ0

∫ t

0
ds
∑

ν D
ℓ
µν(t, s)ϕ(h

ℓ
ν(s)) where {vℓµ(t), ζ̃ℓµ(t)} are Gaussian

with
〈
rℓµ(t)v

ℓ
ν(s)

〉
= G̃ℓ+1

µν (t, s). The ζ̃ℓ field is an independent Gaussian with correlation〈
ζ̃ℓµ(t)ζ̃

ℓ
ν(s)

〉
=
〈
g̃ℓ+1
µ (t)g̃ℓ+1

ν (s)
〉
= ˜̃Gℓ+1

µν (t, s). For DFA, the z̃ℓ field is static z̃ℓ ∼ N (0, 1).

For GLN, we use {mℓ
µ} ∼ N (0,Kx) as a gating variable. Cℓ = 0 except for ρ-FA with ρ > 0.
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We see that, for {GD, ρ-FA, DFA, Hebb} the distribution of hℓ
µ(t), z

ℓ
µ(t) are Gaussian throughout

training only in the lazy γ0 → 0 limit for general nonlinear activation functions ϕ(h). However,
conditional on {mℓ

µ}, the {hℓ, zℓ} fields are all Gaussian for GLNs. For all algorithms except ρ-FA,

Cℓ = 0. For ρ-FA we have Cℓ
µα(t, s) = γ−1

0

〈
δ

δvℓ
ν(s)

ϕ(hℓ
µ(t))

〉
.
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Figure 1: The DMFT predicts feature dynamics of wide networks trained with gradient descent
(GD), feedback alignment (FA) with ρ = 0, gated linear network (GLN), and a error-modulated
β = 1 Hebb rule (Hebb) in the feature learning regime. (a) The loss dynamics in a two layer
(L = 1, N = 2000) network trained with these learning rules at richness γ0 = 2. The network is
trained on a collection of P = 10 random vectors in D = 50 dimensions. (b) The cosine similarity of
the eNTK with the targets A(K,yy⊤) = y⊤Ky

|K|F |y|2 reveals increasing alignment for all algorithms.
Though FA starts with the lowest alignment, its final NTK task alignment exceeds that of GD. (c)
The dynamics of the gradient-pseudogradient kernel G̃ also reveals increasing correlation of g with
g̃. FA starts with G̃ = 0 but G̃ increases to non-zero value. (d) The distribution of hidden layer
preactivations after training reveals non-Gaussian statistics for both GD and FA, but approximately
Gaussian statistics for GLN. (e)-(f) The final Φ and G̃ kernels from theory and experiment.

As described in prior results on the GD case (Bordelon & Pehlevan, 2022), the above equations
can be solved self-consistently in polynomial (in train-set size P and training steps T ) time. With
an estimate of the dynamical kernels {Φℓ

µν(t, s), G̃
ℓ
µν(t, s), G

ℓ
µν(t, s)}, one computes the eNTK

Kµν(t) and error dynamics ∆µ(t). From these objects, we can sample the stochastic processes
{hℓ, zℓ, z̃ℓ} which can then be used to derive new refined estimates of the kernels. This procedure is
repeated until convergence. This algorithm can be found in App. A. An example of such a solution
is provided in Figure 1 for two layer ReLU networks trained with GD, FA, GLN, and Hebb. We
show that our self-consistent DMFT accurately predicts training and kernel dynamics, as well as the
density of preactivations {hµ(t)} and final kernels {Φµν , G̃µν} for each learning rule. We observe
substantial differences in the learned representations (Figure 1e), all predicted by our DMFT.
3.1 LAZY OR EARLY TIME STATIC-KERNEL LIMITS

When γ0 → 0, we see that the fields hℓ
µ(t) and zℓµ(t) are equal to the Gaussian variables uℓ

µ(0) and
rℓµ(0). In this limit, the eNTK Kµν remains static and has the form summarized in Table 2 in terms
of the initial feature kernels Φℓ and gradient kernels Gℓ. We derive these kernels in Appendix D.

The feature P × P matrices Φℓ,Gℓ in Table 2 are computed recursively as

Φℓ =
〈
ϕ(u)ϕ(u)⊤

〉
u∼N (0,Φℓ−1)

, Gℓ = Gℓ+1 ⊙
〈
ϕ̇(u)ϕ̇(u)⊤

〉
u∼N (0,Φℓ−1)

(6)
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Figure 2: The lazy infinite width limits of the various learning rules can be fully summarized with
their initial eNTK. (a) The kernels of ρ-aligned ReLU FA and ReLU GLN for inputs separated by
angle θ. (a) The kernels for varying ρ in ρ-aligned FA. Larger ρ has a sharper peak in the kernel
around θ = 0. The ρ→ 0 limit recovers the NNGP kernel ΦL while the ρ→ 1 limit gives the back-
prop NTK. (b) Deeper networks with partial alignment ρ = 0.5. (c) ReLU-GLN kernel sharpens
with depth. (d)-(e) The relative error of the infinite width Φℓ, Gℓ kernels in a width N ReLU neural
network. The late layer Φℓ and early layer Gℓ kernels have highest errors since finite size effects
accumulate on forward and backward passes respectively. (f) Finite width corrections to eNTK are
larger for small ρ and large depth L. All square errors go as |KN −K∞|2 ∼ ON (1/N).

Rule GD ρ-FA DFA GLN Hebb

Kµν

∑L
ℓ=0 G

ℓ+1
µν Φℓ

µν

∑L
ℓ=0 ρ

L−ℓGℓ+1
µν Φℓ

µν ΦL
µν

[〈
ϕ̇(mµ)ϕ̇(mν)

〉]L
Kx

µν ΦL
µν

Table 2: The initial eNTK Kµν for each learning rule. The GD kernel is the usual initial NTK of
Jacot et al. (2018). For ρ-aligned FA, each layer ℓ’s contribution to the eNTK is suppressed by a
factor ρL−ℓ. For DFA and Hebb, only the last layer feature kernel ΦL contributes to the NTK. For
GLN, each layer has an identical contribution.

with base cases Φ0 = Kx and GL+1 = 11⊤. We provide interpretations of this result below.

• Backpropagation (GD) and ρ = 1 FA recover the usual depth L NTK, with contributions from
every layer Kµν =

∑
ℓ G

ℓ+1
µν Φℓ

µν at initialization. This kernel governs both training dynamics and
test predictions in the lazy limit γ0 → 0 (Jacot et al., 2018; Lou et al., 2022).

• ρ = 0 FA, DFA and Hebb are equivalent to using the NNGP kernel Kµν ∼ ΦL
µν , giving the Bayes

posterior mean (Matthews et al., 2018; Lee et al., 2018; Hron et al., 2020). In the γ0, ρ→ 0 limit,
only the dynamics of the readout weights wL contribute to the evolution of fµ since error signals
cannot successfully propagate backward and gradients cannot align with pseudo-gradients (App
D). The standard ρ = 0 FA will be indistinguishable from merely training wL with the delta-rule
unless the network is trained in the rich feature learning regime γ0 > 0, where G̃ℓ can evolve.
This effect was also noted in two layer networks by Song et al. (2021).

• ρ-FA weighs each layer ℓ with scale ρL−ℓ, since each layer’s pseudo-gradient is only partially
correlated with the true gradient, giving recursion G̃ℓ = ρG̃ℓ+1 with base case G̃L+1 = GL+1.

• GLN’s kernel in lazy limit is determined by the Gaussian gating variables {mℓ
µ} ∼ N (0,Kx).

We visualize these kernels for deep ReLU networks and ReLU GLNs for normalized inputs |x|2 =
|x′|2 = D, by plotting the kernel as a function of the angle θ separating two inputs cos(θ) =
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1
Dx⊤x′. We find that the kernels develop a sharp discontinuity at the origin θ = 0, which becomes
more exaggerated as ρ and L increase. We further show that the square difference of width N kenels
and infinite width kernels go as O(N−1). We derive this scaling with a perturbative argument in
App. H, which enables analytical prediction of leading order finite size effects (Figure 7). In the
lazy γ0 → 0 limit, these kernels define the eNTK and the network prediction dynamics.

3.2 FEATURE LEARNING ENABLES GRADIENT/PSEUDO-GRADIENT ALIGNMENT AND
KERNEL/TASK ALIGNMENT

In the last section, we saw that, in the γ0 → 0 limit, all algorithms have frozen preactivations and
pregradient features {hℓ

µ(t), z
ℓ
µ(t)}. A consequence of this fact is that FA and DFA cannot increase

their gradient-pseudogradient alignment throughout training in the lazy limit γ0 = 0. However, if
we increase γ0, then the gradient features gℓµ(t) and pseudo-gradients g̃ℓµ(t) evolve in time and can
increase their alignment. In Figure 3, we show the effect of increasing γ0 on alignment dynamics in
a depth 4 tanh network trained with DFA. In (b), we see that larger γ0 is associated with high task-
alignment of the last layer feature kernel ΦL, which becomes essentially rank one and aligned to
yy⊤. The asympotic cosine similarity between gradients and pseudogradients also increase with γ0.
The eNTK also becomes aligned with the task relevant directions (shown in Figure 3 c), like has been
observed in GD training (Baratin et al., 2021; Shan & Bordelon, 2021; Geiger et al., 2021; Atanasov
et al., 2022). We see that width N networks have a dynamical eNTK KN (t) which deviates from the
DMFT eNTK K∞(t) by O(1/N) in square loss. DMFT is more predictive for larger γ0 networks,
suggesting a reduction in finite size variability due to task-relevant feature evolution.
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Figure 3: Feature Learning enables alignment for a depth 4 (L = 3 hidden layers) tanh network
trained with direct feedback alignment (DFA) with varying γ0. (a) Training loss for DFA networks
with width N = 4000 with varying richness γ0 shows that feature learning accelerates training,
as predicted by DMFT (black). (b) The alignment (cosine similarity) of the last layer kernel ΦL

with the target function reveals successful task depedent feature learning at large γ0. (c) The dy-

namics of pseudo-grad./grad. correlation corr(g, g̃) = 1
LP

∑
ℓ,µ

gℓ
µ(t)·g̃

ℓ
µ(t)

|gℓ
µ(t)||g̃ℓ

µ(t)|
averaged over lay-

ers ℓ and datapoints µ. Larger γ0 generates more significant alignment between pseudogradients
and gradients. (d) The final NTKs as a function of γ0 reveals increasing clustering of the data
points by class. (e) The error of the DMFT approximation for K’s dynamics as a function of N :
⟨|KN (t)−K∞(t)|2⟩

t

⟨|K∞(t)|2⟩t
∼ O(N−1), where the averages are computed over the time interval of training.

This error is smaller for larger feature learning strength γ0.
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3.3 DEEP LINEAR NETWORK KERNEL DYNAMICS

When γ0 > 0 the kernels and features in the network evolve according to the DMFT equations.
For deep linear networks we can analyze the equations for the kernels in closed form without
sampling since the correlation functions close algebraically (App. E). In Figure 4, we utilize
our algebraic DMFT equations to explore ρ-FA dynamics in a depth 4 linear network. Networks
with larger ρ train faster, which can be intuited by noting that the initial function time derivative
df
dt |t=0 ∼

∑L
ℓ=0 ρ

L−ℓ ∼ 1−ρL+1

1−ρ is an increasing function of ρ. We observe higher final gradient
pseudogradient alignment in each layer with larger ρ, which is also intuitive from the initial condi-
tion G̃ℓ(0) = ρL−ℓ. However, surprisingly, for large initial correlation ρ, the NTK achieves lower
task alignment, despite having larger G̃ℓ(t). We show that this is caused by smaller overlap of each
layer’s feature kernel Hℓ(t) with yy⊤. Though this phenomenon is counterintuitive, we gain more
insight in the next section by studying an even simpler two layer model.
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Figure 4: The initial feedback correlation ρ alters alignment dynamics in on the FA dynamics in a
depth 4 (L = 3 hidden layer) linear network. (a) Larger ρ leads to faster initial training since the
scale of the eNTK is larger. (b) Further, larger ρ leads to larger scales of G̃(t) = 1

N gℓ(t) · g̃ℓ(t).
(c) However, smaller ρ leads to more alignment of the NTK K(t) with the task-relevant subspace,
measured with cosine similarity A(K,yy⊤). (d) The feature kernel H(t) overlaps with y reveal
that Hℓ(t) aligns more significantly in the small ρ networks.

3.3.1 EXACTLY SOLVEABLE DYNAMICS IN TWO LAYER LINEAR NETWORK

We can provide exact solutions to the infinite width GD and ρ-FA dynamics in the setting of Saxe
et al. (2013), specifically a two layer linear network trained with whitened data Kx

µν = δµν . Unlike
Saxe et al. (2013)’s result, however, we do not demand small initialization scale (or equivalently
large γ0), but rather provide the exact solution for all positive γ0. We will establish that large initial
correlation ρ results in higher gradient/pseudogradient alignment but lower alignment of the hidden
feature kernel H(t) with the task relevant subspace yy⊤.

We first note that when Kx = I , the GD or FA hidden feature kernel H(t) only evolves in the
rank-one yy⊤ subspace. It thus suffices to track the projection of H(t) on this rank one subspace,
which we call Hy(t). In the App. F we derive dynamics for Hy for GD and ρ-FA

Hy(t) =

{
G̃(t) =

√
1 + γ2

0(y −∆(t))2 , d∆
dt = −

√
1 + γ2

0(y −∆(t))2∆(t) GD
2G̃(t) + 1− 2ρ = 1 + a2 , da

dt = γ0y − 1
2a

3 − (1 + ρ)a ρ-FA
(7)

We illustrate these dynamics in Figure 5. The fixed points are Hy =
√
1 + γ2

0y
2 for GD and for

ρ-FA, Hy = 1 + a2 where a is the smallest positive root of 1
2a

3 + (1 + ρ)a = γ0y. For both GD
and FA, we see that increasing γ0 results in larger asymptotic values for Hy and G̃. For ρ-FA the
fixed point of a’s dynamics is a strictly decreasing function of ρ since da

dρ < 0, showing that the final

8
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value of Hy is smaller for larger ρ. On the contrary, we have that the final G̃ = ρ+ 1
2a

2 is a strictly
increasing function of ρ since d

dρ G̃ = 1 − a2

3
2a

2+(1+ρ)
> 1

3 > 0. Thus, this simple model replicates

the phenomenon of increasing G̃ and decreasing Hy as ρ increases. For the Hebb rule with Kx = I ,
the story is different. Instead of aligning H along the rank-one task relevant subpace, the dynamics
instead decouple over samples, giving the following P separate equations

d

dt
∆µ = −[Hµµ(t) + γ0∆µ(yµ −∆µ)]∆µ(t) ,

d

dt
Hµµ = 2γ0∆µ(t)

2Hµµ. (8)

From this perspective, we see that the hidden feature kernel does not align to the task, but rather
increases its entries in overall scale as is illustrated in Figure 5 (b).
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Figure 5: The feature kernel dynamics and scaling with γ2
0 for GD, ρ-FA, and Hebbian rules in

an exactly solveable two layer linear network. (a) The loss dynamics for all algorithms reveals that
ρ = 0 FA and Hebb rules have same early time dynamics and that ρ = 1 FA and GD have same
early-time dynamics. However all loss curves become distinct at late times due to different eNTK
dynamics. (b) The alignment of the kernel to the target function Hy(t) = 1

|y|2y
⊤Hy/TrH(t)

increases significantly for GD, and FA, but not for Hebb, reflecting the task-independence of the
learned representation. (c) The movement of the feature kernel ∆Hy = limt→∞ Hy(t)−Hy(0) as
a function of γ0 for GD, and ρ = 0, 1 FA. At small feature learning strength, all algorithms have
updates on the order of ∆Hy ∼ γ2

0 . At large γ0, GD has ∆Hy ∼ γ0 while FA has ∆Hy ∼ γ
2/3
0 .

The ρ = 1 FA (green) has lower ∆Hy than the ρ = 0 FA across all γ0.

4 DISCUSSION

We provided an analysis of the training dynamics of a wide range of learning rules at infinite
width. This set of rules includes (but is not limited to) GD, ρ-FA, DFA, GLN and Hebb as well as
many others. We showed that each of these learning rules has an dynamical effective NTK which
concentrates over initializations at infinite width. In the lazy γ0 → 0 regime, it suffices to compute
the the initial NTK, while in the rich regime, we provide a dynamical mean field theory to compute
the NTK’s dynamics. We showed that, in the rich regime, FA learning rules do indeed align the
network’s gradient vectors to their pseudo-gradients and that this alignment improves with γ0. We
show that initial correlation ρ between forward and backward pass weights alters the inductive bias
of FA in both lazy and rich regimes. In the rich regime, larger ρ networks have smaller eNTK
evolution. Overall, our study is a step towards understanding learned representations in neural
networks, and the quest to reverse-engineer learning rules from observations of evolving neural
representations during learning in the brain.

Many open problems remain unresolved with the present work. We currently have only implemented
our theory in MLPs. An implementation in CNNs could explain some of the observed advantages
of partial initial alignment in ρ-FA (Xiao et al., 2018; Moskovitz et al., 2018; Bartunov et al., 2018;
Refinetti et al., 2021). In addition, our framework is sufficiently flexible to propose and test new
learning rules by providing new g̃ℓ

µ(t) formulas. Our DMFT gives a recipe to compute their initial
kernels, function dynamics and analyze their learned representations. The generalization perfor-
mance of these learning rules at varying γ0 is yet to be explored. Lastly, our DMFT is numerically
expensive for large datasets and training intervals, making it difficult to scale up to realistic datsets.
Future work could provide theoretical convergence guarantees for our DMFT solver.

9



Published as a conference paper at ICLR 2023

REFERENCES

Elisabeth Agoritsas, Giulio Biroli, Pierfrancesco Urbani, and Francesco Zamponi. Out-of-
equilibrium dynamical mean-field equations for the perceptron model. Journal of Physics A:
Mathematical and Theoretical, 51(8):085002, 2018.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=1NvflqAdoom.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vin-
cent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In Arindam
Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on Arti-
ficial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp.
2269–2277. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/
baratin21a.html.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and archi-
tectures. Advances in neural information processing systems, 31, 2018.

Carl M Bender, Steven Orszag, and Steven A Orszag. Advanced mathematical methods for scientists
and engineers I: Asymptotic methods and perturbation theory, volume 1. Springer Science &
Business Media, 1999.

Akhilan Boopathy and Ila Fiete. How to train your wide neural network without backprop: An
input-weight alignment perspective. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
2178–2205. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
boopathy22a.html.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evo-
lution in wide neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=sipwrPCrIS.

David Budden, Adam Marblestone, Eren Sezener, Tor Lattimore, Gregory Wayne, and Joel Veness.
Gaussian gated linear networks. Advances in Neural Information Processing Systems, 33:16508–
16519, 2020.

Yinan Cao, Christopher Summerfield, and Andrew Saxe. Characterizing emergent representations in
a space of candidate learning rules for deep networks. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 8660–8670. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/6275d7071d005260ab9d0766d6df1145-Paper.pdf.

Michael Celentano, Chen Cheng, and Andrea Montanari. The high-dimensional asymptotics of first
order methods with random data. arXiv preprint arXiv:2112.07572, 2021.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

A Crisanti and H Sompolinsky. Path integral approach to random neural networks. Physical Review
E, 98(6):062120, 2018.
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APPENDIX

A ALGORITHM TO SOLVE NONLINEAR DMFT EQUATIONS

Algorithm 1: Alternating Monte-Carlo Solution to Saddle Point Equations

Data: Kx,y, Initial Guesses {Φℓ,Gℓ, G̃ℓ, ˜̃Gℓ}Lℓ=1, {Aℓ,Bℓ,Cℓ,Dℓ}L−1
ℓ=1 , Sample count S,

Update Speed β
Result: Network predictions through training fµ(t), correlation functions

{Φℓ,Gℓ, G̃ℓ, ˜̃Gℓ}Lℓ=1, response functions {Aℓ,Bℓ,Cℓ,Dℓ}L−1
ℓ=1 ,

1 Φ0 = Kx ⊗ 11⊤, GL+1 = 11⊤ ;
2 while Kernels Not Converged do
3 From {Φℓ,Gℓ} compute KNTK(t, t) and solve d

dtfµ(t) =
∑

α ∆α(t)K
NTK
µα (t, t);

4 ℓ = 1;
5 while ℓ < L+ 1 do
6 Draw S samples {uℓ

µ,n(t)}Sn=1 ∼ GP(0,Φℓ−1),

{rℓµ,n(t), vℓµ,n(t)}Sn=1 ∼ GP

(
0,

[
Gℓ+1 G̃ℓ+1

G̃ℓ+1⊤ ˜̃Gℓ+1

])
;

7 Solve equation 5 for each sample to get {hℓ
µ,n(t), z

ℓ
µ,n(t), g̃

ℓ
µ,n(t)}Sn=1;

8 Use learning rule (Table 1) to compute {g̃ℓµ,n(t)}Sn=1;

9 Compute new correlation function {Φℓ,Gℓ, G̃ℓ, ˜̃Gℓ} estimates:
10 Φℓ,new

µν (t, s) = 1
S
∑

n∈[S] ϕ(h
ℓ
µ,n(t))ϕ(h

ℓ
ν,n(s)) ,

11 Gℓ,new
µν (t, s) = 1

S
∑

n∈[S] g
ℓ
µ,n(t)g

ℓ
ν,n(s) ,

12 G̃ℓ,new
µν (t, s) = 1

S
∑

n∈[S] g
ℓ
µ,n(t)g̃

ℓ
ν,n(s),

13
˜̃Gℓ,new
µν (t, s) = 1

S
∑

n∈[S] g̃
ℓ
µ,n(t)g̃

ℓ
ν,n(s) ;

14 Solve for Jacobians on each sample ∂ϕ(hℓ
n)

∂rℓ⊤
n

,
∂ϕ(hℓ

n)
∂vℓ⊤

n
,

∂gℓ
n

∂uℓ⊤
n

,
∂g̃ℓ

n

∂uℓ⊤
n

;

15 Compute new response functions {Aℓ,Bℓ−1,Cℓ,Dℓ−1} estimates:

16 Aℓ,new = 1
S
∑

n∈[S]
∂ϕ(hℓ

n)
∂rℓ⊤

n
,Bℓ−1,new = 1

S
∑

n∈[S]
∂gℓ

n

∂uℓ⊤
n

;

17 Cℓ,new = 1
S
∑

n∈[S]
∂ϕ(hℓ

n)
∂vℓ⊤

n
,Dℓ−1,new = 1

S
∑

n∈[S]
∂g̃ℓ

n

∂uℓ⊤
n

;
18 ℓ← ℓ+ 1;
19 end
20 ℓ = 1;
21 while ℓ < L+ 1 do
22 Update correlation functions
23 Φℓ ← (1− β)Φℓ + βΦℓ,new, Gℓ ← (1− β)Gℓ + βGℓ,new ;

24 G̃ℓ ← (1− β)G̃ℓ + βG̃ℓ,new, ˜̃Gℓ ← (1− β) ˜̃Gℓ + β ˜̃Gℓ,new ;
25 if ℓ < L then
26 Update response functions
27 Aℓ ← (1− β)Aℓ + βAℓ,new,Bℓ ← (1− β)Bℓ + βBℓ,new

28 Cℓ ← (1− β)Cℓ + βCℓ,new,Dℓ ← (1− β)Dℓ + βDℓ,new

29 end
30 ℓ← ℓ+ 1
31 end
32 end
33 return {fµ(t)}Pµ=1, {Φℓ,Gℓ, G̃ℓ, ˜̃Gℓ}Lℓ=1, {Aℓ,Bℓ,Cℓ,Dℓ}L−1

ℓ=1

The sample-and-solve procedure we developed and describe below for nonlinear networks is based
on numerical recipes used in the dynamical mean field simulations in computational physics Man-
acorda et al. (2020) and is similar to recent work in the GD case Bordelon & Pehlevan (2022).
The basic principle is to leverage the fact that, conditional on order parameters, we can easily draw
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samples {uℓ
µ(t), r

ℓ
µ(t), ζ

ℓ
µ(t), ζ̃

ℓ
µ(t)} from their appropriate GPs. From these sampled fields, we can

identify the kernel order parameters by simple estimation of the appropriate moments. The algorithm
is provided in Algorithm 1.

The parameter β controls recency weighting of the samples obtained at each iteration. If β = 1,
then the rank of the kernel estimates is limited to the number of samples S used in a single iteration,
but with β < 1 smaller sample sizes S can be used to still obtain accurate results. We used β = 0.6
in our deep network experiments.

B DERIVATION OF DMFT EQUATIONS

In this section, we derive the DMFT description of infinite network dynamics. The path integral
theory we develop is based on the Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) framework
Martin et al. (1973). A useful review of this technique applied to random recurent networks can be
found here Crisanti & Sompolinsky (2018). This framework was recently extended for deep learning
with GD in (Bordelon & Pehlevan, 2022).

B.1 WRITING EVOLUTION EQUATIONS IN FEATURE SPACE

First, we will express all of the learning dynamics in terms of preactivation features hℓ
µ(t) =

1√
N
W ℓ(t)ϕ(hℓ

µ(t)), pre-gradient features zℓ
µ(t) = 1√

N
W ℓ(t)⊤gℓ+1 and pseudogradient features

g̃ℓ
µ(t). Since we would like to understand typical behavior over random initializations of weights

θ(0) = {W 0(0),W 1(0), ...,wL(0)}, we want to isolate the dependence of our evolution equations
by W ℓ(0). We achieve this separation by using our learning dynamics for W ℓ(t)

W ℓ(t) = W ℓ(0) +
γ0√
N

∫ t

0

ds

P∑
µ=1

∆µ(s)g̃
ℓ+1
µ (s)ϕ(hℓ

µ(s))
⊤. (9)

The inclusion of the prefactor γ0√
N

in the weight dynamics ensures that d
dtf = Oγ0,N (1) and d

dth
ℓ =

Oγ0,N (γ0) at initialization (Chizat et al., 2019; Bordelon & Pehlevan, 2022). Using the forward and
backward pass equations, we find the following evolution equations for our feature vectors

hℓ
µ(t) = χℓ

µ(t) + γ0

∫ t

0

ds

P∑
ν=1

∆ν(s)g̃
ℓ+1
µ (s)Φℓ−1

µν (t, s) , χℓ
µ(t) =

1√
N

W ℓ(0)ϕ(hℓ
µ(t))

zℓ
µ(t) = ξℓµ(t) + γ0

∫ t

0

ds

P∑
ν=1

∆ν(s)ϕ(h
ℓ
µ(s))G̃

ℓ+1
µν (t, s) , ξℓµ(t) =

1√
N

W ℓ(0)⊤gℓ+1
µ (t) , (10)

where we introduced the following feature and gradient/pseudo-gradient kernels

Φℓ
µν(t, s) =

1

N
ϕ(hℓ

µ(t)) · ϕ(hℓ
ν(s)) , G̃

ℓ
µν(t, s) =

1

N
gℓ
µ(t) · g̃ℓ

ν(s). (11)

The particular learning rule defines the definition of the pseudo-gradient g̃ℓ
µ(t). We note

that, for all learning rules considered, the pseudogradient g̃ℓi,µ(t) is a function of the
fields {hℓ

i,µ(t), z
ℓ
iµ(t),m

ℓ
iµ(t), ζ

ℓ
i,µ(t), ζ̃

ℓ
i,µ(t)}µ∈[P ],t∈R+

, conditional on the value of the kernels
{Φℓ, G̃ℓ}. The additional fields have definitions

ζℓ
µ(t) =

1√
N

W ℓ(0)⊤g̃ℓ+1
µ (t) , ζ̃ℓ+1

µ (t) =
1√
N

W̃ ℓ⊤g̃ℓ+1
µ (t) (12)

and are specifically required for ρ-FA with ρ > 0 since g̃ℓ
µ(t) = ρϕ̇(hℓ

µ(t)) ⊙ ζℓ
µ(t) +√

1− ρ2ϕ̇(hℓ
µ(t))⊙ ζ̃ℓ

µ(t). The fields mℓ
µ = 1√

D
M ℓxµ are required for GLNs.

All of the necessary fields {hℓ
µ(t), z

ℓ
µ(t), g̃

ℓ
µ(t)} are thus causal functions of the stochastic fields

{χℓ
µ(t), ξ

ℓ
µ(t),m

ℓ
µ, ζ

ℓ
µ(t), ζ̃

ℓ
µ(t)} and the kernels {Φℓ, G̃ℓ}. It thus suffices to characterize the dis-

tribution of these latter objects over random initialization of θ(0) in the N → ∞ limit, which we
study in the next section.
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B.2 MOMENT GENERATING FUNCTIONAL

We will now attempt to characterize the probability density of the random fields

χℓ+1
µ (t) =

1√
N

W ℓ(0)ϕ(hℓ
µ(t)) , ξ

ℓ
µ(t) =

1√
N

W ℓ(0)⊤gℓ+1
µ (t) , mℓ

µ =
1√
D
M ℓxµ

ζℓ
µ(t) =

1√
N

W ℓ(0)⊤g̃ℓ+1
µ (t) , ζ̃ℓ

µ(t) =
1√
N

W̃ ℓ⊤g̃ℓ+1
µ (t). (13)

It is readily apparent that the fields mℓ
µ are independent of the others and have a Gaussian distribu-

tion over random Gaussian M ℓ. These fields, therefore do not can be handled independently from
the others, which are statistically coupled through the initial conditions. We will thus characterize
the moment generating functional of the remaining fields {χℓ

µ(t), ξ
ℓ
µ(t), ζ

ℓ
µ(t), ζ̃

ℓ
µ(t)} over random

initial condition and random backward pass weights

Z[{jℓµ(t),kℓ
µ(t),n

ℓ
µ(t),p

ℓ
µ(t)}]

= Eθ(0),{W̃ ℓ} exp

(
P∑

µ=1

∫ ∞

0

dt
[
jℓµ(t) · χℓ

µ(t) + kℓ
µ(t) · ξℓµ(t) + nℓ

µ(t) · ζℓ
µ(t) + pℓ

µ(t) · ζ̃ℓ
µ(t)

])
(14)

where χℓ, ξ, ζ, ζ̃ are regarded as functions of θ(0), {W̃ ℓ}. Arbitrary moments of these random
variables can be computed by differentiation of Z near zero source. For example, a two-point
correlation function can be obtained as〈

χℓ
i,µ(t)ζ

ℓ′

i′,ν(s)
〉
= lim

j,k,n,p→0

δ

δjℓi,µ(t)

δ

δnℓ′
i′ν(s)

Z[{jℓµ(t),kℓ
µ(t),n

ℓ
µ(t),p

ℓ
µ(t)}]. (15)

More generally, we let µ = (i, µ, t) be a tuple containing the neuron, time, and sample index for an
entry of one of these fields so that χℓ

µ = χℓ
i,µ(t). Further, we let Nχℓ ,Nξℓ ,Nζℓ ,Nζ̃ℓ be index sets

which contain sample and time indices as well as neuron indices Nχ = {µχ
1 , ..., |µ

χ
|Nχ|} for all of

the indices we wish to compute an average over. Then arbitrary moments can be computed with the
formula〈∏

ℓ

 ∏
µ∈N

χℓ

χℓ
µ

∏
ν∈N

ξℓ

ξℓν
∏

α∈N
ζℓ

ζℓα
∏

β∈N
ξℓ

ζ̃ℓβ

〉

= lim
j,k,n,p→0

∏
ℓ

 ∏
µ∈N

χℓ

δ

δjℓµ

∏
ν∈N

ξℓ

δ

δkℓν

∏
α∈N

ζℓ

δ

δnℓ
α

∏
β∈N

ξℓ

δ

δpℓµ

Z[{jℓµ(t),kℓ
µ(t),n

ℓ
µ(t),p

ℓ
µ(t)}].

(16)

We now to study this moment generating functional Z in the large width N →∞ limit.

B.3 PATH INTEGRAL FORMULATION AND INTEGRATION OVER WEIGHTS

To enable the average over the weights, we multiply Z by an integral representation of unity that
enforces the relationship between χℓ+1

µ (t),W ℓ(0), ϕ(hℓ
µ(t))

1 =

∫
RN

dχℓ+1
µ (t) δ

(
χℓ+1

µ (t)− 1√
N

W ℓ(0)ϕ(hℓ
µ(t))

)
=

∫
RN

∫
RN

dχℓ+1
µ (t)dχ̂ℓ+1

µ (t)

(2π)N
exp

(
iχ̂ℓ+1

µ (t) ·
[
χℓ+1

µ (t)− 1√
N

W ℓ(0)ϕ(hℓ
µ(t))

])
. (17)

In the second line, we used the Fourier representation of the Dirac-Delta function for each of
the N neuron indices δ(r) =

∫∞
−∞

dr̂
2π exp (ir̂r). We repeat this procedure for the other fields

ξℓµ(t), ζ
ℓ
µ(t), ζ̃

ℓ
µ(t) at each time t and each sample µ. After inserting these delta functions, we find
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the following form of the moment generating functional

Z =

∫ ∏
ℓµt

dχℓ
µ(t)dχ̂

ℓ
µ(t)

(2π)N
dξℓµ(t)dξ̂

ℓ
µ(t)

(2π)N
dζℓ

µ(t)dζ̂
ℓ
µ(t)

(2π)N
dζ̃ℓ

µ(t)d
ˆ̃
ζℓ
µ(t)

(2π)N

× exp

∫ ∞

0

dt
∑
ℓ,µ

[
χℓ

µ(t) · (jℓµ(t) + iχ̂ℓ
µ(t)) + ξℓµ(t) · (kℓ

µ(t) + iξ̂ℓµ(t))
]

× exp

∫ ∞

0

dt
∑
ℓ,µ

[
ζℓ
µ(t) · (nℓ

µ(t) + iζ̂ℓ
µ(t)) + ζ̃ℓ

µ(t) · (pℓ
µ(t) + i

ˆ̃
ζℓ
µ(t))

]
×
∏
ℓ

EW ℓ(0) exp

(
− i√

N
Tr W ℓ(0)⊤

[∫
dt
∑
µ

χ̂ℓ+1
µ (t)ϕ(hℓ

µ(t))
⊤ + gℓ+1

µ (t)ξ̂ℓµ(t)
⊤

])

× exp

(
− i√

N
W ℓ(0)⊤

[∫
dt
∑
µ

g̃ℓ+1
µ (t)ζℓ

µ(t)
⊤

])

×
∏
ℓ

EW̃ ℓ exp

(
− i√

N
TrW̃ ℓ⊤

[∫
dt
∑
µ

g̃ℓ+1
µ (t)

ˆ̃
ζℓ
µ(t)

⊤

])
. (18)

We see that we often have simultaneous integrals over time t and sums over samples µ so we will
again adopt a shorthand notation for indices µ = (µ, t) and define a summmation convention∑

µ aµbµ =
∫∞
0

dt
∑P

µ=1 aµ(t)bµ(t). To perform the averages over weights, we note that for a
standard normal variable Wij , that EWij

exp (iWijaibj) = exp
(
− 1

2a
2
i b

2
i

)
. Using this fact for each

of the weight matrix averages, we have

EW ℓ(0) exp

(
− i√

N
Tr W ℓ(0)⊤

[∑
µ

χ̂ℓ+1
µ ϕ(hℓ

µ)
⊤ + gℓ+1

µ ξ̂ℓ⊤µ + g̃ℓ+1
µ ζ̂ℓ⊤

µ

])

=exp

− 1

2N

∣∣∣∣∣∑
µ

χ̂ℓ+1
µ ϕ(hℓ

µ)
⊤ + gℓ+1

µ ξ̂ℓ⊤µ + g̃ℓ+1
µ ζ̂ℓ⊤

µ

∣∣∣∣∣
2

F


=exp

(
−1

2

∑
µ,ν

[
χ̂ℓ+1

µ · χ̂ℓ+1
ν Φℓ

µ,ν + ξ̂ℓµ · ξ̂ℓνGℓ+1
µν + ζ̂ℓ

µ · ζ̂ℓ
ν
˜̃Gℓ+1
µ,ν + ξ̂ℓµ · ζ̂ℓ

νG̃
ℓ+1
µ,ν

])

× exp

(
−i
∑
µν

[
χ̂ℓ+1

µ · gℓ+1
ν Aℓ

µν + χ̂ℓ+1
µ · g̃ℓ+1

ν Cℓ
µν

])
. (19)

In the above, we introduced a collection of order parameters {Φ, G, G̃, ˜̃G,A,C}, which will corre-
spond to correlation and response functions of our DMFT. These are defined as

Φℓ
µ,ν =

1

N
ϕ(hℓ

µ) · ϕ(hℓ
ν) , G

ℓ
µ,ν =

1

N
gℓ
µ · gℓ

ν , G̃ℓ
µν =

1

N
gℓ
µ · g̃ℓ

ν

˜̃Gℓ+1
µ,ν =

1

N
g̃ℓ
µ · g̃ℓ

ν , iAℓ
µν =

1

N
ϕ(hℓ

µ) · ξ̂ℓν , iCℓ
µν =

1

N
ϕ(hℓ

µ) · ζ̂ℓ
ν . (20)

We perform a similar average over W̃ ℓ can be obtained directly

EW̃ ℓ exp

(
− i√

N
TrW̃ ℓ⊤

[∑
µ

g̃ℓ+1
µ

ˆ̃
ζℓ⊤
µ

])
= exp

(
−1

2

∑
µν

ˆ̃
ζℓ
µ ·

ˆ̃
ζℓ
ν
˜̃Gℓ+1
µν

)
. (21)

Now that we have defined our collection of order parameters, we enforce their definitions with
Dirac-Delta functions by multiplying by one. For example,

1 = N

∫
dΦℓ

µνδ
(
NΦℓ

µν − ϕ(hℓ
µ) · ϕ(hℓ

ν)
)

=

∫
dΦℓ

µνdΦ̂
ℓ
µν

2πN−1
exp

(
N Φ̂ℓ

µνΦ
ℓ
µν − Φ̂ℓ

µνϕ(h
ℓ
µ) · ϕ(hℓ

ν)
)
. (22)
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We enforce these definitions for all order parameters {Φℓ
µν , G

ℓ
µν , G̃

ℓ
µν ,

˜̃Gℓ
µν , A

ℓ
µ,ν , C

ℓ
µ,ν}.

We let the corresponding Fourier duals for each of these order parameters be

{Φ̂ℓ
µν , Ĝ

ℓ
µν ,

ˆ̃Gℓ
µν ,

ˆ̃̃
Gℓ

µν ,−Bℓ
µ,ν ,−Dℓ

µ,ν}. In the next section we show the resulting formula
for the moment generating function and take the N →∞ limit to derive our DMFT equations.

B.4 DMFT ACTION

After inserting the Dirac-Delta functions to enforce the definitions of the order pa-
rameters, we derive the following moment generating functional in terms of q =

{Φ, Φ̂, G, Ĝ, G̃, ˆ̃G, ˜̃G,
ˆ̃̃
G,A,B,C,D, j, k, n, p}

Z =

∫ ∏
ℓ,µ,ν

dΦℓ
µνdΦ̂

ℓ
µν

2πN−1

dGℓ
µνdĜ

ℓ
µν

2πN−1

dG̃ℓ
µνd

ˆ̃Gℓ
µν

2πN−1

d ˜̃Gℓ
µνd

ˆ̃̃
Gℓ

µν

2πN−1

dAℓ
µνdB

ℓ
µν

2πN−1

dCℓ
µνdD

ℓ
µν

2πN−1
exp (NS[q])

where S[q] is the ON (1) DMFT action which takes the form

S[q] =
∑
ℓµν

[
Φℓ

µ,νΦ̂
ℓ
µ,ν +Gℓ

µνĜ
ℓ
µν + G̃ℓ

µν
ˆ̃Gℓ
µν + ˜̃Gℓ

µν

ˆ̃̃
Gℓ

µν −Aℓ
µνB

ℓ
µν − Cℓ

µνD
ℓ
µν

]

+
1

N

N∑
i=1

L∑
ℓ=1

lnZℓ
i [q]. (23)

The single-site moment generating functionals (MGF) Zℓ
i involve only the integrals with sources

{jℓi , kℓi , nℓ
i , p

ℓ
i} for neuron i ∈ [N ] in layer ℓ. For a given set of order parameters q at zero source,

these functionals become identical across all neuron sites i. Concretely, for any ℓ ∈ [L], i ∈ [N ], the
single site MGF takes the form

Zℓ
i =

∫ ∏
µ

dχℓ
µdχ̂

ℓ
µ

2π

dξℓµdξ̂
ℓ
µ

2π

dζℓµdζ̂
ℓ
µ

2π

dζ̃ℓµd
ˆ̃
ζℓµ

2π
(24)

exp

(
−1

2

∑
µ,ν

[
χ̂ℓ+1
µ χ̂ℓ+1

ν Φℓ
µ,ν + ξ̂ℓµξ̂

ℓ
νG

ℓ+1
µν +

ˆ̃
ζℓµ

ˆ̃
ζℓν

˜̃Gℓ+1
µν

])

exp

(
−1

2

∑
µν

[
ζ̂ℓµζ̂

ℓ
ν
˜̃Gℓ+1
µ,ν + 2ξ̂ℓµζ̂

ℓ
νG̃

ℓ+1
µ,ν

])

exp

(
−
∑
µν

[
Φ̂ℓ

µνϕ(h
ℓ
µ)ϕ(h

ℓ
ν) + Ĝℓ

µνg
ℓ
µg

ℓ
ν + ˆ̃Gℓ

µνg
ℓ
µg̃

ℓ
ν +

ˆ̃̃
Gℓ

µν g̃
ℓ
µg̃

ℓ
ν

])

exp

(
−i
∑
µν

[
χ̂ℓ+1
µ gℓ+1

ν Aℓ
µν + χ̂ℓ+1

µ g̃ℓ+1
ν Cℓ

µν + ϕ(hℓ
µ)ξ̂

ℓ
νB

ℓ
µν + ϕ(hℓ

µ)ζ̂
ℓ
νD

ℓ
µν

])

exp

(∑
µ

[
χℓ
µ(j

ℓ
i,µ + iχ̂ℓ

µ) + ξℓµ(k
ℓ
i,µ + iξ̂ℓµ) + ζℓµ(n

ℓ
i,µ + iζ̂ℓµ) + ζ̃ℓµ(p

ℓ
i,µ + i

ˆ̃
ζℓµ)
])

.

As promised, the only terms in Zi which vary over site index i are the sources {j, k, n, p}. To
simplify our later saddle point equations, we will abstract the notation for the single site MGF,
letting

Zℓ
i =

∫ ∏
µ

dχµdχ̂µ

2π

dξµdξ̂µ
2π

dζµdζ̂µ
2π

dζ̃µd
ˆ̃
ζµ

2π
exp

(
−Hℓ

i [χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,
ˆ̃
ζ]
)

(25)

where Hℓ
i is the single site effective Hamiltonian for neuron i and layer ℓ. Note that at zero source,

Hℓ
i are identical for all i ∈ [N ].
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B.5 SADDLE POINT EQUATIONS

Letting the full collection of concatenated order parameters q be indexed by b. We now take the
N →∞ limit, using the method of steepest descent

Z =

∫ ∏
b

√
Ndqb√
2π

exp (NS[q]) ∼ exp (NS[q∗]) , ∇S[q]|q∗ = 0 , N →∞. (26)

We see that the integral over q is exponentially dominated by the saddle point where ∇S[q] = 0.
We thus need to solve these saddle point equations for the q∗. To do this, we need to introduce some

notation. Let O(χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,
ˆ̃
ζ) be an arbitrary function of the single site stochastic processes.

We define the ℓ-th layer i-th single site average, denoted by
〈
O(χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,

ˆ̃
ζ)
〉
ℓ,i

as

〈
O(χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,

ˆ̃
ζ)
〉
ℓ,i

=
1

Zℓ
i

∫ ∏
µ

dχµdχ̂µ

2π

dξµdξ̂µ
2π

dζµdζ̂µ
2π

dζ̃µd
ˆ̃
ζµ

2π

exp
(
−Hℓ

i [χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,
ˆ̃
ζ]
)
O(χ, χ̂, ξ, ξ̂, ζ, ζ̂, ζ̃,

ˆ̃
ζ)

(27)

which can be interpreted as an average over the Gibbs measure defined by energy Hℓ
i . With this

notation, we now set about computing the saddle point equations which define the primal order
parameters {Φ, G, G̃, ˜̃G}.

∂S

∂Φ̂ℓ
µν

= Φℓ
µν −

1

N

N∑
i=1

〈
ϕ(hℓ

µ)ϕ(h
ℓ
ν)
〉
ℓ,i

= 0

∂S

∂Ĝℓ
µν

= Gℓ
µν −

1

N

N∑
i=1

〈
gℓµg

ℓ
ν

〉
ℓ,i

= 0

∂S

∂ ˆ̃Gℓ
µν

= G̃ℓ
µν −

1

N

N∑
i=1

〈
gℓµg̃

ℓ
ν

〉
ℓ,i

= 0

∂S

∂
ˆ̃̃
Gℓ

µν

= ˜̃Gℓ
µν −

1

N

N∑
i=1

〈
g̃ℓµg̃

ℓ
ν

〉
ℓ,i

= 0
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We further compute the saddle point equations for the dual order parameters

∂S

∂Φℓ
µν

= Φ̂ℓ
µν −

1

2N

N∑
i=1

〈
χ̂ℓ+1
µ χ̂ℓ+1

ν

〉
ℓ+1,i

= 0

∂S

∂Gℓ
µν

= Ĝℓ
µν −

1

2N

N∑
i=1

〈
ξ̂ℓ−1
µ ξ̂ℓ−1

ν

〉
ℓ−1,i

= 0

∂S

∂G̃ℓ
µν

= ˆ̃Gℓ
µν −

1

N

N∑
i=1

〈
ξ̂ℓ−1
µ ζ̂ℓ−1

ν

〉
ℓ−1,i

= 0

∂S

∂ ˜̃Gℓ
µν

=
ˆ̃̃
Gℓ

µν −
1

2N

N∑
i=1

〈
[ζ̂ℓ−1

µ ζ̂ℓ−1
ν +

ˆ̃
ζℓ−1
µ

ˆ̃
ζℓ−1
ν ]

〉
ℓ−1,i

= 0

∂S

∂Aℓ
µν

= −Bℓ
µν −

i

N

N∑
i=1

〈
χ̂ℓ+1
µ gℓ+1

ν

〉
ℓ+1,i

= 0

∂S

∂Bℓ
µν

= −Aℓ
µν −

i

N

N∑
i=1

〈
ϕ(hℓ

µ)ξ̂
ℓ
ν

〉
ℓ,i

= 0

∂S

∂Cℓ
µν

= −Dℓ
µν −

i

N

N∑
i=1

〈
χ̂ℓ+1
µ g̃ℓ+1

ν

〉
ℓ+1,i

= 0

∂S

∂Dℓ
µν

= −Cℓ
µν −

i

N

N∑
i=1

〈
ϕ(hℓ

µ)ζ̂
ℓ
ν

〉
ℓ,i

= 0 . (28)

The correlation functions involving real variables {h, g, g̃} have a straightforward interpetation.
However, it is not immediately clear what to do with terms involving the dual fields {χ̂, ξ̂, ζ̂}. As a
starting example, let’s consider one of the terms for Bℓ−1

µν , namely −i
〈
χ̂ℓ
νg

ℓ
ν

〉
. We make progress

by inserting another fictitious source term uℓ
µ and differentiating near zero source

−i
〈
χ̂ℓ
νg

ℓ
ν

〉
i
= lim

{uµ}→0

∂

∂uℓ
ν

〈
gℓν exp

(
−i
∑
ν′

uν′ χ̂ℓ
µ′

)〉
i

. (29)

Introducing a vectorization notation uℓ = Vec{uℓ
µ}µ, χ̂ℓ = Vec{χ̂ℓ

µ}µ and Φℓ−1 =

Mat{Φℓ−1
µ,ν }µ,ν , we can perform the internal integrals over χ̂ℓ

∫ ∏
µ

dχ̂ℓ
µ√
2π

exp

(
−1

2
χ̂ℓ⊤Φℓ−1χ̂ℓ + iχ̂ℓ · (χℓ − uℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)

)
=exp

(
−1

2
(χℓ − uℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)[Φℓ−1]−1(χℓ − uℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)

)
exp

(
−1

2
ln detΦℓ−1

)
. (30)

We thus need to compute a derivative of the above function with respect to uℓ at uℓ = 0, which
gives

−i
〈
χ̂ℓgℓ⊤〉

i
= [Φℓ−1]−1

〈
(χℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)gℓ⊤〉

i
. (31)
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From the above reasoning, we can also easily obtain Φ̂ℓ−1 using〈
χ̂ℓχ̂ℓ⊤〉 = − ∂2

∂uℓ∂uℓ⊤ |u=0

〈
exp

(
−iuℓ · χ̂ℓ

)〉
= −

∫
dχℓ...

∂2

∂uℓ∂u⊤ |u=0

× exp

(
−1

2
(χℓ − uℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)[Φℓ−1]−1(χℓ − uℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)− ...

)
= [Φℓ−1]−1 − [Φℓ−1]−1

〈
(χℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)(χℓ −Aℓ−1gℓ −Cℓ−1g̃ℓ)⊤

〉
[Φℓ−1]−1.

(32)

Performing a similar analysis, we insert source fields r+ =

[
rℓ

vℓ

]
for ξ̂ℓ+ =

[
ξ̂ℓ

ζ̂ℓ

]
and define Gℓ+1

+ =[
Gℓ+1 G̃ℓ+1

G̃ℓ+1⊤ ˜̃Gℓ+1

]
, and Bℓ

+ =
[
Bℓ Dℓ

]
and then we can compute the necessary averages using

the same technique

−i
〈
ϕ(hℓ)ξ̂ℓ⊤+

〉
=

∂

∂rℓ+
|rℓ

+=0

〈
ϕ(hℓ) exp

(
−irℓ+ · ξ̂ℓ+

)〉
=
〈
ϕ(hℓ)(ξℓ+ −Bℓ⊤

+ ϕ(hℓ))⊤
〉

〈
ξ̂ℓ+ξ̂

ℓ⊤
+

〉
= − ∂2

∂rℓ+∂r
ℓ⊤
+

|rℓ
+=0

〈
exp

(
−irℓ+ · ξ̂ℓ+

)〉
= [Gℓ+1

+ ]−1 − [Gℓ+1
+ ]−1

〈
(ξℓ+ −Bℓ⊤

+ ϕ(hℓ))(ξℓ+ −Bℓ⊤
+ ϕ(hℓ))⊤

〉
[Gℓ+1

+ ]−1.
(33)

We now have formulas for all the necessary averages entirely in terms of the primal fields
{χ, ξ, ζ, ζ̃}.

B.6 LINEARIZING WITH THE HUBBARD TRICK

Now, using the fact that in the N →∞ limit q concentrates around q∗, we will simplify our single

site stochastic processes so we can obtain a final formula for {A,B,C,D, Φ̂, Ĝ, ˆ̃G,
ˆ̃̃
G}. To do so,

we utilize the Hubbard-Stratanovich identity

exp

(
−σ2

2
k2
)

=

∫
du√
2πσ2

exp

(
− 1

2σ2
u2 − iku

)
, (34)

which is merely a consequence of the Fourier transform of the Gaussian distribution. This is often
referred to as “linearizing” the action since the a term quadratic in k was replaced with an average
of an action which is linear in k. In our setting, we perform this trick on a collection of variables
which appear in the quadratic forms of our single site MGFs Zℓ

i . For example, for the χ̂ℓ+1 fields,
we have

exp

(
−1

2

∑
µν

χ̂ℓ+1
µ χ̂ℓ+1

ν Φℓ
µν

)
=

〈
exp

(
−i
∑
µ

χ̂ℓ+1
µ uℓ+1

µ

)〉
{uℓ+1

µ }∼N (0,Φℓ)

. (35)

Similarly, we perform a joint decomposition for the {ξ̂ℓ, ζ̂ℓ} fields which gives

exp

(
−1

2

∑
µν

[
ξ̂ℓµξ̂

ℓ
νG

ℓ+1
µ,ν + 2ξ̂ℓµζ̂

ℓ
νG̃

ℓ+1
µν + ζ̂ℓµζ̂

ℓ
ν
˜̃Gℓ+1
µν

])
(36)

=

〈
exp

(
−i
∑
µ

[rℓµξ̂
ℓ
µ + vℓµζ̂

ℓ
µ]

)〉
{rℓµ,vℓ

µ}∼N (0,Gℓ+1
+ )

, Gℓ+1
+ =

[
Gℓ+1 G̃ℓ+1

G̃ℓ+1 ˜̃Gℓ+1

]
.

We thus see that the Gaussian sources {rℓµ}µ and {vℓµ}µ are mean zero with correlation given by
Σℓ+1. Now that we have linearized the quadratic components involving each of the dual fields
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{χ̂, ξ̂, ζ̂}, we now perform integration over these variables, giving∫ ∏
µ

dχ̂ℓ
µ

2π
exp

(
i
∑
µ

χ̂ℓ
µ

(
χℓ
µ − uℓ

µ −
∑
ν

Aℓ−1
µν gℓν −

∑
ν

Cℓ−1
µν g̃ℓν

))

=
∏
µ

δ

(
χℓ
µ − uℓ

µ −
∑
ν

Aℓ−1
µν gℓν −

∑
ν

Cℓ−1
µν g̃ℓν

)
∫ ∏

µ

dξ̂ℓµ
2π

exp

(
i
∑
µ

ξ̂ℓµ

(
ξℓµ − rℓµ −

∑
ν

Bℓ
νµϕ(h

ℓ
ν)

))
=
∏
µ

δ

(
ξℓµ − rℓµ −

∑
ν

Bℓ
νµϕ(h

ℓ
ν)

)
∫ ∏

µ

dζ̂ℓµ
2π

exp

(
i
∑
µ

ζ̂ℓµ

(
ζℓµ − vℓµ −

∑
ν

Dℓ
νµϕ(h

ℓ
ν)

))
=
∏
µ

δ

(
ζℓµ − vℓµ −

∑
ν

Dℓ
νµϕ(h

ℓ
ν)

)
.

(37)

This reveals the following set of identities

χℓ
µ = uℓ

µ +
∑
ν

Aℓ−1
µν gℓν +

∑
ν

Cℓ−1
µν g̃ℓν

ξℓµ = rℓµ +
∑
ν

Bℓ
νµϕ(h

ℓ
ν) , ζ

ℓ
µ = vℓµ +

∑
ν

Dℓ−1
νµ ϕ(hℓ

ν). (38)

Since we know by construction that uℓ = χℓ −Aℓ−1gℓ − Cℓ−1g̃ℓ is a zero mean Gaussian with
covariance Φℓ−1, we can simplify our expressions for Bℓ−1 and Φ̂ℓ−1 using Stein’s Lemma

Bℓ−1 =
1

N

N∑
i=1

[Φℓ−1]−1
〈
uℓgℓ⊤〉

i
=

1

N

N∑
i=1

〈
∂gℓ⊤

∂uℓ

〉
i

Dℓ−1 =
1

N

N∑
i=1

[Φℓ−1]−1
〈
uℓg̃ℓ⊤〉

i
=

1

N

N∑
i=1

〈
∂g̃ℓ⊤

∂uℓ

〉
i

(39)

Φ̂ℓ−1 =
1

2
[Φℓ−1]−1 − 1

2N

N∑
i=1

[Φℓ−1]−1
〈
uℓuℓ⊤〉

i
[Φℓ−1]−1 = 0.

Similarly, using the Gaussianity of rℓ, ζℓ, ζ̂ℓ we have

Aℓ =
1

N

N∑
i=1

〈
∂ϕ(hℓ)

∂rℓ⊤

〉
i

, Cℓ =
1

N

N∑
i=1

〈
∂ϕ(hℓ)

∂vℓ⊤

〉
i

, Ĝℓ+1 = ˆ̃Gℓ+1 =
ˆ̃̃
Gℓ+1 = 0.

B.7 FINAL DMFT EQUATIONS

We now take the limit of zero source jℓ,kℓ,nℓ,pℓ → 0. In this limit, all single site averages ⟨⟩i
become identical so we can simplify the expressions for the order parameters. To “symmetrize” the
equations we will also make the substitution B → B⊤,D → D⊤. Next, we also rescale all of the
response functions {Aℓ, Bℓ, Cℓ, Dℓ} by γ−1

0 so that they are Oγ0
(1) at small γ0. This gives us the

following set of equations for the order parameters

Φℓ
µν(t, s) =

〈
ϕ(hℓ

µ(t))ϕ(h
ℓ
ν(s))

〉
, Gℓ

µν(t, s) =
〈
gℓµ(t)g

ℓ
ν(s)

〉
, G̃ℓ

µν(t, s) =
〈
gℓµ(t)g̃

ℓ
ν(s)

〉
˜̃Gℓ
µν(t, s) =

〈
g̃ℓµ(t)g̃

ℓ
ν(s)

〉
, Aℓ

µν(t, s) = γ−1
0

〈
δϕ(hℓ

µ(t))

δrℓν(s)

〉
, Cℓ

µν(t, s) = γ−1
0

〈
δϕ(hℓ

µ(t))

δvℓν(s)

〉

Bℓ
µν(t, s) = γ−1

0

〈
δgℓ+1

µ (t)

δuℓ+1
ν (s)

〉
, Dℓ

µν(t, s) = γ−1
0

〈
δg̃ℓ+1

µ (t)

δuℓ+1
ν (s)

〉
.
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Figure 6: Feature kernels Φℓ and their dynamics predicted by solving full set of saddle point equa-
tions equation 40 for ρ-FA in depth 3 tanh network with γ0 = 1.0. Solving deep nonlinear ρ-FA
requires sampling the full triplet of Gaussian sources {uℓ, rℓ, vℓ} for each layer and computing all
four response functions {Aℓ, Bℓ, Cℓ, Dℓ}. DMFT theoretical predictions are compared to a width
N = 3000 neural network.

For the fields hℓ
µ(t), z

ℓ
µ(t), z̃

ℓ
µ(t), we have the following equations

hℓ
µ(t) = uℓ

µ(t) + γ0

∫ t

0

ds

P∑
ν=1

[Aℓ−1
µν (t, s)gℓν(s) + Cℓ−1

µν (t, s)g̃ℓµ(s) + ∆ν(s)Φ
ℓ−1
µν (t, s)g̃ℓν(s)]

zℓµ(t) = rℓµ(t) + γ0

∫ t

0

ds

P∑
ν=1

[Bℓ
µν(t, s)ϕ(h

ℓ
ν(s)) + ∆ν(s)G̃

ℓ+1
µν (t, s)ϕ(hℓ

ν(s))]

g̃ℓµ(t) =



ϕ̇(hℓ
µ(t))z

ℓ
µ(t) GD

ϕ̇(hℓ
µ(t))

[√
1− ρ2ζ̃ℓµ(t) + ρvℓµ(t) + ργ0

∫ t

0
ds
∑P

ν=1 D
ℓ
µν(t, s)ϕ(h

ℓ
ν(s))

]
ρ-FA

ϕ̇(hℓ
µ(t))z̃

ℓ , z̃ℓ ∼ N (0, 1) DFA
ϕ̇(mℓ

µ(t))z
ℓ
µ(t) GLN

∆µ(t)ϕ(h
ℓ
µ(t)) Hebb

{uℓ
µ(t)} ∼ GP(0,Φℓ−1) , {rℓµ(t), vℓµ(t)} ∼ GP(0,Gℓ+1

+ ) , {ζ̃ℓµ(t)} ∼ GP(0,
˜̃Gℓ+1)

Gℓ+1
+ =

[
Gℓ+1 G̃ℓ+1

G̃ℓ+1,⊤ ˜̃Gℓ+1

]
. (40)

C EXTENSION TO OTHER ARCHITECTURES AND OPTIMIZERS

In this section, we consider the effect of changing architectural details (multiple output channels and
convolutional structure) and also optimization choices (momentum, regularization).
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C.1 MULTIPLE OUTPUT CLASSES

Similar to pre-existing work on the GD case (Bordelon & Pehlevan, 2022), our new generalized
DMFT can be easily extended to C output channels, provided the number of channels C is not
simultaneously taken to infinity with network width N . We note that the outputs of the network
are now vectors fµ ∈ RC and that each eNTK entry is now a C × C matrix Kµν(t, s) ∈ RC×C .
The relevant true gradient fields are vectors gℓ

c,µ =
∂fc,µ
∂hℓ

µ
. We construct pseudo-gradients g̃ℓ

c,µ

as before using each of our learning rules. The gradient-pseudogradient kernel Gℓ
µν ∈ RC×C is

G̃ℓ
c,c′,µν = 1

N gℓ
c,µ · gℓ

c′,ν . The eNTK Kµν =
∑

ℓ G̃
ℓ+1
µν Φℓ

µν can be used to derive the function
dynamics

∂fµ

∂t
=
∑
ν

Kµν∆µ , ∆µ = − ∂L
∂fµ

. (41)

At infinite width N →∞, the field dynamics for hℓ
µ(t) ∈ R, gℓ

µ(t) ∈ RC satisfy

hℓ
µ(t) = uℓ

µ(t) + γ0

∫ t

0

ds

P∑
ν=1

[
g̃ℓ
ν(s) ·∆ν(s)Φ

ℓ−1
µν (t, s) +Aℓ−1

µν (t, s) · gℓ
ν(s) +Cℓ−1

µν · g̃ℓ
ν(s)

]
zℓ
µ(t) = rℓµ(t) + γ0

∫ t

0

ds

P∑
ν=1

ϕ(hℓ
ν(s))

[
G̃ℓ+1

µν (t, s)∆ν(s) +Bℓ
µν(t, s)

]
, (42)

where Aℓ
µν(t, s) = γ0

〈
δϕ(hℓ

µ(t))

δrℓ
ν(s)

〉
∈ RC , Aℓ

µν(t, s) = γ0

〈
δϕ(hℓ

µ(t))

δvℓ
ν(s)

〉
∈ RC , and Bµα(t, s) =

∂gℓ+1
µ (t)

∂uℓ
ν(s)

∈ RC . The feature kernels are the same as before Φℓ
µν(t, s) =

〈
ϕ(hℓ

µ(t))ϕ(h
ℓ
ν(s))

〉
while

the gradient-pseudogradient kernel is G̃ℓ
µν(t, s) =

〈
gℓ
µ(t)g̃

ℓ⊤
ν (s)

〉
∈ RC×C . The pseudogradient

fields g̃ℓ are defined analogously for each learning rule as in the single class setting.

g̃ℓ
µ(t) =



ϕ̇(hℓ
µ(t))z

ℓ
µ(t) GD

ϕ̇(hℓ
µ(t))

[
ρvℓ

µ(t) +
√
1− ρ2ζ̃ℓ

µ(t) + ργ0
∫ t

0
ds
∑P

ν=1 D
ℓ
ν(t, s)ϕ(h

ℓ
ν(s))

]
ρ-FA

ϕ̇(hℓ
µ(t))z̃

ℓ , z̃ℓ ∼ N (0, I) DFA
ϕ̇(mℓ

µ(t))z
ℓ
µ(t) GLN

1∆µ(t)ϕ(h
ℓ
µ(t)) Hebb

(43)

C.2 CNN

The DMFT described for each of these learning rules can also be extended to CNNs with infinitely
many channels. Following the work of Bordelon & Pehlevan (2022) Appendix G on the GD DMFT
limit for CNNs, we let W ℓ

ij,a represent the value of the filter at spatial displacement a from the center
of the filter, which maps relates activity at channel j of layer ℓ to channel i of layer ℓ+1. The fields
hℓ
µ,i,a satisfy the recursion

hℓ+1
µ,i,a =

1√
N

N∑
j=1

∑
b∈Sℓ

W ℓ
ij,bϕ(h

ℓ
µ,j,a+b) , i ∈ [N ], (44)

where Sℓ is the spatial receptive field at layer ℓ. For example, a (2k + 1) × (2k + 1) convolution
will have Sℓ = {(i, j) ∈ Z2 : −k ≤ i ≤ k,−k ≤ j ≤ k}. The output function is obtained from the
last layer is defined as fµ = 1

γ0N

∑N
i=1

∑
a w

L
i,aϕ(h

L
µ,i,a). The true gradient fields have the same

definition as before gℓ
µ,a = γ0N

∂fµ
∂hℓ

µ,a
∈ RN , which as before enjoy the following recursion

gℓ
µ,a = γ0N

∑
b

∂fµ

∂hℓ+1
µ,b

·
∂hℓ+1

µ,b

∂hℓ
µ,a

= ϕ̇(hℓ
µ,a)⊙

 1√
N

N∑
j=1

∑
b∈Sℓ

W ℓ⊤
b gℓ+1

µ,a−b

 . (45)
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We consider the following learning dynamics for the filters

d

dt
W ℓ

b =
γ0√
N

∑
µ,c

∆µg̃
ℓ+1
µ,c ϕ(h

ℓ
µ,c+b)

⊤ (46)

where as before g̃ℓ is determined by the learning rule. The relevant kernel order parameters now
have spatial indices. For instance the feature kernel at each layer has form Φℓ

µ,ν,ab = 1
N ϕ(hℓ

µ,a(t)) ·
ϕ(hℓ

ν,b(s)). At the infinite width N →∞, the order parameters and field dynamics have the form

hℓ
µ,a(t) = uℓ

µ,a(t) + γ0

∫ t

0

ds
∑
ν,b,c

∆ν(s)Φ
ℓ−1
µν,a+b,b+c(t, s)g̃

ℓ
ν,c(s) (47)

+ γ0

∫ t

0

ds
∑
ν,b

[Aℓ−1
µν,ab(t, s)g

ℓ
ν,b(s) + Cℓ−1

µν,ab(t, s)g̃
ℓ
νb(s)]

zℓµ,a(t) = rℓµ,a(t) + γ0

∫ t

0

ds
∑
ν,b,c

G̃ℓ+1
µν,a−b,c−b(t, s)ϕ(h

ℓ
ν,c(s))

+ γ0

∫ t

0

ds
∑
ν,b

Bℓ
µν,ab(t, s)ϕ(h

ℓ
ν,b(s)) (48)

where correlation and response functions have the usual definitions

Φℓ
µα,ab(t, s) =

〈
ϕ(hℓ

µa(t))ϕ(h
ℓ
αb(s))

〉
, Gℓ

µα,ab(t, s) =
〈
gℓµa(t)g

ℓ
αb(s)

〉
, G̃ℓ

µν,ab(t, s) =
〈
gℓµa(t)g̃

ℓ
αb(s)

〉
Aℓ

µα,ab(t, s) =
1

γ0

〈
δϕ(hℓ

µa(t))

δrℓαb(s)

〉
, Bℓ

µα,ab(t, s) =
1

γ0

〈
δgℓ+1

µa (t)

δuℓ+1
αb (s)

〉
. (49)

C.3 L2 REGULARIZATION (WEIGHT DECAY)

L2 regularization on the weights W ℓ (weight decay) can also be modeled within DMFT. We start
by looking at the weight dynamics

d

dt
W ℓ =

γ0√
N

P∑
µ=1

∆µg̃
ℓ+1
µ ϕ(hℓ

µ)
⊤ − λW ℓ

=⇒ W ℓ(t) = e−λtW ℓ(0) +
γ0√
N

∫ t

0

ds e−λ(t−s)
∑
µ

∆µ(s)g̃
ℓ+1
µ (s)ϕ(hℓ

µ(s))
⊤ (50)

In the second line we used an integrating factor eλt. We can thus arrive at the following feature
dynamics in the DMFT limit

hℓ
µ(t) = e−λtχℓ

µ(t) + γ0

∫ t

0

ds e−λ(t−s)
∑
ν

∆ν(s)Φ
ℓ−1
µν (s)g̃ℓν(s)

zℓµ(t) = e−λtξℓµ(t) + γ0

∫ t

0

ds e−λ(t−s)
∑
ν

∆ν(s)G̃
ℓ+1
µν (s)ϕ(hℓ

ν(s)).

The g̃ dynamics are also modified appropriately with factors of e−λt and e−λ(t−s) for each of our
learning rules. We see that the contribution from the initial conditions χ, ξ are suppressed at late
times while the feature learning update which is O(γ0/λ) in the first layer dominates scale of the
final features.

C.4 MOMENTUM

Momentum uses a low-pass filtered version of the gradients to update the weights (Goh, 2017). A
continuous time limit of momentum dynamics on the trainable parameters {W ℓ} would give the
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following differential equations

∂

∂t
W ℓ(t) = Qℓ(t)

τ
d

dt
Qℓ(t) = −Qℓ +

γ0√
N

∑
µ

∆µ(t)g̃
ℓ+1
µ (t)ϕ(hℓ

µ(t))
⊤. (51)

We write the expression this way so that the small time constant τ → 0 limit corresponds to classic
gradient descent. Integration of the Qℓ(t) dynamics gives the following integral expression for W ℓ

W ℓ(t) = W ℓ(0) +
γ0√
Nτ

∫ t

0

dt′
∫ t′

0

dt′′e−(t′−t′′)/τ
∑
µ

∆µ(t
′′)g̃ℓ+1

µ (t′′)ϕ(hℓ
µ(t

′′))⊤. (52)

These weight dynamics give rise to the following field evolution

hℓ+1
µ (t) = χℓ+1

µ (t) +
γ0
τ

∫ t

0

dt′
∫ t′

0

dt′′e−(t′−t′′)/τ
∑
ν

∆ν(t
′′)g̃ℓ+1

ν (t′′)Φℓ
µν(t, t

′′)

zℓµ(t) = ξℓµ(t) +
γ0
τ

∫ t

0

dt′
∫ t′

0

dt′′e−(t′−t′′)/τ
∑
ν

dt′′∆α(t
′′)G̃ℓ+1

µν (t, t′′)ϕ(hℓ
ν(t

′′)). (53)

We see that in the τ → 0 limit, the t′′ integral is dominated by the contribution at t′′ ∼ t′ recov-
ering usual gradient descent dynamics. For τ ≫ 0, we see that the integral accumulates additional
contributions from the past values of fields and kernels.

D LAZY LIMITS

In this section we discuss the lazy γ0 → 0 limit. In this limit we see that hℓ(t) = uℓ(t) and
zℓ(t) = rℓ(t) for all time t. Since the input data gram matrix Φ0

µν = 1
Dxµ · xν is a constant in time

the sources in the first hidden layer u1
µ are constant in time. Consequently, the first layer feature

kernel is constant in time since

Φ1
µν(t, s) =

〈
ϕ(h1

µ(t))ϕ(h
1
ν(s))

〉
=
〈
ϕ(u1

µ)ϕ(u
1
ν)
〉
u1∼N (0,Φ0)

. (54)

Now, we see that this argument can proceed inductively. Since Φ1 is time-independent, the second
layer fields h2 = u2 ∼ N (0,Φ1) are also constant in time, implying Φ2 is constant in time. This
argument is repeated for all layer ℓ ∈ [L]. Similarly, we can analyze the backward pass fields zℓ.
Since zL ∼ N (0,GL+1) are constant, then zℓ are time-independent for all ℓ. It thus suffices to
compute the static kernels {Φℓ, Gℓ, G̃ℓ} at initialization

Φℓ =
〈
ϕ(uℓ)ϕ(uℓ)⊤

〉
uℓ∼N (0,Φℓ−1)

Gℓ =
〈
[ϕ̇(uℓ)⊙ rℓ][ϕ̇(uℓ)⊙ rℓ]⊤

〉
uℓ∼N (0,Φℓ−1),rℓ∼N (0,Gℓ+1)

= Gℓ+1 ⊙ Φ̇ℓ , Φ̇ℓ =
〈
ϕ̇(uℓ)ϕ̇(uℓ)⊤

〉
uℓ∼N (0,Φℓ−1)

. (55)

where in the last line we utilized the independence of uℓ, rℓ. These above equations give a forward
pass recursion for the Φℓ kernels and the backward pass recursion for Gℓ. Lastly, depending on the
learning rule, we arrive at the following definitions for G̃ℓ for ℓ ∈ {1, ..., L}

G̃ℓ =
〈
[ϕ̇(uℓ)⊙ rℓ]g̃ℓ⊤

〉
=


Gℓ+1 ⊙ Φ̇ℓ GD
ρG̃ℓ+1 ⊙ Φ̇ℓ ρ-FA
0 DFA,Hebb

Gℓ+1 ⊙
〈
ϕ̇(mℓ)ϕ̇(mℓ)⊤

〉
GLN

(56)

Using these results for G̃, we can compute the initial eNTK K =
∑L

ℓ=0 G̃
ℓ+1 ⊙Φℓ which governs

prediction dynamics.
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D.1 LAZY LIMIT PERFORMANCES ON REALISTIC TASKS

We note that, while the DMFT equations on P datapoints and T timesteps require O(P 3T 3) time
complexity to solve in the rich regime, the lazy limit gives neural network predictions in O(P 3)
time, since the predictor can be obtained by solving a linear system of P equations. The performance
of these lazy limit kernels on realistic tasks would match the performances reported by Lee et al.
(2020). Specifically, GD and ρ = 1 FA would match the test accuracy reported for “infinite width
GD”, while ρ = 0 FA, DFA, and Hebbian rules would match “infinite width Bayesian” networks in
Figure 1 of Lee et al. (2020).

E DEEP LINEAR NETWORKS

In deep linear networks, the DMFT equations close without needing any numerical sampling proce-
dure, as was shown in prior work on the GD case (Yang & Hu, 2021; Bordelon & Pehlevan, 2022).
The key observation is that for all of the following learning rules, the fields {h, g, g̃} are linear
combinations of the Gaussian sources {u, r, v}, and are thus Gaussian themselves. Concretely, we
introduce a vector notation hℓ = Vec{hℓ

µ(t)} and gℓ = Vec{gℓµ(t)}, etc. We have in each layer

hℓ = Rh,uu
ℓ +Rh,rr

ℓ +Rh,vv
ℓ +Rh,ζ̃ ζ̃

ℓ

gℓ = Rg,uu
ℓ +Rg,rr

ℓ +Rg,vv
ℓ +Rg,ζ̃ ζ̃

ℓ

g̃ℓ = Rg̃,uu
ℓ +Rg̃,rr

ℓ +Rg̃,vv
ℓ +Rg̃,ζ̃ ζ̃

ℓ

where the matrices R depend on the learning rule and the data. The necessary kernels Hℓ =〈
hℓhℓ⊤〉 can thus be closed algebraically since all of the correlation statistics of the sources {u, r, v}

have known two-point correlation statistics.

E.1 LINEAR NETWORK TRAINED WITH GD

The R matrices for GD were provided in (Bordelon & Pehlevan, 2022). We start by noting the
following DMFT equations for hℓ, gℓ

hℓ = uℓ + γ0(A
ℓ−1 +Hℓ−1

∆ )gℓ , gℓ = rℓ + γ0(B
ℓ +Gℓ+1

∆ )hℓ (57)

where [Hℓ−1
∆ ]µν,ts = Hℓ

µν(t, s)∆ν(s). Isolating the dependence of these equations on u and r, we
have[

I − γ2
0(A

ℓ−1 +Hℓ−1
∆ )(Bℓ +Gℓ+1

∆ )
]
hℓ = uℓ + γ2

0(A
ℓ−1 +Hℓ−1

∆ )(Bℓ +Gℓ+1
∆ )rℓ[

I − γ2
0(B

ℓ +Gℓ+1
∆ )(Aℓ−1 +Hℓ−1

∆ )
]
gℓ = rℓ + γ2

0(B
ℓ +Gℓ+1

∆ )(Aℓ−1 +Hℓ−1
∆ )rℓ. (58)

These equations can easily be closed for Hℓ and Gℓ.

E.2 ρ-ALIGNED FEEDBACK ALIGNMENT

In ρ-FA we define the following pseudo-gradient fields

g̃ℓ =
√
1− ρ2ζ̃ℓ + ρvℓ + ργ0D

ℓhℓ (59)

Next, we note that, at initialization, the G̃ℓ can be computed recursively

G̃ℓ = ρG̃ℓ+1 (60)

We note that ∂
∂r1h

1 = 0 which implies A1 = 0. Similarly we have ∂
∂r2h

2 = 0. Thus A2 =

0. Proceeding inductively, we find Aℓ = 0. Similarly, we note that ∂g̃L

∂uL = 0 so DL−1 = 0.
Inductively, we have Dℓ = 0 for all ℓ. Using these facts, we thus find the following equations

hℓ = uℓ + γ0(C
ℓ−1 +Hℓ−1

∆ )g̃ℓ (61)

gℓ = rℓ + γ0(B
ℓ +Gℓ+1

∆ )hℓ (62)

g̃ℓ =
√
1− ρ2ζ̃ℓ + ρvℓ (63)
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We can close these equations for Hℓ and G̃ℓ

Hℓ = Hℓ−1 + γ2
0

(
Cℓ−1 +Hℓ−1

∆

) ˜̃Gℓ+1
(
Cℓ−1 +Hℓ−1

∆

)⊤
G̃ℓ = ρG̃ℓ+1 + γ2

0

(
Bℓ +Gℓ+1

∆

) (
Cℓ−1 +Hℓ−1

∆

) ˜̃Gℓ+1

Cℓ = ρ
(
Cℓ−1 +Hℓ−1

∆

)
, Bℓ = Bℓ+1 +Gℓ+2

∆ . (64)

The matrices ˜̃Gℓ = 11⊤ are all rank one. Thus it suffices to compute the vectors cℓ =(
Cℓ−1 +Hℓ−1

∆

)
1. Further, it suffices to consider dℓ = G̃ℓ1/|1|2. With this formalism we have

Hℓ = Hℓ−1 + γ2
0c

ℓcℓ⊤ , dℓ = ρdℓ+1 + γ2
0(B

ℓ +Gℓ+1
∆ )cℓ. (65)

The analysis for DFA and Hebb rules is very similar.

F EXACTLY SOLVEABLE 2 LAYER LINEAR MODEL

F.1 GRADIENT FLOW

Based on the prior results from (Bordelon & Pehlevan, 2022), the Hy = y⊤Hy/|y|2 dynamics for
GD are coupled to the dynamics for the error ∆(t) = 1

|y|y ·∆(t) have the form

d

dt
Hy(t) = 2γ2

0(y −∆)∆ ,
d

dt
∆ = −2Hy∆. (66)

These dynamics have the conservation law d
dtH

2
y = γ2

0
d
dt (y − ∆)2. Integrating this conservation

law from time 0 to time t, we find Hy(t)
2 = 1 + γ2

0(y − ∆(t))2. We can therefore solve a single
ODE for ∆(t), giving the following simplified dynamics

d

dt
∆ = −2

√
1 + γ2

0(y −∆)2∆ , Hy =
√
1 + γ2

0(y −∆)2. (67)

These dynamics interpolate between exponential convergence (at small γ0) and a logistic conver-
gence (at large γ0) of ∆(t) to zero. Since ∆→ 0 at late time, the final value of the kernel alignment
is Hy =

√
1 + γ2

0y
2.

F.2 ρ-ALIGNED FA

For the two layer linear network, the ρ-FA field dynamics are

d

dt
hµ(t) = γ0

∑
ν

g̃ν(t)∆ν(s)K
x
µν ,

d

dt
gµ(t) = γ0

∑
ν

∆ν(t)hν(t). (68)

FA we have g̃µ(t) = g̃ ∼ N (0, 1) which is a constant standard normal. We let aµ(t) = ⟨g̃hµ(t)⟩.
The dynamics for Hµν and aµ are coupled

d

dt
Hµν = γ0aν(t)

∑
ν

∆ν(t)K
x
µν + γ0aµ(t)

∑
ν

∆ν(t)K
x
µν

d

dt
aµ(t) = γ0

∑
ν

∆νK
x
µν

d

dt
G̃(t) = γ0

∑
µ

∆µ(t)aµ(t) ,
d

dt
∆µ(t) = −

∑
ν

[Hµν(t) + G̃(t)Kx
µν ]∆ν(t). (69)

Whitening the dataset Kx = I and projecting all dynamics on ŷ subspace gives the reduced dy-
namics

d

dt
H = 2γ0a∆ ,

d

dt
a = γ0∆ ,

d

dt
G̃ = γ0∆a ,

d

dt
∆ = −[H + G̃]∆. (70)
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From these dynamics we identify the following set of conservation laws

2
d

dt
G̃ =

d

dt
a2 =

d

dt
H

=⇒ 2G̃− 2ρ = a2 = H − 1. (71)

Writing everything in terms of ∆, a we have

d

dt
a = γ0∆ ,

d

dt
∆ = −

[
3

2
a2 + (1 + ρ)

]
∆ = −γ−1

0

d

dt

[
1

2
a3 + (1 + ρ)a

]
Integrating both sides of this equation from 0 to t gives ∆ = y − γ−1

0

[
1
2a

3 + (1 + ρ)a
]
. Thus, the

a dynamics now one dimensional, giving

d

dt
a = γ0y −

1

2
a3 − (1 + ρ)a. (72)

When run from initial condition a = 0, this will converge to the smallest positive root of the cubic
equation 1

2a
3 + (1 + ρ)a = γ0y. This implies that, for small γ0 we have a ∼ γ0y

1+ρ so that ∆H =

2∆G̃ ∼ γ2
0y

2

(1+ρ)2 and so that larger initial alignment ρ leads to smaller changes in the feature kernel

and pseudo-gradient alignment kernel. At large γ0y, we have that a ∼ (2γ0y)
1/3 so that ∆H =

2∆G̃ ∼ (2γ0y)
2/3.

F.3 HEBB

For the Hebb rule, G̃µ = ⟨ghµ⟩∆µ = γ0fµ∆µ = γ0(yµ−∆µ)∆µ. Under the whitening assumption
Kx

µν = δµν , the dynamics decouples over samples

d

dt
Hµ,µ = 2γ0Hµµ∆

2
µ ,

d

dt
∆µ = −[Hµµ + γ0(yµ −∆µ)∆µ]∆µ. (73)

We see that Hµµ strictly increases. The possible fixed points for ∆µ are ∆µ = 0 or ∆µ =
1
2

[
yµ ±

√
y2µ + γ−1

0 Hµµ

]
. One of these roots shares a sign with yµ and has larger absolute value.

The other root has the opposite sign from yµ. From the initial condition ∆µ = yµ and Hµµ = 1,
∆µ is initially approaching decreasing in absolute value so that |∆µ| ∈ (0, |yµ|) and will have the
same sign as yµ. In this regime d

dt |∆µ| < 0. Thus, the system will eventually reach the fixed point
at ∆µ = 0, rather than increasing in magnitude to the root which shares a sign with yµ or continuing
to the root with the opposite sign as yµ.

G DISCUSSION OF MODIFIED HEBB RULE

We chose to modify the traditional Hebb rule to include a weighing of each example by its instanta-
neous error. In this section we discuss this choice and provide a brief discussion of alternatives

• Traditional Hebb Learning: d
dtW

ℓ ∝
∑

µ ϕ(h
ℓ+1)ϕ(hℓ)⊤. In the absence of regularization or

normalization, this learning rule will continue to update the weights even once the task is fully
learned, leading to divergences at infinite time t→∞.

• Single Power of the Error: d
dtW

ℓ ∝
∑

µ ∆µϕ(h
ℓ+1)ϕ(hℓ)⊤. While this rule may naively appear

plausible, it can only learn training points with positive target values yµ in a linear network if
γ0 > 0. Further this rule only gives Hebbian updates when ∆µ > 0.

• Two Powers of the Error: d
dtW

ℓ ∝
∑

µ ∆
2
µϕ(h

ℓ+1)ϕ(hℓ)⊤. This was our error modified Hebb
rule. We note that the update always has the correct sign for a Hebbian update and the updates
stop when the network converges to zero error, preventing divergence of the features at late time.

H FINITE SIZE EFFECTS

We can reason about the fluctuations of q around the saddle point q∗ at large but finite N using
a Taylor expansion of the DMFT action S around the saddle point. This argument will show that
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at large but finite N , we can treat q as fluctuating over initializations with mean q∗ and variance
O(N−1). We will first illustrate the mechanics of this computation of an arbitrary observable with
a scalar example before applying this to the DMFT.

H.1 SCALAR EXAMPLE

Suppose we have a scalar variable q with a distribution defined by Gibbs measure e−NS[q]∫
dqe−NS[q] for

action S. We consider averaging some arbitrary observable O(q) over this distribution

⟨O(q)⟩ =
∫
dq exp (−NS[q])O(q)∫

dq exp (−NS[q])
. (74)

We Taylor expand S around its saddle point q∗ giving S[q] = S[q∗] + 1
2S

′′[q∗](q − q∗)2 +∑∞
k=3 S

(k)[q∗](q − q∗)k. This gives

⟨O(q)⟩ =
∫
dq exp

(
−N [ 12S

′′[q∗](q − q∗)2 −
∑∞

k=3 S
(k)[q∗](q − q∗)k]

)
O(q)∫

dq exp
(
−N [ 12S

′′[q∗](q − q∗)2 −
∑∞

k=3 S
(k)[q∗](q − q∗)k]

) . (75)

The exp(NS[q∗]) terms canceled in both numerator and denominator. We let the variable q − q∗ =
1√
N
δ. After this change of variable, we have

⟨O(q)⟩ =
∫
dδ exp

(
− 1

2S
′′[q∗]δ2 −

∑∞
k=3 N

1−k/2S(k)[q∗]δk
)
O(q∗ +N−1/2δ)∫

dδ exp
(
− 1

2S
′′[q∗]δ2 −

∑∞
k=3 N

1−k/2S(k)[q∗]δk
) . (76)

We note that all the higher order derivatives (k ≥ 3) are suppressed by at least N−1/2 compared to
the quadratic term. Letting U =

∑∞
k=3 N

1−k/2S(k)[q∗]δk represent the perturbed potential, we can
Taylor expand the exponential around the Gaussian unperturbed potential exp

(
− 1

2δ
2S′′[q∗]

)
. We

let ⟨O(δ)⟩0 = Eq∼N (0,S′′[q∗]−1)O(δ) represent an average over this unperturbed potential

⟨O(q)⟩ =
∫
dδ exp

(
− 1

2S
′′[q∗]δ2

)
[1− U + 1

2U
2 + ...]O(q)∫

dδ exp
(
− 1

2S
′′[q∗]δ2

)
[1− U + 1

2U
2 + ...]

(77)

=
⟨O(q)⟩0 − ⟨O(q)U⟩0 +

1
2

〈
O(q)U2

〉
0
+ ...

1− ⟨U⟩0 +
1
2 ⟨U2⟩0 + ...

. (78)

Truncating each series in numerator and denominator at a certain order in 1/N gives a Pade-
Approximant to the full observable average (Bender et al., 1999). Alternatively, this can be ex-
pressed in terms of a cumulant expansion (Kardar, 2007)

⟨O⟩ =
∞∑
k=0

(−1)k

k!

〈
OUk

〉c
0
, (79)

where
〈
OUk

〉c
0

are the connected correlations, or alternatively the cumulants. The first two con-
nected correlations have the form

⟨OU⟩c0 = ⟨OU⟩0 − ⟨O⟩ ⟨U⟩0〈
OU2

〉c
0
=
〈
OU2

〉
0
− 2 ⟨OU⟩0 ⟨U⟩0 − ⟨O⟩0

〈
U2
〉
0
+ 2 ⟨O⟩ ⟨U⟩20 . (80)

Using Stein’s lemma, we can now attempt to extract the leading O(N−1) behavior from each of
these terms. First, we will note the following useful identity which follows from Stein’s Lemma〈

O(q)δk
〉
= Nk/2

〈
O(q)(q − q∗)k

〉
(81)

= Nk/2−1[S′′]−1[(k − 1)
〈
O(q)(q − q∗)k−2

〉
+
〈
O′(q)(q − q∗)k−1

〉
]

= (k − 1)[S′′]−1
〈
O(q)δk−2

〉
+

1√
N

[S′′]−1
〈
O′(q)δk−1

〉
.

(82)
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Using these this fact, we can find the first few correlation functions of interest

⟨O(q)U⟩ = 3N−1S(3)[S′′]−2 ⟨O′(q)⟩0 + 3N−1S(4)[S′′]−2 ⟨O(q)⟩0 +O(N−2)〈
O(q)U2

〉
= 15N−1[S(3)]2[S′′]−3 ⟨O(q)⟩+O(N−1). (83)

Thus, the leading order Pade-Approximant has the form

⟨O(q)⟩ =
⟨O⟩0 −

3
N S(3)[S′′]−2 ⟨O′(q)⟩0 −

3
N S(4)[S′′]−2 ⟨O(q)⟩0 +

15
2N [S(3)]2[S′′]−3 ⟨O(q)⟩

1− 3
N S(3)[S′′]−2 − 3

N S(4)[S′′]−2 + 15
2N [S(3)]2[S′′]−3

.

(84)

H.1.1 DMFT ACTION EXPANSION

The logic of the previous section can be extended to our DMFT. We first redefine the action as its
negation S → −S to simplify the argument. Concretely, this action S[q] defines a Gibbs measure
over the order parameters q which we can use to compute observable averages

⟨O(q)⟩ =
∫
exp (−NS[q])O(q)∫

exp (−NS[q])
(85)

As before, one can Taylor expand the action around the saddle point q∗

S[q] ∼ S[q∗] +
1

2
(q − q∗)∇2S[q∗](q − q∗) + ... (86)

As before, the linear term vanishes since ∇qS[q
∗] = 0 at the saddle point q∗. We again change

variables to δ =
√
N(q − q∗) and express the average as

⟨O⟩ =
∫
dδ exp

(
− 1

2δ
⊤∇2Sδ + U(δ)

)
O(δ)∫

dδ exp
(
− 1

2δ
⊤∇2Sδ + U(δ)

)
=

∞∑
k=0

(−1)k

k!

〈
OUk

〉c
0

(87)

where ⟨⟩0 denotes a Gaussian average over q ∼ N (q∗, 1
N [∇2S]−1).

H.2 HESSIAN COMPONENTS OF DMFT ACTION

To gain insight into the Hessian, we will first restrict our attention to the subset of Hessian entries
related to Φℓ, Φ̂ℓ. We again adopt a multi-index notation µ = (µ, ν, t, s) so that Φℓ

µ = Φℓ
µν(t, s)

∂2S

∂Φℓ
µ∂Φ

ℓ′
µ′

= 0

∂2S

∂Φℓ
µ∂Φ̂

ℓ′
µ′

= δℓ,ℓ′δµ,µ′ − δℓ′,ℓ+1
∂

∂Φℓ
µ

Φℓ+1
µ′

∂2S

∂Φ̂ℓ
µ∂Φ̂

ℓ′
µ′

= δℓ,ℓ′
[〈
ϕ(hℓ

µ(t))ϕ(h
ℓ
ν(s))ϕ(h

ℓ
µ′(t′))ϕ(hℓ

ν′(s′))
〉
− Φℓ

µΦ
ℓ
µ′

]
.

The first equation follows from the fact that χ̂ has vanishing moments due to the normalization of
the probability distribution induced by Zℓ. Similarly, for the G, Ĝ kernels we have

∂2S

∂Gℓ
µ∂G

ℓ′
µ′

= 0

∂2S

∂Gℓ
µ∂Ĝ

ℓ′
µ′

= δℓ,ℓ′δµ,µ′ − δℓ′,ℓ−1
∂

∂Gℓ
µ

Gℓ−1
µ′

∂2S

∂Φ̂ℓ
µ∂Φ̂

ℓ′
µ′

= δℓ,ℓ′
[〈
gℓµ(t)g

ℓ
ν(s)g

ℓ
µ′(t′)gℓν′(s′)

〉
−Gℓ

µG
ℓ
µ′

]
.

Proceeding in a similar manner, we can compute all off-diagonal components such as ∂2S
∂Φ∂Ĝ

and
∂2S

∂Φ̂∂Ĝ
. Once all entries are computed, one can seek an inverse of the Hessian to obtain the covariance

of the order parameters.
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H.3 SINGLE SAMPLE NEXT-TO-LEADING ORDER PERTURBATION THEORY

In order to obtain exact analytical expressions, we will consider L-hidden layer ReLU and linear
neural networks in the lazy regime trained on a single sample with Kx = |x|2

D = 1. To ensure
preservation of norm, we will use ϕ(h) =

√
2hΘ(h) for ReLU and ϕ(h) = h for linear networks.

First, we note that in either case, the infinite width saddle point equations give

Φℓ =
〈
ϕ(h)2

〉
h∼N (0,Φℓ−1)

= Φℓ−1 , Φ0 = 1

Gℓ =
〈
ϕ̇(h)2z2

〉
h,z

= Gℓ+1 , GL+1 = 1

=⇒ Φℓ = 1 , Gℓ = 1 , ∀ℓ ∈ [1, ..., L]. (88)

At large but finite width, the kernels therefore fluctuate around this typical mean value of Φℓ = 1
and Gℓ = 1. We now compute the necessary ingredients to invert the Hessian

Vϕ =
〈
ϕ(h)4

〉
− Φ2 =

{
5 ReLU
2 Linear

Vg =
〈
ϕ̇(h)4z4

〉
−G2 =

{
5 ReLU
2 Linear

. (89)

Next, we compute the sensitivity of each layer’s kernel to the previous layer

∂

∂Φℓ
Φℓ+1 = 1 ,

∂

∂Gℓ+1
Gℓ = 1. (90)

First, let’s analyze the marginal covariance statistics for Φ = Vec{Φℓ}Lℓ=1 and Φ̂ = Vec{Φ̂ℓ}Lℓ=1.
We note that the DMFT action has Hessian components

HΦ =

[
∇2

ΦS ∇2
ΦΦ̂

S

∇2
Φ̂Φ

S ∇2
Φ̂
S

]
=

[
0 U

U⊤ VϕI

]
, U =


1 −1 0 ... 0 0
0 1 −1 ... 0 0
...

...
. . . . . .

...
...

0 0 0 ... 1 −1
0 0 0 ... 0 1

 . (91)

We seek a (physical) inverse C which has vanishing lower diagonal entry, indicating zero variance
in the dual order parameters Φ̂. This gives us the following linear equations

HΦC =

[
0 U

U⊤ VϕI

] [
C11 C12

C⊤
12 0

]
=

[
I 0
0 I

]
=⇒ UC⊤

12 = I , U⊤C11 + VϕC
⊤
12 = 0. (92)

The relevant entry is C11 = −Vϕ[U
⊤]−1U−1. This matrix has the form

C11 = −Vϕ


1 0 0 ... 0
1 1 0 ... 0
1 1 1 ... 0
...

...
. . . . . .

...
1 1 1 ... 1



1 1 1 ... 1
0 1 1 ... 1
0 0 1 ... 1
...

...
. . . . . .

...
0 0 0 ... 1

 = −Vϕ


1 1 1 ... 1
1 2 2 ... 2
1 2 3 ... 3
...

...
. . . . . .

...
1 2 3 ... L

 . (93)

Using the fact that the covariance is the negative of the Hessian inverse multiplied by 1/N , we have
the following covariance structure for {Φℓ}

Cov(Φℓ,Φℓ′) =
1

N
Vϕ min{ℓ, ℓ′}. (94)

This result can be interpreted as the covariance of Brownian motion. Following an identical argu-
ment, we find

Cov(Gℓ, Gℓ′) =
1

N
Vg min{L+ 1− ℓ, L+ 1− ℓ′}. (95)

We verify these scalings against experiments below in Figure 7.
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Figure 7: Verification of kernel fluctuations through next-to-leading-order (NLO) perturbation the-
ory within DMFT formalism. (a) The cross layer covariance structure of {Φℓ} in a L = 10 hidden
layer ReLU MLP. The empirical covariance was estimated by initializing a large number (500) of
random networks and computing their Φℓ kernels. We see that variance for Φℓ increases as ℓ in-
creases. (b) The cross-layer covariance structure of {Gℓ}. The variance of Gℓ is larger for smaller ℓ.
(c) The predicted variance of Φℓ for different layer ℓ and widths N . All layers have variance scaling
as 1/N , consistent with NLO perturbation theory. (d) The scaling of Gℓ variance.
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