
Dynamics of Finite Width Kernel and Prediction
Fluctuations in Mean Field Neural Networks

Blake Bordelon & Cengiz Pehlevan
John Paulson School of Engineering and Applied Sciences,

Center for Brain Science,
Kempner Institute for the Study of Natural & Artificial Intelligence,

Harvard University
Cambridge MA, 02138

blake_bordelon@g.harvard.edu, cpehlevan@g.harvard.edu

Abstract

We analyze the dynamics of finite width effects in wide but finite feature learning
neural networks. Starting from a dynamical mean field theory description of
infinite width deep neural network kernel and prediction dynamics, we provide a
characterization of the O(1/

√
width) fluctuations of the DMFT order parameters

over random initializations of the network weights. Our results, while perturbative
in width, unlike prior analyses, are non-perturbative in the strength of feature
learning. In the lazy limit of network training, all kernels are random but static in
time and the prediction variance has a universal form. However, in the rich, feature
learning regime, the fluctuations of the kernels and predictions are dynamically
coupled with a variance that can be computed self-consistently. In two layer
networks, we show how feature learning can dynamically reduce the variance
of the final tangent kernel and final network predictions. We also show how
initialization variance can slow down online learning in wide but finite networks. In
deeper networks, kernel variance can dramatically accumulate through subsequent
layers at large feature learning strengths, but feature learning continues to improve
the signal-to-noise ratio of the feature kernels. In discrete time, we demonstrate
that large learning rate phenomena such as edge of stability effects can be well
captured by infinite width dynamics and that initialization variance can decrease
dynamically. For CNNs trained on CIFAR-10, we empirically find significant
corrections to both the bias and variance of network dynamics due to finite width.

1 Introduction
Learning dynamics of deep neural networks are challenging to analyze and understand theoretically,
but recent progress has been made by studying the idealization of infinite-width networks. Two
types of infinite-width limits have been especially fruitful. First, the kernel or lazy infinite-width
limit, which arises in the standard or neural tangent kernel (NTK) parameterization, gives prediction
dynamics which correspond to a linear model [1–5]. This limit is theoretically tractable but fails
to capture adaptation of internal features in the neural network, which are thought to be crucial to
the success of deep learning in practice. Alternatively, the mean field or µ-parameterization allows
feature learning at infinite width [6–9].

With a set of well-defined infinite-width limits, prior theoretical works have analyzed finite networks
in the NTK parameterization perturbatively, revealing that finite width both enhances the amount of
feature evolution (which is still small in this limit) but also introduces variance in the kernels and
the predictions over random initializations [10–15]. Because of these competing effects, in some
situations wider networks are better, and in others wider networks perform worse [16].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this paper, we analyze finite-width network learning dynamics in the mean field parameterization.
In this parameterization, wide networks are empirically observed to outperform narrow networks
[7, 17, 18]. Our results and framework provide a methodology for reasoning about detrimental finite-
size effects in such feature-learning neural networks. We show that observable averages involving
kernels and predictions obey a well-defined power series in inverse width even in rich training regimes.
We generally observe that the leading finite-size corrections to both the bias and variance components
of the square loss are increased for narrower networks, and diminish performance. Further, we show
that richer networks are closer to their corresponding infinite-width mean field limit. For simple tasks
and architectures the leading O(1/width) corrections to the error can be descriptive, while for large
sample size or more realistic tasks, higher order corrections appear to become relevant. Concretely,
our contributions are listed below:

1. Starting from a dynamical mean field theory (DMFT) description of infinite-width nonlinear
deep neural network training dynamics, we provide a complete recipe for computing fluctuation
dynamics of DMFT order parameters over random network initializations during training. These
include the variance of the training and test predictions and the O(1/width) variance of feature
and gradient kernels throughout training.

2. We first solve these equations for the lazy limit, where no feature learning occurs, recovering a
simple differential equation which describes how prediction variance evolves during learning.

3. We solve for variance in the rich feature learning regime in two-layer networks and deep linear
networks. We show richer nonlinear dynamics improve the signal-to-noise ratio (SNR) of kernels
and predictions, leading to closer agreement with infinite-width mean field behavior.

4. We analyze in a two-layer model why larger training set sizes in the overparameterized regime
enhance finite-width effects and how richer training can reduce this effect.

5. We show that large learning rate effects such as edge-of-stability [19–21] dynamics can be well
captured by infinite width theory, with finite size variance accurately predicted by our theory.

6. We test our predictions in Convolutional Neural Networks (CNNs) trained on CIFAR-10 [22]. We
observe that wider networks and richly trained networks have lower logit variance as predicted.
However, the timescale of training dynamics is significantly altered by finite width even after
ensembling. We argue that this is due to a detrimental correction to the mean dynamical NTK.

1.1 Related Works

Infinite-width networks at initialization converge to a Gaussian process with a covariance kernel that
is computed with a layerwise recursion [23–26, 13]. In the large but finite width limit, these kernels
do not concentrate at each layer, but rather propagate finite-size corrections forward through the
network [27–30, 14]. During gradient-based training with the NTK parameterization, a hierarchy
of differential equations have been utilized to compute small feature learning corrections to the
kernel through training [10–13]. However the higher order tensors required to compute the theory are
initialization dependent, and the theory breaks down for sufficiently rich feature learning dynamics.
Various works on Bayesian deep networks have also considered fluctuations and perturbations in the
kernels at finite width during inference [31, 32]. Other relevant work in this domain are [33–39].

An alternative to standard/NTK parameterization is the mean field or µP -limit where features evolve
even at infinite width [6–9, 40–42]. Recent studies on two-layer mean field networks trained online
with Gaussian data have revealed that finite networks have larger sensitivity to SGD noise [43, 44].
Here, we examine how finite-width neural networks are sensitive to initialization noise. Prior work
has studied how the weight space distribution and predictions converge to mean field dynamics
with a dynamical error O(1/

√
width) [40, 45], however in the deep case this requires a probability

distribution over couplings between adjacent layers. Our analysis, by contrast, focuses on a function
and kernel space picture which decouples interactions between layers at infinite width. A starting
point for our present analysis of finite-width effects was a previous set of studies [9, 46] which
identified the DMFT action corresponding to randomly initialized deep NNs which generates the
distribution over kernel and network prediction dynamics. These prior works discuss the possibility
of using a finite-size perturbation series but crucially failed to recognize the role of the network
prediction fluctuations on the kernel fluctuations which are necessary to close the self-consistent
equations in the rich regime. Using the mean field action to calculate a perturbation expansion around
DMFT is a long celebrated technique to obtain finite size corrections in physics [47–50] and has been
utilized for random untrained recurrent networks [51, 52], and more recently to calculate variance of

2

feature kernels Φ` at initialization t = 0 in deep MLPs or RNNs [53]. We extend these prior studies
to the dynamics of training and to probe how feature learning alters finite size corrections.

2 Problem Setup
We consider wide neural networks where the number of neurons (or channels for a CNN) N in
each layer is large. For a multi-layer perceptron (MLP), the network is defined as a map from input
xµ ∈ RD to hidden preactivations h`µ ∈ RN in layers ` ∈ {1, ..., L} and finally output fµ

fµ =
1

γN
wL · φ(hLµ) , h`+1

µ =
1√
N
W `φ(h`µ) , h1

µ =
1√
D
W 0xµ, (1)

where γ is a scale factor that controls feature learning strength, with large γ leading to rich feature
learning dynamics and the limit of small γ → 0 (or generally if γ scales as N−α for α > 0 as
N → ∞, NTK parameterization corresponds to α = 1

2) gives lazy learning where no features are
learned [4, 7, 9]. The parameters θ = {W 0,W 1, ...,wL} are optimized with gradient descent or
gradient flow d

dtθ = −Nγ2∇θL where L = Exµ∈D `(f(xµ,θ), yµ) is a loss computed over dataset
D = {(x1, y1), (x2, y2), . . . (xP , yP)}. This parameterization and learning rate scaling ensures
that d

dtfµ ∼ ON,γ(1) and d
dth

`
µ = ON,γ(γ) at initialization. This is equivalent to maximal update

parameterization (µP)[8], which can be easily extended to other architectures including neural
networks with trainable bias parameters as well as convolutional, recurrent, and attention layers [8, 9].

3 Review of Dynamical Mean Field Theory
The infinite-width training dynamics of feature learning neural networks was described by a DMFT
in [9, 46]. We first review the DMFT’s key concepts, before extending it to get insight into
finite-widths. To arrive at the DMFT, one first notes that the training dynamics of such net-
works can be rewritten in terms of a collection of dynamical variables (or order parameters)
q = Vec{fµ(t),Φ`µν(t, s), G`µν(t, s), ...} [9], which include feature and gradient kernels [9, 54]

Φ`µν(t, s) ≡ 1

N
φ(h`µ(t)) · φ(h`ν(s)) , G`µν(t, s) ≡ 1

N
g`µ(t) · g`ν(s), (2)

where g`µ(t) = γN
∂fµ(t)
∂h`µ(t)

are the back-propagated gradient signals. Further, for width-N networks
the distribution of these dynamical variables across weight initializations (from a Gaussian distribution
θ ∼ N (0, I)) is given by p(q) ∝ exp (NS(q)), where the action S(q) contains interactions between
neuron activations and the kernels at each layer [9].

The DMFT introduced in [9] arises in the N → ∞ limit when p(q) is strongly peaked around
the saddle point q∞ where ∂S

∂q |q∞ = 0. Analysis of the saddle point equations reveal that the
training dynamics of the neural network can be alternatively described by a stochastic process. A
key feature of this process is that it describes the training time evolution of the distribution of neuron
pre-activations in each layer (informally the histogram of the elements of h`µ(t)) where each neuron’s
pre-activation behaves as an i.i.d. draw from this single-site stochastic process. We denote these
random processes by h`µ(t). Kernels in (2) are now computed as averages over these infinite-width
single site processes Φ`µν(t, s) =

〈
φ(h`µ(t))φ(h`ν(s))

〉
, G`µν(t, s) =

〈
g`µ(t)g`ν(s)

〉
, where averages

arise from the N →∞ limit of the dot products in (2). DMFT also provides a set of self-consistent
equations that describe the complete statistics of these random processes, which depend on the kernels,
as well as other quantities. To make our notation and terminology clearer for a machine learning
audience, we provide Table 1 for a definition of the physics terminology in machine learning language.

Order params. q Action S(q) Propagator Σ Single Site Density
Concentrating variables q’s log-density Asymptotic Covariance Neuron Marginals

Table 1: Relationship between the physics and ML terminology for the central objects in this paper.
The q which concentrate at infinite width, but fluctuate at finite width N . This paper is primarily
interested in Σ, the asymptotic covariance of the order parameters.

4 Dynamical Fluctuations Around Mean Field Theory
We are interested in going beyond the infinite-width limit to study more realistic finite-width networks.
In this regime, the order parameters q fluctuate in a O(1/

√
N) neighborhood of q∞ [55, 51, 53, 46].

3

Statistics of these fluctuations can be calculated from a general cumulant expansion (see App. D) [55,
56, 51]. We will focus on the leading-order corrections to the infinite-width limit in this expansion.
Proposition 1 The finite-widthN average of observableO(q) across initializations, which we denote
by 〈O(q)〉N , admits an expansion of the form whose leading terms are

〈O(q)〉N =

∫
dq exp (NS[q])O(q)∫
dq exp (NS[q])

= 〈O(q)〉∞ +N [〈V (q)O(q)〉∞ − 〈V (q)〉∞ 〈O(q)〉∞] + ...,

(3)

where 〈〉∞ denotes an average over the Gaussian distribution q ∼ N
(
q∞,− 1

N

(
∇2
qS[q∞]

)−1
)

and the function V (q) ≡ S(q) − S(q∞) − 1
2 (q − q∞)>∇2

qS(q∞)(q − q∞) contains cubic and
higher terms in the Taylor expansion of S around q∞. The terms shown include all the leading
and sub-leading terms in the series in powers of 1/N . The terms in ellipses are at least O(N−1)
suppressed compared to the terms provided.
The proof of this statement is given in App. D. The central object to characterize finite size effects
is the unperturbed covariance (the propagator): Σ = −

[
∇2S(q∞)

]−1
. This object can be shown to

capture leading order fluctuation statistics
〈

(q − q∞) (q − q∞)
>
〉
N

= 1
NΣ+O(N−2) (App. D.1),

which can be used to reason about, for example, expected square error over random initializations.
Correction terms at finite width may give a possible explanation of the superior performance
of wide networks at fixed γ [7, 17, 18]. To calculate such corrections, in App. E, we provide a
complete description of Hessian ∇2

qS(q) and its inverse (the propagator) for a depth-L network.
This description constitutes one of our main results. The resulting expressions are lengthy and are
left to App. E. Here, we discuss them at a high level. Conceptually there are two primary ingredients
for obtaining the full propagator:
• Hessian sub-blocks κ which describe the uncoupled variances of the kernels, such as

κΦ`

µναβ(t, s, t′, s′) ≡
〈
φ(h`µ(t))φ(h`ν(s))φ(h`α(t′))φ(h`β(s′))

〉
− Φ`µν(t, s)Φ`αβ(t′, s′) (4)

Similar terms also appear in other studies on finite width Bayesian inference [13, 31, 32] and in
studies on kernel variance at initialization [27, 14, 29, 53].

• Blocks which capture the sensitivity of field averages to pertubations of order parameters, such as

DΦ`Φ`−1

µναβ (t, s, t′, s′) ≡
∂
〈
φ(h`µ(t))φ(h`ν(s))

〉
∂Φ`−1

αβ (t′, s′)
, DG`∆

µνα (t, s, t′) ≡
∂
〈
g`µ(t)g`ν(s)

〉
∂∆α(t′)

, (5)

where ∆µ(t) = −∂`(fµ,yµ)
∂fµ

|fµ(t) are error signal for each data point.

Φℓ

𝐺ℓ

Φℓ"#

𝐺ℓ"#

ℎℓ

𝑔ℓ

ℎℓ"#

𝑔ℓ"#
𝐾

Δ

OrderParameters

Fields

Figure 1: The directed causal
graph between DMFT order
parameters (blue) and fields
(green) defines the D tensors
of our theory. Each arrow rep-
resents a causal dependence.
K denotes the NTK.

Abstractly, we can consider the uncoupled variances κ as “sources”
of finite-width noise for each order parameter and theD blocks as
summarizing a directed causal graph which captures how this noise
propagates in the network (through layers and network predictions).
In Figure 1, we illustrate this graph showing directed lines that
represent causal influences of order parameters on fields and vice
versa. For instance, if Φ` were perturbed, DΦ`+1,Φ` would quantify
the resulting perturbation to Φ`+1 through the fields h`+1.

In App. E, we calculate κ andD tensors, and show how to use them
to calculate the propagator. As an example of our results:

Proposition 2 Partition q into primal q1 =
Vec{fµ(t),Φ`µν(t, s)...} and conjugate variables q2 =

Vec{f̂µ(t), Φ̂`µν(t, s)...}. Let κ = ∂2

∂q2∂q>2
S[q1, q2] and

D = ∂2

∂q2∂q>1
S[q1, q2], then the propagator for q1 has the

form Σq1 = D−1κ
[
D−1

]>
(App E). The variables q1 are

related to network observables, while conjugates q2 arise as Lagrange multipliers in the DMFT
calculation. From the propagator Σq1 we can read off the variance of network observables such as
NVar(fµ) ∼ Σfµ .

4

The necessary order parameters for calculating the fluctuations are obtained by solving the DMFT
using numerical methods introduced in [9]. We provide a pseudocode for this procedure in App. F.
We proceed to solve the equations defining Σ in special cases which are illuminating and numerically
feasible including lazy training, two layer networks and deep linear NNs.

5 Lazy Training Limit

To gain some initial intuition about why kernel fluctuations alter learning dynamics, we first analyze
the static kernel limit γ → 0 where features are frozen. To prevent divergence of the network in this
limit, we use a background subtracted function f̃(x,θ) = f(x,θ)− f(x,θ0) which is identically
zero at initialization [4]. For mean square error, the N →∞ and γ → 0 limit is governed by ∂f̃(x)

∂t =

Ex′∼D∆(x′)K(x,x′) with ∆(x) = y(x)− f̃(x) (for MSE) andK is the static (finite width and ran-
dom) NTK. The finite-N initial covariance of the NTK has been analyzed in prior works [27, 13, 14],
which reveal a dependence on depth and nonlinearity. Since the NTK is static in the γ → 0 limit, it has
constant initialization variance through training. Further, all sensitivity blocks of the Hessian involv-
ing the kernels and the prediction errors ∆ (such as the DΦ`,∆) vanish. We represent the covariance
of the NTK as κ(x1,x2,x2,x3) = NCov(K(x1,x2),K(x3,x4)). To identify the dynamics of the
error ∆ covariance, we relate K, the finite width NTK, to K∞ which is the deterministic infinite
width NTK K∞. We consider the eigendecomposition of the infinite-width NTK K∞(x,x′) =∑

k λkψk(x)ψk(x′) with respect to the training distribution D, and decompose κ in this basis.

κk`mn = 〈κ(x1,x2,x3,x4)ψk(x1)ψ`(x2)ψn(x3)ψm(x4)〉x1,x2,x3,x4∼D , (6)

where averages are computed over the training distribution D.

Proposition 3 For MSE loss, the prediction error covariance Σ∆(t, s) = NCov0(∆(t),∆(s))
satisfies a differential equation (App. H)(

∂

∂t
+ λk

)(
∂

∂s
+ λ`

)
Σ∆
k`(t, s) =

∑
nm

κkm`n∆∞m (t)∆∞n (s), (7)

where ∆∞k (t) ≡ exp (−λkt) 〈ψk(x)y(x)〉x are the errors at infinite width for eigenmode k.

0 50 100 150 200
t

1.0

0.5

0.0

0.5

1.0

(t)
,

(t)

(a) Average Prediction Errors

0 50 100 150 200
t

0.0

0.1

0.2

0.3

0.4

N
 V

ar

k(t
)

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7

(b) Top Eigenmodes Variance

0 50 100 150 200
t

0.0

0.5

1.0

1.5

2.0

N
 V

ar
 (

(t)
)

Ensemble (N = 100)
DMFT

(c) Total Train Variance

Figure 2: We show the accuracy of the lazy-limit ODE in equation (where) comapared to a two-layer
finite width N = 100 ReLU network trained with γ = 0.05 on P = 10 random training data points.
(a) The average dynamics over an ensemble of E = 500 networks (solid colors) compared to the
infinite width predictions (dashed black). (b) The predicted finite size variance for each eigenmode of
the error ∆k(t) = ∆(t) ·φk. These are not ordered simply by magnitude of eigenvalues or the target
projections yk = y · φk, but rather depend on all eigenvalue gaps λk − λ` for k 6= ` and also the
κk`nm tensor. (c) The total variance for all training points N

∑
µ Var∆µ(t) = N

∑
k Var∆k(t) is

also well predicted by the DMFT propagator equations.

An example verifying these dynamics is provided in Figure 2. In the case where the target is an
eigenfunction y = ψk∗ , the covariance has the form Σ∆

k`(t, s) = κk`k∗k∗
exp(−λk∗ (t+s))

(λk−λk∗)(λ`−λk∗) . If
the kernel is rank one with eigenvalue λ, then the dynamics have the simple form Σ∆(t, s) =
κy2 t s e−λ(t+s). We note that similar terms appear in the prediction dynamics obtained by truncating
the Neural Tangent Hierarchy [10, 11], however those dynamics concerned small feature learning

5

101 102 103

N

10 5

10 4

10 3

10 2

10 1

[q
(t)

q
(t)

]2

K

K
f

(a) Deviation from DMFT vs N

0 50 100 150 200 250
t

1.5

2.0

2.5

3.0

3.5

K(
t)

= 0.50
= 1.00
= 2.00
= 4.00

(b) Average NTK vs DMFT

0 50 100 150 200 250
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(t)

(c) Average test prediction

0 50 100 150 200 250
t

0.00

0.02

0.04

0.06

0.08

0.10

N
 V

ar
(

)

= 0.50
= 1.00
= 2.00
= 4.00

(d) Train error variance

0 50 100 150 200 250
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

N
 V

ar
(f

)

(e) Test Prediction Variance

0 50 100 150 200 250
t

1.00

1.25

1.50

1.75

2.00

2.25

N
 V

ar
 K

(t)

(f) Kernel Variance Dynamics

Figure 3: An ensemble of E = 1000 two layer N = 256 tanh networks trained on a single training
point. Dashed black lines are DMFT predictions. (a) The square deviation from the infinite width
DMFT scales as O(1/N) for all order parameters. (b) The ensemble average NTK 〈K(t)〉 (solid
colors) and (c) ensemble average test point predictions f?(t) for a point with x·x?

D = 0.5 closely
follow the infinite width predictions (dashed black). (d) The variance (estimated over the ensemble)
of the train error ∆(t) = y − f(t) initially increases and then decreases as the training point is fit.
(e) The variance of f? increases with time but decreases with γ. (f) The variance of the NTK during
feature learning experiences a transient increase before decreasing to a lower value.

corrections rather than from initialization variance (App. H.1). Corrections to the mean 〈∆〉 are
analyzed in App. H.2. We find that the variance and mean correction dynamics involves non-trivial
coupling across eigendirections with a mixture of exponentials with timescales {λ−1

k }.

6 Rich Regime in Two-Layer Networks
In this section, we analyze how feature learning alters the variance through training. We show a
denoising effect where the signal to noise ratios of the order parameters improve with feature learning.

6.1 Kernel and Error Coupled Fluctuations on Single Training Example

In the rich regime, the kernel evolves over time but inherits fluctuations from the training errors ∆.
To gain insight, we first study a simplified setting where the data distribution is a single training
example x and single test point x? in a two layer network. We will track ∆(t) = y − f(x, t) and
the test prediction f?(t) = f(x?, t). To identify the dynamics of these predictions we need the NTK
K(t) on the train point, as well as the train-test NTK K?(t). In this case, all order parameters can be
viewed as scalar functions of a single time index (unlike the deep network case, see App. E).

Proposition 4 Computing the Hessian of the DMFT action and inverting (App. I), we obtain the
following covariance for q1 = Vec{∆(t), f?(t),K(t),K?(t)}t∈R+

Σq1 =

I + ΘK 0 Θ∆ 0
−ΘK? I 0 −Θ∆

−D 0 I 0
−D? 0 0 I

−1 0 0 0 0

0 0 0 0
0 0 κ κ>?
0 0 κ? κ??

I + ΘK 0 Θ∆ 0
−ΘK? I 0 −Θ∆

−D 0 I 0
−D? 0 0 I

−1>

,

(8)

where [ΘK](t, s) = Θ(t − s)K(s), [Θ∆](t, s) = Θ(t − s)∆(s) are Heaviside step functions

and D(t, s) =
〈

∂
∂∆(s) (φ(h(t))2 + g(t)2)

〉
and D?(t, s) =

〈
∂

∂∆(s) (φ(h(t))φ(h?(t)) + g(t)g?(t))
〉

6

0 100 200 300 400 500
t

10 4

10 2

100

N

 V
ar

 f

N = 500

Var. Along y
P = 10 Full Var.
P = 100 Full Var.
P = 500 Full Var.

(a) Offline prediction Variance

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Er

ro
r

P = 10

N = 100
N = 100 | DMFT
N = 250
N = 1000
N = DMFT

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
P = 50

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
P = 100

(b) Offline leading correction breaks down for large P

0 100 200 300 400 500
t

10 2

10 1

100

101

N
 V

ar
 f

N = 250, P = 50

= 1.0
= 2.0
= 3.0

(c) Large γ reduces variance

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Er

ro
r

P = 10

= 1.0
= 1.0 | DMFT

N = DMFT
= 2.0
= 3.0

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

P = 50

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

P = 100

(d) Large γ well captured by DMFT First Order Correction

0 100 200 300 400 500
t

10 4

10 2

100

N
 i

 V
ar

i

N = 500

Var. Along
D = 10 Full Var.
D = 100 Full Var.
D = 500 Full Var.

(e) Online function variance

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

Ge
ne

ra
liz

at
io

n
Er

ro
r

D = 10

N = 100
N = 100 | DMFT
N = 250
N = 1000
N = DMFT

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
D = 50

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
D = 100

(f) Online leading correction breaks down for large D

Figure 4: Large input dimension or multiple samples amplify finite size effects in a simple two layer
model with unstructured data. Black dashed lines are theory. (a) The variance of offline learning with
P training examples in a two layer linear network. (b) The leading perturbative approximation to the
train error breaks down when samples P becomes comparable to N . (c)-(d) Richer training reduces
variance. (e)-(f) Online learning in a depth 2 linear network has identical dynamics and finite width
fluctuations, but with predictor variance ∼ D/N for input dimension D (Appendix K).

quantify sensitivity of the kernel to perturbations in the error signal ∆(s). Lastly κ and κ? are the
uncoupled variances of K(t) and K??(t) and κ? is the uncoupled covariance of K(t),K?(t).

In Fig. 3, we plot the resulting theory (diagonal blocks of Σq1 from Equation 8) for two layer neural
networks. As predicted by theory, all average squared deviations from the infinite width DMFT scale
as O(N−1). Similarly, the average kernels 〈K〉 and test predictions 〈f?〉 change by a larger amount
for larger γ (equation (79)). The experimental variances also match the theory quite accurately. The
variance of the train error ∆(t) peaks earlier and at a lower value for richer training, but all variances
go to zero at late time as the model approaches the interpolation condition ∆ = 0. As γ → 0 the
curve approaches N Var(∆(t)) ∼ κ y2 t2 e−2t, where κ is the initial NTK variance (see Section
5). While the train prediction variance goes to zero, the test point prediction does not, with richer
networks reaching a lower asymptotic variance. We suspect this dynamical effect could explain lower
variance observed in feature learning networks compared to lazy networks [7, 18]. In Fig. A.1, we
show that the reduction in variance is not due to a reduction in the uncoupled variance κ(t, s), which
increases in γ. Rather the reduction in variance is driven by the coupling of perturbations across time.

6.2 Offline Training with Multiple Samples or Online Training in High Dimension
In this section we go beyond the single sample equations of the prior section and explore training
with multiple P examples. In this case, we have training errors {∆µ(t)}Pµ=1 and multiple kernel
entries Kµν(t) (App. E). Each of the errors ∆µ(t) receives a O(N−1/2) fluctuation, the training
error

∑
µ

〈
∆2
µ

〉
has an additional variance on the order of O(PN). In the case of two-layer linear

7

0 5 10 15 20 25 30
t

0.0

0.2

0.4

0.6

0.8

1.0

N
 V

ar

(t)

 = 0.5
 = 1.0
 = 2.0
 = 3.0

(a) Prediction Variance

0 5 10 15 20 25 30
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
 V

ar
 K

(t)
/

K(
t)

2

(b) NTK variance

0 10 20 30

5

10

15

N
 V

ar
 H

= 1.0

= 1
= 2
= 3

0 10 20 30

5

10

15

N
 V

ar
 G

= 1
= 2
= 3

0 10 20 30
0

10

20

30

40

50
= 2.0

0 10 20 30
0

10

20

30

40

50

0 10 20 30
0

50

100

150
= 3.0

0 10 20 30
0

50

100

150

(c) Variance by Layer

Figure 5: Depth 4 linear network with single training point. Black dashed lines are theory. (a) The
variance of the training error along the task relevant subspace. We see that unlike the two layer model,
more feature learning can lead to larger peaks in the finite size variance. (b) The variance of the NTK
in the task relevant subspace. When properly normalized against the square of the mean 〈K(t)〉2, the
final NTK variance decreases with feature learning. (c) The gap in feature kernel variance across
different layers of the network is amplified by feature learning strength γ.

networks trained on whitened data (1
Dxµ · xν = δµν), the equations for the propagator simplify and

one can separately solve for the variance of ∆(t) ∈ RP along signal direction y ∈ RP and along
each of the P − 1 orthogonal directions (App. J). At infinite width, the task-orthogonal component
∆⊥ vanishes and only the signal dimension ∆y(t) evolves in time with differential equation [9, 46]

d

dt
∆y(t) = 2

√
1 + γ2(y −∆y(t))2 ∆y(t) , ∆⊥(t) = 0. (9)

However, at finite width, both the ∆y(t) and the P − 1 orthogonal variables ∆⊥ inherit initialization
variance, which we represent as Σ∆y

(t, s) and Σ⊥(t, s). In Fig. 4 (a)-(b) we show this approximate
solution

〈
|∆(t)|2

〉
∼ ∆y(t)2 + 2

N∆1
y(t)∆y(t) + 1

NΣ∆y (t, t) + (P−1)
N Σ⊥(t, t) +O(N−2) across

varying γ and varying P (see Appendix J for Σ∆y and Σ⊥ formulas). We see that variance of
train point predictions fµ(t) increases with the total number of points despite the signal of the
target vector

∑
µ y

2
µ being fixed. In this model, the bias correction 2

N∆1
y(t)∆y(t) is always O(1/N)

but the variance correction is O(P/N). The fluctuations along the P − 1 orthogonal directions
begin to dominate the variance at large P . Fig. 4 (b) shows that as P increases, the leading order
approximation breaks down as higher order terms become relevant. Analysis for online training
reveals identical fluctuation statistics, but with variance that scales as ∼ D/N (Appendix K) as we
verify in Figure 4 (e)-(f).

7 Deep Networks
In networks deeper than two layers, the DMFT propagator has complicated dependence on non-
diagonal (in time) entries of the feature kernels (see App. E). This leads to Hessian blocks with
four time and four sample indices such as DΦ`

µναβ(t, s, t′, s′) = ∂

∂Φ`−1
αβ (t′,s′)

〈
φ(h`µ(t))φ(h`ν(s))

〉
,

rendering any numerical calculation challenging. However, in deep linear networks trained on
whitened data, we can exploit the symmetry in sample space and the Gaussianity of preactivation
features to exactly compute derivatives without Monte Carlo sampling as we discuss in App. L. An
example set of results for a depth 4 network is provided in Fig. 5. The variance for the feature kernels
H` accumulate finite size variance by layer along the forward pass and the gradient kernels G`

accumulate variance on the backward pass. The SNR of the kernels 〈H〉2
NVar(H) improves with feature

learning, suggesting that richer networks will be better modeled by their mean field limits. Examples
of the off-diagonal correlations obtained from the propagator are provided in App. Fig. A.3.

8 Variance can be Small Near Edge of Stability
In this section, we move beyond the gradient flow formalism and ask what large step sizes do to
finite size effects. Recent studies have identified that networks trained at large learning rates can
be qualitatively different than networks in the gradient flow regime, including the catapult [57] and
edge of stability (EOS) phenomena [19–21]. In these settings, the kernel undergoes an initial scale

8

0 5 10 15 20 25 30
t

0.25

0.50

0.75

1.00

1.25

1.50

2
K(

t)

(a) Mean Kernel Dynamics

0 5 10 15 20 25 30
t

10 5

10 4

10 3

10 2

10 1

100

N
 V

ar

(t)

(b) Error Variance

0 5 10 15 20 25 30
t

10 4

10 3

10 2

10 1

100

101

102

N
 V

ar
 K

(t)

(c) Kernel Variance

Figure 6: Edge of stability effects do not imply deviations from infinite width behavior. Black dashed
lines are theory. (a) The average kernel over an ensemble of several N = 500 NNs (solid color). For
small γ, the kernel reaches its asymptote before hitting the edge of stability. For large γ, the kernel
increases and then oscillates around 2/η. (b)-(c) Remarkably variance due to finite size can reduce
during training (for γ smaller and larger than the critical value ∼ 1/η), showing that infinite width
DMFT can be predictive of finite NNs trained with large learning rate.

growth before exhibiting either a recovery or a clipping effect. In this section, we explore whether
these dynamics are highly sensitive to initialization variance or if finite networks are well captured
by mean field theory. Following [57], we consider two layer networks trained on a single example
|x|2 = D and y = 1. We use learning rate η and feature learning strength γ. The infinite width mean
field equations for the prediction ft and the kernel Kt are (App. M)

ft+1 = ft + ηKt∆t + η2γ2ft∆
2
t , Kt+1 = Kt + 4ηγ2ft∆t + η2γ2∆2

tKt. (10)
For small η, the equations are well approximated by the gradient flow limit and for small γ corresponds
to a discrete time linear model. For large ηγ > 1, the kernel K progressively sharpens (increases
in scale) until it reaches 2/η and then oscillates around this value. It may be expected that near the
EOS, the large oscillations in the kernels and predictions could lead to amplified finite size effects,
however, we show in Fig. 6 that the leading order propagator elements decrease even after reaching
the EOS threshold, indicating reduced disagreement between finite and infinite width dynamics.

9 Finite Width Alters Bias, Training Rate, and Variance in Realistic Tasks
To analyze the effect of finite width on neural network dynamics during realistic learning tasks,
we studied a vanilla depth-6 ReLU CNN trained on CIFAR-10 (experimental details in App. B,
G.2) In Fig. 7, we train an ensemble of E = 8 independently initialized CNNs of each width N .
Wider networks not only have better performance for a single model (solid), but also have lower bias
(dashed), measured with ensemble averaging of the logits. Because of faster convergence of wide
networks, we observe wider networks have higher variance, but if we plot variance at fixed ensembled
training accuracy, wider networks have consistently lower variance (Fig. 7(d)).

We next seek an explanation for why wider networks after ensembling trains at a faster rate. Theo-
retically, this can be rationalized by a finite-width alteration to the ensemble averaged NTK, which
governs the convergence timescale of the ensembled predictions (App. G.1). Our analysis in App.
G.1 suggests that the rate of convergence receives a finite size correction with leading correction
O(N−1) G.2. To test this hypothesis, we fit the ensemble training loss curve to exponential function
L ≈ C exp (−RN t) where C is a constant. We plot the fit RN as a function of N−1 result in Fig.
7(e). For large N , we see the leading behavior is linear in N−1, but begins to deviate at small N as a
quadratic function of N−1, suggesting that second order effects become relevant around N . 100.

In App. Fig. A.4, we train a smaller subset of CIFAR-10 where we find that RN is well approximated
by a O(N−1) correction, consistent with the idea that higher sample size drives the dynamics out
of the leading order picture. We also analyze the effect of γ on variance in this task. In App. Fig.
A.5, we train N = 64 models with varying γ. Increased γ reduces variance of the logits and alters
the representation (measured with kernel-task alignment), the training and test accuracy are roughly
insensitive to the richness γ in the range we considered.

10 Discussion
We studied the leading order fluctuations of kernels and predictions in mean field neural networks.
Feature learning dynamics can reduce undesirable finite size variance, making finite networks order

9

0 20 40 60 80 100
Epochs

0.01

0.02

0.03

0.04

Tr
ai

n
Lo

ss

N = 32
N = 45
N = 64
N = 90
N = 128
N = 256

(a) Train Loss Across Widths

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

Te
st

 A
cc

.

N = 32
N = 45
N = 64
N = 90
N = 128
N = 256

(b) Test Acc. Across Widths

0 20 40 60 80 100
Epochs

0.02

0.04

0.06

0.08

0.10

A(
L ,

yy
)

N = 32
N = 45
N = 64
N = 90
N = 128
N = 256

(c) Alignment Dynamics

0.2 0.4 0.6 0.8 1.0
Ens. Train Acc

1.00

1.05

1.10

1.15

1.20

Te
st

 M
SE

 R
at

io

N = 32
N = 45
N = 64
N = 90
N = 128
N = 256

(d) Test MSE Ensembling Ratio

0.00 0.01 0.02 0.03
N 1

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

R N
0.017 0.394/N
0.017 0.430/N 6.929/N2

(e) Training Rates vs N

0.0 0.5 1.0 1.5
Rescaled Time

0.01

0.02

0.03

0.04

Tr
ai

n
Lo

ss

N = 32
N = 45
N = 64
N = 90
N = 128
N = 256

(f) Train Acc. Rescaled Time

Figure 7: Depth 6 CNN trained on CIFAR-10 for different widths N with richness γ = 0.2, E = 8
ensembles. (a)-(b) For this range of widths, we find that smaller networks perform worse in train
and test error, not only in terms of the single models (solid) but also in terms of bias (dashed). The
delayed training of ensembled finite width models indicates that the correction to the mean order
parameters (App. G) is non-negligible. (c) Alignment of the average kernel to test labels is also not
conserved across width. (d) The ratio of the test MSE for a single model to the ensembled logit MSE.
(e) The fitted rate RN of training width N models as a function of N−1. We rescale the time axis by
RN to allow for a fair comparison of prediction variance for networks at comparable performance
levels. (f) In rescaled time, ensembled network training losses (dashed) are coincident.

parameters closer to the infinite width limit. In several toy models, we revealed some interesting
connections between the influence of feature learning, depth, sample size, and large learning rate
and the variance of various DMFT order parameters. Lastly, in realistic tasks, we illustrated that bias
corrections can be significant as rates of learning can be modified by width. Though our full set of
equations for the leading finite size fluctuations are quite general in terms of network architecture and
data structure, they are only derived at the level of rigor of physics rather than a formally rigorous
proof which would need several additional assumptions to make the perturbation expansion properly
defined. Further, the leading terms in our perturbation series involving only Σ does not capture the
complete finite size distribution defined in Eq. (3), especially as the sample size becomes comparable
to the width. It would be interesting to see if proportional limits of the rich training regime where
samples and width scale linearly can be examined dynamically [58]. Future work could explore in
greater detail the higher order contributions from averages involving powers of V (q) by examining
cubic and higher derivatives of S in Eq. (3). It could also be worth examining in future work how finite
size impacts other biologically plausible learning rules, where the effective NTK can have asymmetric
(over sample index) fluctuations [46]. Also of interest would be computing the finite width effects
in other types of architectures, including residual networks with various branch scalings [59, 60].
Further, even though we expect our perturbative expressions to give a precise asymptotic description
of finite networks in mean field/µP, the resulting expressions are not realistically computable in deep
networks trained on large dataset size P for long times T since the number of Hessian entries scales
as O(T 4P 4) and a matrix of this size must be stored in memory and inverted in the general case.
Future work could explore solveable special cases such as high dimensional limits.

Code Availability

Code to reproduce the experiments in this paper is provided at https://github.com/
Pehlevan-Group/dmft_fluctuations. Details about numerical methods and computational
implementation can be found in Appendices F and N.

10

https://github.com/Pehlevan-Group/dmft_fluctuations
https://github.com/Pehlevan-Group/dmft_fluctuations

Acknowledgements
CP is supported by NSF Award DMS-2134157, NSF CAREER Award IIS-2239780, and a Sloan
Research Fellowship. BB is supported by a Google PhD research fellowship and NSF Award DMS-
2134157. This work has been made possible in part by a gift from the Chan Zuckerberg Initiative
Foundation to establish the Kempner Institute for the Study of Natural and Artificial Intelligence. The
computations in this paper were run on the FASRC cluster supported by the FAS Division of Science
Research Computing Group at Harvard University. BB thanks Alex Atanasov, Jacob Zavatone-Veth
for their comments on this manuscript and Boris Hanin, Greg Yang, Mufan Bill Li and Jeremy Cohen
for helpful discussions.

References
[1] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and

generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 8571–8580. Curran Associates, Inc., 2018.

[2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in Neural Information
Processing Systems, 32, 2019.

[3] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

[4] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in Neural Information Processing Systems, 32, 2019.

[5] Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent
kernel training dynamics. In International Conference on Machine Learning, pages 11762–
11772. PMLR, 2021.

[6] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. In Conference on Learning Theory,
pages 2388–2464. PMLR, 2019.

[7] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2020(11):113301, 2020.

[8] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR,
2021.

[9] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

[10] Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent
hierarchy. In International conference on machine learning, pages 4542–4551. PMLR, 2020.

[11] Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In
International Conference on Learning Representations, 2020.

[12] Anders Andreassen and Ethan Dyer. Asymptotics of wide convolutional neural networks. arXiv
preprint arXiv:2008.08675, 2020.

[13] Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory.
Cambridge University Press Cambridge, MA, USA, 2022.

[14] Boris Hanin. Random fully connected neural networks as perturbatively solvable hierarchies.
arXiv preprint arXiv:2204.01058, 2022.

11

[15] Sho Yaida. Meta-principled family of hyperparameter scaling strategies. arXiv preprint
arXiv:2210.04909, 2022.

[16] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

[17] Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via
zero-shot hyperparameter transfer. Advances in Neural Information Processing Systems, 34,
2021.

[18] Alexander Atanasov, Blake Bordelon, Sabarish Sainathan, and Cengiz Pehlevan. The onset
of variance-limited behavior for networks in the lazy and rich regimes. In The Eleventh
International Conference on Learning Representations, 2023.

[19] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In International Conference on
Learning Representations, 2021.

[20] Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of
gradient descent at the edge of stability. In The Eleventh International Conference on Learning
Representations, 2023.

[21] Atish Agarwala, Fabian Pedregosa, and Jeffrey Pennington. Second-order regression models
exhibit progressive sharpening to the edge of stability. arXiv preprint arXiv:2210.04860, 2022.

[22] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

[23] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[24] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[25] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

[26] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

[27] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations, 2020.

[28] Boris Hanin and Mihai Nica. Products of many large random matrices and gradients in deep
neural networks. Communications in Mathematical Physics, 376(1):287–322, 2020.

[29] Sho Yaida. Non-gaussian processes and neural networks at finite widths. In Mathematical and
Scientific Machine Learning, pages 165–192. PMLR, 2020.

[30] Jacob Zavatone-Veth and Cengiz Pehlevan. Exact marginal prior distributions of finite bayesian
neural networks. Advances in Neural Information Processing Systems, 34:3364–3375, 2021.

[31] Jacob Zavatone-Veth, Abdulkadir Canatar, Ben Ruben, and Cengiz Pehlevan. Asymptotics of
representation learning in finite bayesian neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

[32] Gadi Naveh, Oded Ben David, Haim Sompolinsky, and Zohar Ringel. Predicting the outputs of
finite deep neural networks trained with noisy gradients. Physical Review E, 104(6):064301,
2021.

12

[33] Adam X. Yang, Maxime Robeyns, Edward Milsom, Ben Anson, Nandi Schoots, and Laurence
Aitchison. A theory of representation learning gives a deep generalisation of kernel methods.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 39380–39415.
PMLR, 23–29 Jul 2023.

[34] Inbar Seroussi, Gadi Naveh, and Zohar Ringel. Separation of scales and a thermodynamic
description of feature learning in some cnns. Nature Communications, 14(1):908, 2023.

[35] Qianyi Li and Haim Sompolinsky. Statistical mechanics of deep linear neural networks: The
backpropagating kernel renormalization. Physical Review X, 11(3):031059, 2021.

[36] Jacob A Zavatone-Veth and Cengiz Pehlevan. Depth induces scale-averaging in overparame-
terized linear bayesian neural networks. 55th Asilomar Conference on Signals, Systems, and
Computers, 2021.

[37] Jacob A Zavatone-Veth, William L Tong, and Cengiz Pehlevan. Contrasting random and learned
features in deep bayesian linear regression. Physical Review E, 105(6):064118, 2022.

[38] Gadi Naveh and Zohar Ringel. A self consistent theory of gaussian processes captures feature
learning effects in finite cnns. Advances in Neural Information Processing Systems, 34, 2021.

[39] Jacob A Zavatone-Veth, Abdulkadir Canatar, Benjamin S Ruben, and Cengiz Pehlevan. Asymp-
totics of representation learning in finite bayesian neural networks*. Journal of Statistical
Mechanics: Theory and Experiment, 2022(11):114008, nov 2022.

[40] Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long time
convergence and asymptotic error scaling of neural networks. Advances in neural information
processing systems, 31, 2018.

[41] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing
systems, 31, 2018.

[42] Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for certain deep
neural networks. arXiv preprint arXiv:1906.00193, 2019.

[43] Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova.
Phase diagram of stochastic gradient descent in high-dimensional two-layer neural networks.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[44] Luca Arnaboldi, Ludovic Stephan, Florent Krzakala, and Bruno Loureiro. From high-
dimensional amp; mean-field dynamics to dimensionless odes: A unifying approach to sgd in
two-layers networks. In Gergely Neu and Lorenzo Rosasco, editors, Proceedings of Thirty Sixth
Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research,
pages 1199–1227. PMLR, 12–15 Jul 2023.

[45] Huy Tuan Pham and Phan-Minh Nguyen. Limiting fluctuation and trajectorial stability of
multilayer neural networks with mean field training. Advances in Neural Information Processing
Systems, 34:4843–4855, 2021.

[46] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics
in wide neural networks. In The Eleventh International Conference on Learning Representations,
2023.

[47] Paul Cecil Martin, ED Siggia, and HA Rose. Statistical dynamics of classical systems. Physical
Review A, 8(1):423, 1973.

[48] Moshe Moshe and Jean Zinn-Justin. Quantum field theory in the large n limit: A review. Physics
Reports, 385(3-6):69–228, 2003.

13

[49] Jean Zinn-Justin. Quantum field theory and critical phenomena, volume 171. Oxford university
press, 2021.

[50] Carson C Chow and Michael A Buice. Path integral methods for stochastic differential equations.
The Journal of Mathematical Neuroscience (JMN), 5:1–35, 2015.

[51] Moritz Helias and David Dahmen. Statistical Field Theory for Neural Networks. Springer
International Publishing, 2020.

[52] A Crisanti and H Sompolinsky. Path integral approach to random neural networks. Physical
Review E, 98(6):062120, 2018.

[53] Kai Segadlo, Bastian Epping, Alexander van Meegen, David Dahmen, Michael Krämer, and
Moritz Helias. Unified field theoretical approach to deep and recurrent neuronal networks.
Journal of Statistical Mechanics: Theory and Experiment, 2022(10):103401, 2022.

[54] Yizhang Lou, Chris E Mingard, and Soufiane Hayou. Feature learning and signal propagation
in deep neural networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 14248–
14282. PMLR, 17–23 Jul 2022.

[55] Carl M Bender and Steven Orszag. Advanced mathematical methods for scientists and engineers
I: Asymptotic methods and perturbation theory, volume 1. Springer Science & Business Media,
1999.

[56] Mehran Kardar. Statistical physics of fields. Cambridge University Press, 2007.

[57] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

[58] Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple
descent and a multi-scale theory of generalization. In International Conference on Machine
Learning, pages 74–84. PMLR, 2020.

[59] Soufiane Hayou. On the infinite-depth limit of finite-width neural networks. Transactions on
Machine Learning Research, 2023.

[60] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv preprint
arXiv:2309.16620, 2023.

[61] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023.

[62] Michael Baake and Ulrike Schlaegel. The peano-baker series. Proceedings of the Steklov
Institute of Mathematics, 275(1):155–159, 2011.

[63] Roger W Brockett. Finite dimensional linear systems. SIAM, 2015.

[64] Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. In International Conference on Learning Representations, 2022.

[65] B. Bordelon, A. Canatar, and C. Pehlevan. Spectrum dependent learning curves in kernel
regression and wide neural networks. International Conference of Machine Learning, 2020.

[66] Phan-Minh Nguyen. Mean field limit of the learning dynamics of multilayer neural networks.
arXiv preprint arXiv:1902.02880, 2019.

14

Appendix

A Additional Figures

0 50 100 150 200 250
t

2.0

2.5

3.0

3.5

(t)

= 0.5
= 1.0
= 2.0
= 4.0

(a) Fourth Moment κ(t, t)

0 50 100 150 200 250
t

0.00

0.02

0.04

0.06

D
(t,

10
0)

(b) Kernel sensitivity D(t, 100)

Figure A.1: The κ and D functions for varying γ in Figure 3. (a) The uncoupled kernel variance
κ(t, t) increases monotonically with γ. This reveals that the dynamical filtering of κ is what is
responsible for the late time decrease in variance during feature learning. (b) The tensor D(t, s)
measures sensitivity of kernel at time t to perturbation in ∆ at time s. The D(t, s) entries also
increase with γ. This suggests that the reduction in variance of the training error and the kernel are
not due to reduction in κ, but rather a dynamical filtering effect due to scale growth in K∞ and rapid
reduction in ∆∞.

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100

N
 i

 V
ar

i

N = 500, D = 100

Expt
DMFT Limit
Leading Var.
Leading Var. + Bias

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
N = 500, D = 500

0 100 200 300 400 500
t

10 5

10 4

10 3

10 2

10 1

100
N = 500, D = 800

Figure A.2: A comparison of the bias and variance corrections in the toy model of Figure 4. At
small D/N (or P/N for offline training) the leading variance and the leading variance and leading
bias both track the experiment. Both the bias and the variance contribute positively towards the
total generalization error since the variance correction alone (orange) exceeds the DMFT limiting
error (dashed) and the variance and bias correction together (green) exceed variance alone (orange).
However, for large D/N (or P/N) the leading order picture fails to describe the finite width
experiment, indicating significant variance possibly at higher order scales (like D2/N2, D3/N3, ...).

15

0 10 20

0

10

20

Ex
pt

H

1 (t
,s

)

= 0.5

1.95

1.96

1.97

1.98

1.99

2.00

0 10 20

0

10

20

DM
FT

H

1 (t
,s

)

1.99

2.00

2.01

2.02

2.03

0 10 20

0

10

20

= 1.0

1.90

1.95

2.00

2.05

2.10

0 10 20

0

10

20

1.95

2.00

2.05

2.10

0 10 20

0

10

20

= 2.0

1.8

2.0

2.2

2.4

0 10 20

0

10

20

1.8

2.0

2.2

2.4

0 10 20

0

10

20

= 3.0

1.75

2.00

2.25

2.50

2.75

0 10 20

0

10

20

1.75

2.00

2.25

2.50

2.75

3.00

0 10 20

0

10

20

Ex
pt

H

2 (t
,s

)

= 0.5

4.0

4.1

4.2

4.3

4.4

4.5

0 10 20

0

10

20

DM
FT

H

2 (t
,s

)

4.0

4.1

4.2

4.3

4.4

4.5

0 10 20

0

10

20

= 1.0

4.0

4.5

5.0

5.5

6.0

0 10 20

0

10

20

4.0

4.5

5.0

5.5

0 10 20

0

10

20

= 2.0

4

6

8

10

0 10 20

0

10

20

4

6

8

10

0 10 20

0

10

20

= 3.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0 10 20

0

10

20

5

10

15

20

0 10 20

0

10

20

Ex
pt

H

3 (t
,s

)

= 0.5

6.0

6.5

7.0

7.5

8.0

8.5

0 10 20

0

10

20

DM
FT

H

3 (t
,s

)

6.0

6.5

7.0

7.5

8.0

0 10 20

0

10

20

= 1.0

6

8

10

12

14

16

0 10 20

0

10

20

6

8

10

12

14

0 10 20

0

10

20

= 2.0

10

20

30

40

50

0 10 20

0

10

20

10

20

30

40

50

0 10 20

0

10

20

= 3.0

20

40

60

80

100

120

0 10 20

0

10

20

20

40

60

80

100

120

140

Figure A.3: The covariance of kernel entries across pairs of time points ΣH`(t, s) =
N Cov(H`(t, t), H`(s, s)) for depth 4 linear network trained on whitened data. The variance
becomes increasingly localized in time as feature learning γ increases.

16

0 100 200 300
Steps

2 × 10 2

3 × 10 2

4 × 10 2

En
s.

Tr
ai

n
Lo

ss

N = 32
exp(R32t)
N = 64
N = 128
N = 256
N = 512

(a) Ens. Averaged Train Loss

0 100 200 300
Steps

100

101

102

103

104

K
|

|2

(b) Raleigh Quotient ∆>K∆
|∆|2

0.000 0.005 0.010 0.015 0.020 0.025 0.030
N 1

0.0020

0.0025

0.0030

0.0035

R N

0.0035 0.0581/N

(c) Rates as Function of N

Figure A.4: The ensemble averaged train loss for the same depth 6 CNN trained on a random
subsample of P = 64 CIFAR-10 points. Training is full batch gradient descent with γ = 0.05. (a)
The ensemble train accuracy for this subset of CIFAR-10 is well modeled as an exponential in time
L(t) ∝ exp (−RN t) with a rate RN that depends on width. (b) The projection of the errors ∆ on
the average NTK 〈K〉 (which is related to the rate of decay of the training loss, see Appendix G)
reveals that wider networks are more aligned with their instantaneous error signals. (c) The rates RN
are indeed a linear functions of N−1, with RN = R∞ + R1

N , consistent with the average NTK 〈K〉
receiving a N−1 correction. Using ensembling to find a scaling law like that above can thus allow
one extrapolate the training rate of infinite width mean field models.

0 50 100 150 200 250
Epochs

0.02

0.03

0.04

0.05

Tr
ai

n
Lo

ss

= 0.035
= 0.050
= 0.100
= 0.200
= 0.300

(a) Training MSE

0 50 100 150 200 250
Epochs

0.02

0.04

0.06

0.08

0.10

A(
L ,

yy
)

(b) Kernel-Task Alignment

0 50 100 150 200 250
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc

(c) Test Acc.

0 50 100 150 200 250
Epochs

1.00

1.05

1.10

1.15

1.20

Tr
ai

n
M

SE
 R

at
io

(d) Single vs Ensembled Ratio

0 50 100 150 200 250
Epochs

1.00

1.02

1.04

1.06

1.08

1.10

Te
st

 M
SE

 R
at

io

(e) Single vs Ensembled Ratio

Figure A.5: Width N = 64 depth 6 CNNs trained on the full CIFAR-10 with MSE. An ensemble of
size E = 10 randomly initialized networks are trained. (a) Training MSE for varying γ. (b) Final
layer kernel-task alignment does strongly depend on γ, despite similar train dynamics. (c) Top-1
classification test accuracy is only slightly different across γ. A small benefit from ensembling is
visible late in training. (c) Initialization variance (measured by the ratio of single model to ensembled
MSE) for training and test losses. Richer networks have lower variance throughout training. (b)
Networks have distinct kernel dynamics when trained with different γ as evidenced by the alignment
(cosine similarity) between the final layer feature kernel ΦL and the target test labels y.

17

B CIFAR-10 Experimental Details

We trained the following depth 6 CNN architecture in the mean field parameterization using FLAX
[61] on a single GPU. The bias parameters were zero in each hidden Conv layer, but were used for
the readout weights. The networks were trained with MSE loss on centered 10 dimensional targets
yµ ∈ R10 for µ ∈ [P]. Each convolution was followed by an average pooling operation. To obtain
mean field behavior, NTK parameterization with a modified final layer is used [7, 9].

1 from flax import linen as nn
2 import jax.numpy as jnp
3

4 class CNN(nn.Module):
5

6 width: int
7

8 def setup(self):
9 kif = nn.initializers.normal(stddev = 1.0) # O_N(1) entries

10 self.conv1 = nn.Conv(features = self.width , kernel_init = kif ,
use_bias = False , kernel_size = (3,3))

11 self.conv2 = nn.Conv(features = self.width , kernel_init = kif ,
use_bias = False , kernel_size = (3,3))

12 self.conv3 = nn.Conv(features = self.width , kernel_init = kif ,
use_bias = False , kernel_size = (3,3))

13 self.conv4 = nn.Conv(features = self.width , kernel_init = kif ,
use_bias = False , kernel_size = (3,3))

14 self.conv5 = nn.Conv(features = self.width , kernel_init = kif ,
use_bias = False , kernel_size = (3,3))

15 self.readout = nn.Dense(features = 10, use_bias = True ,
kernel_init = kif)

16 return
17

18 def __call__(self , x, train = True):
19 N = self.width
20 D = 3
21 x = self.conv1(x) / jnp.sqrt(D * 9)
22 x = jnp.sqrt (2.0) * nn.relu(x)
23 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 32 x 32

-> 16 x 16
24 x = self.conv2(x) / jnp.sqrt(N*9) # explicit N^{ -1/2}
25 x = jnp.sqrt (2.0) * nn.relu(x)
26 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 16 x 16

-> 8 x 8
27 x = self.conv3(x)/jnp.sqrt(N*9)
28 x = jnp.sqrt (2.0) * nn.relu(x)
29 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 8 x 8 ->

4 x 4
30 x = self.conv4(x) / jnp.sqrt(N*9)
31 x = jnp.sqrt (2.0) * nn.relu(x)
32 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 4 x 4

-> 2 x 2
33 x = self.conv5(x) / jnp.sqrt(N*9)
34 x = jnp.sqrt (2.0) * nn.relu(x)
35 x = nn.avg_pool(x, window_shape =(2,2), strides = (2,2)) # 2 x 2

-> 1 x 1
36 x = x.reshape ((x.shape[0], -1)) # flatten
37 x = self.readout(x) / N # for mean field scaling
38 return x

All models were trained with standard SGD with a batch size of 256. Each element in the ensemble of
E networks is trained on identical batches presented in identical order. For the Figure 7 experiments,
the raw learning rate is scaled as η = 10N

√
γ with γ = 0.2 (note that mean field theory requires

scaling the raw learning rate linearly with N since the raw NTK is O(N−1) [9]). For Figure A.5, the
learning rate is η = 5N

√
γ. We find that choosing η ∝ √γ gives approximately conserved training

18

times across γ (though distinct representation dynamics). The Figure A.4 shows the dynamics of
fitting P = 64 training points with full batch gradient descent and γ = 0.1.

C Review of DMFT: Deriving the Action

In this section we derive the DMFT action which contains all of the necessary statistical information
about randomly initialized finite width N networks. From the action S the DMFT saddle point and
the propagator can be computed. This derivation follows closely the original derivation by Bordelon
& Pehlevan [9]. We start by writing the gradient flow dynamics on weight matrices

d

dt
W `(t) =

γ√
N

P∑
µ=1

∆µ(t)g`+1
µ (t)φ(h`µ(t))> (11)

where ∆µ(t) = − ∂L
∂fµ(t) are the error signals and g`µ(t) = Nγ

∂fµ(t)
∂h`µ(t)

are the back-propagation
signals. The prediction dynamics satisfy

d

dt
fµ(t) =

∑
ν

Kµν(t)∆ν(t) (12)

where Kµν(t) is the instantaneous neural tangent kernel (NTK). At finite width N all of the above
quantities depend on the precise initialization of the network. We transform the weight dynamics into
an integral equation and use the recurrence for h` to obtain the following

h`+1(t) =
1√
N
W `(0)φ(h`µ(t)) + γ

∫ t

0

ds
∑
ν

Φ`µν(t, s)g`+1
ν (s)

g`µ(t) = φ̇(h`µ(t))� z`µ(t)

z`µ(t) =
1√
N
W `(0)>g`+1

µ (t) + γ

∫ t

0

ds
∑
ν

G`+1
µν (t, s)φ(h`ν(s)) (13)

where we introduced the feature and gradient kernels

Φ`µν(t, s) =
1

N
φ(h`µ(t)) · φ(h`ν(s)) , G`µν(t, s) =

1

N
g`µ(t) · g`ν(s). (14)

Written this way, we see that the source of the disorder which depends on the initial random weights
W `(0) comes through the fields

χ`+1
µ (t) =

1√
N
W `(0)φ(h`µ(t)) , ξ`+1

µ (t) =
1√
N
W `(0)>g`µ(t). (15)

If we can characterize the distribution of the fields χ`µ(t) and ξ`µ(t), then we can consequently
characterize the distribution of h`µ(t), g`µ(t). We therefore choose to study the moment generating
functional

Z[{j`,v`}] =

〈
exp

∑
`µ

∫
dt
[
j`µ(t) · χ`µ(t) + v`µ(t) · χ`µ(t)

]〉
θ0

(16)

Moments of these fields can be computed through differentiation with respect to the sources j,v near
zero-source (j = v = 0)〈

χ`1µ1
(t1)...χ`nµn(tn)ξ`1µ1

(t1)...ξ`mµm(tm)
〉

=
δ

δj`1µ1(t1)
...

δ

δj`nµn(tn)

δ

δv`1µ1(t1)
...

δ

δv`mµm(tm)
Z[{j`,v`}]|j=v=0. (17)

To average over the initial weights, we introduce a Fourier representation of the Dirac-Delta function
1 =

∫
dzδ(z) =

∫
dzdẑ
2π exp(iẑz). We perform this transformation for each of the fields to enforce

19

their definition

δ

(
χ`µ(t)− 1√

N
W `(0)φ(h`µ(t))

)
=

∫
dχ̂`µ(t)

(2π)N
exp

(
χ̂`µ(t) ·

[
χ`µ(t)− 1√

N
W `(0)φ(h`µ(t))

])
δ

(
ξ`µ(t)− 1√

N
W `(0)>g`µ(t)

)
=

∫
dξ̂`µ(t)

(2π)N
exp

(
ξ̂`µ(t) ·

[
ξ`µ(t)− 1√

N
W `(0)>g`+1

µ (t)

])
(18)

We insert these Dirac delta functions so that we can directly average over the weights

lnEW `(0) exp

(
− i√

N
TrW `(0)>

∫
dt
∑
µ

[
χ̂`+1
µ (t)φ(h`µ(t))> + g`+1

µ (t)ξ̂`µ(t)>
])

= −1

2

∑
µν

∫
dtds

[
χ̂`+1
µ (t) · χ̂`+1

ν (s)Φ`µν(t, s) + ξ̂`µ(t) · ξ̂`ν(s)G`+1
µν (t, s)

]
− 1

N

∑
µν

∫
dtds(χ̂`+1

µ (t) · g`+1
ν (s))(φ(h`µ(t)) · ξ̂`ν(s)) (19)

where we introduced the kernels Φ`, G`. We next introduce the order parameter

A`µν(t, s) = − i

N
φ(h`µ(t)) · ξ̂`ν(s) (20)

To enforce the definitions of the new order parameters {Φ, G,A} we again introduce Dirac-delta
functions

δ
(
NΦ`µν(t, s)− φ(h`µ(t)) · φ(h`ν(s))

)
=

∫
dΦ̂`µν(t, s)

2πi
exp

(
Φ̂`µν(t, s)

[
NΦ`µν(t, s)− φ(h`µ(t)) · φ(h`ν(s))

])
(21)

Analogous constraints for G and A are enforced with conjugate variables Ĝ, B. After introducing
these variables, we find that the moment generating functional has the form

Z =

∫ ∏
`µνts

dΦ̂`µν(t, s)dΦ`µν(t, s)

2πi

dĜ`µν(t, s)dG`µν(t, s)

2πi

dĜ`µν(t, s)dG`µν(t, s)

2πi

dA`µν(t, s)dB`µν(t, s)

2πi

exp
(
NS[{Φ`, Φ̂`, G`, Ĝ`, A`, B`}]

)
(22)

where S is the O(1) DMFT action which defines the statistical distribution over the dynamics. The
action takes the form

S =
∑
`µν

∫
dt ds

[
Φ̂`µν(t, s)Φ`µν(t, s) + Ĝ`µν(t, s)−A`µν(t, s)B`νµ(s, t)

]

+
1

N

L∑
`=1

N∑
i=1

lnZ`[{j`i , v`i}] (23)

where Z` is the single site stochastic process for layer ` which defines the marginal distribution of
χ, ξ, with the following form

Z`[{j`(t), v`(t)}] =

∫ ∏
µt

dχ̂`µ(t)dχ`µ(t)

2π

dξ̂`µ(t)dξ`µ(t)

2π
exp

(∫
dt
∑
µ

[j`µ(t)χ`µ(t) + v`µ(t)ξ`µ(t)]

)

exp

(
−1

2

∑
µν

∫
dtds

[
Φ̂`µν(t, s)χ̂`µ(t)χ̂`ν(s) + Ĝ`µν(t, s)ξ̂`µ(t)ξ̂`ν(s)

])

exp

(
−i
∑
µν

∫
dtds

[
B`µν(t, s)ξ̂`µ(t)φ(h`ν(s)) +A`−1

µν (t, s)χ̂`µ(t)g`ν(s)
])

exp

(
i
∑
µ

∫
dt[χ̂`µ(t)χ`µ(t) + ξ̂`µ(t)ξ`µ(t)]

)
(24)

20

where in the above, the {h, g} fields should be regarded as functionals of {χ, ξ}. At zero source
j`,v` → 0 this function S can be regarded as the log density for the complete collection of order
parameters q = {Φ̂,Φ, Ĝ, G,A,B} which collectively control the dynamics. Concretely, we have
that p(q) ∝ exp (NS(q)). In the next section we explore an approximation scheme for averages
over this distribution at large N .

D Cumulant Expansion of Observables

We are interested in a principled power series expansion (in 1/N) of any observable average 〈O(q)〉
that depends on DMFT order parameters q. At any width N the observable average takes the form

〈O(q)〉N =

∫
dq exp (NS(q))O(q)∫
dq exp (NS(q))

(25)

As discussed in the main text, the N → ∞ limit gives 〈O(q)〉N ∼ O(q∞) where ∂S
∂q |q∞ = 0

by a steepest descent argument [55]. We assume that S’s Hessian is negative semidefinite so
that Σ ≡ −

[
∇2S(q)|q∞

]−1 � 0 and Taylor expand S(q) around the saddle point q∞ giving
S(q) = S(q∞) + 1

2 (q−q∞)>∇2S(q)(q−q∞) +V (q−q∞). We note that the remainder function
V contains only cubic and higher powers of q − q∞ ≡ δ/

√
N . The variable δ will be order O(1).

This will allow us to verify that additional terms are suppressed in powers of 1/N . Expanding both
the numerator and denominator’s integrands in powers of V , we find

〈O(q)〉N =

∫
dq exp

(
−N2 (q − q∞)>Σ−1(q − q∞) +NV (q − q∞)

)
O(q)∫

dq exp
(
−N2 (q − q∞)>Σ−1(q − q∞) +NV (q − q∞)

)
=

∫
dδ exp

(
− 1

2δ
>Σ−1δ

)
(1 +NV + N2

2 V
2 + ...)O(q∞ +N−1/2δ)∫

dδ exp
(
− 1

2δ
>Σ−1δ

)
(1 +NV + N2

2 V
2 + ...)

=
〈O〉∞ +N 〈V O〉∞ + N2

2!

〈
V 2O

〉
∞ + N3

3!

〈
V 3O

〉
∞ + ...

1 +N 〈V 〉∞ + N2

2! 〈V 2〉∞ + N3

3! 〈V 3〉∞ + ...

= 〈O〉∞
1 +N 〈V O〉∞ / 〈O〉∞ + N2

2!

〈
V 2O

〉
∞ / 〈O〉∞ + N3

3!

〈
V 3O

〉
∞ / 〈O〉∞ + ...

1 +N 〈V 〉∞ + N2

2! 〈V 2〉∞ + N3

3! 〈V 3〉∞ + ...
(26)

where 〈〉∞ represents an average over the Gaussian fluctuation N
(
q∞,− 1

N

[
∇2
qS(q∞)

]−1
)

. We

see that the series in the denominator contains terms of the form Nk

k!

〈
V k
〉
∞ while the numerator

depends on terms of the form Nk

k!

〈
V kO

〉
∞ / 〈O〉∞. In either of these power series, the k-th term

can contribute at most

Nk
〈
V kO

〉
∞

〈O〉∞
, Nk

〈
V k
〉
∞ ∼

{
O(N−(k+1)/2) k odd
O(N−k/2) k even

(27)

since V contributes only cubic and higher terms. Thus each term in the numerator and denominator’s
series contains increasing powers of 1/N . Concretely, each of the two series have terms of order
{N0, N−1, N−1, N−2, N−2, ...}. Thus any quantity of the form 〈O〉

〈O〉∞
admits a ratio of power series

in powers of 1/N . One could truncate each of the series in the numerator and denominator to a
desired order in N . Alternatively, the denominator could be expanded giving a single series (the
cumulant expansion [56]). The first few terms in the cumulant expansion have the form

〈O〉N = 〈O〉∞ +N [〈OV 〉∞ − 〈O〉∞ 〈V 〉∞]

+
N2

2

[〈
V 2O

〉
∞ − 2 〈V O〉∞ 〈V 〉∞ + 2 〈V 〉2∞ 〈O〉∞ −

〈
V 2
〉
∞ 〈O〉∞

]
+ ... (28)

In this work, we mainly are interested in the leading order correction to 〈O〉 which can always be
obtained with the truncation after the terms linear in V for any observable O.

21

D.1 Square Deviation from DMFT

We will now analyze the fluctuation statistics of our order parameters around the saddle point〈
(q − q∞)(q − q∞)>

〉
N

which has the form

〈
(q − q∞)(q − q∞)>

〉
N

=

〈
(q − q∞)(q − q∞)>

〉
∞ +N

〈
V (q − q∞)(q − q∞)>

〉
∞ + ...

1 +N 〈V 〉∞ + ...

=

[1
NΣ +O(N−2)

1 +O(N−1)

]
∼ 1

N
Σ +O(N−2), (29)

as stated in the main text and verified empirically in Figure 3 (a). The reason that the terms in the
numerator involving V can be no larger than O(N−2) comes from vanishing of odd moments for
q−q∞ in the unperturbed distribution. Thus the leading expression for

〈
(q − q∞)(q − q∞)>

〉
only

depends on Σ and not on V .

D.2 Mean Deviation from DMFT

Although the square displacement from DMFT only depended on Σ and not on V , we note that the
average order parameter displacement 〈q − q∞〉 does receive a O(1/N) correction that depends on
the perturbed potential V

〈q − q∞〉N =
〈q − q∞〉∞ +N 〈(q − q∞)V 〉∞ + N2

2

〈
(q − q∞)V 2

〉
∞ + ...

1 +N 〈V 〉∞ + N2

2 〈V 2〉∞ + ...

∼
Σ
〈
∂V
∂q

〉
∞

+O(N−2)

1 +O(N−1)
∼ Σ

〈
∂V

∂q

〉
∞

+O(N−2). (30)

where in the last line we used Stein’s lemma (Gaussian integration by parts) for the Gaussian
distribution over q. Note that

〈
∂V
∂q

〉
∞
∼ O

(
1
N

)
since the derivative of the cubic term in V gives a

quadratic function of q − q∞, whose average must be O(N−1). In this work, we focus primarily on
the structure of the propagator, but outline a general recipe for getting the leading mean correction in
Appendix G and H.2.

D.3 Covariance of Order Parameters

Lastly, we combine the previous two observations to reason about the scaling of the order parameter
covariance over initializations. We note that the leading covariance of the order parameters over
random initializations is also given by the propagator: Cov(q) ∼ 1

NΣ +O(N−2), since

Cov(q) =
〈

(q − 〈q〉N) (q − 〈q〉N)
>
〉
N

=
〈

(q − q∞) (q − q∞)
>
〉
N
−
〈

(q∞ − 〈q〉N) (q∞ − 〈q〉N)
>
〉
N

∼ 1

N
Σ +O(N−2) (31)

due to the arguments above which showed that
〈
(q − q∞)(q − q∞)>

〉
∼ 1

NΣ +O(N−2) and that
q∞ − 〈q〉N ∼ O(N−1). Therefore, in the leading order picture, it is safe to associate Σ with the
covariance of order parameters over random initializations of the network weights.

E Propagator Structure for the full DMFT Action

In this section, we examine the propagator structure for the full DMFT action. This action is modified
from other prior works [9, 46] to include the evolution of the network prediction errors ∆(t). Those
prior works noted that ∆ and the NTKK are deterministic functions of deterministic order parameters
{Φ`, G`} in the N →∞ limit so those authors did not explicitly include ∆ or K in the action. At
finite width N , including ∆,K in the action is crucial as the fluctuation in prediction errors ∆
has significant consequences for dynamical fluctuations of kernels through the preactivation and

22

pre-gradient fields. In this section, we will mainly focus on gradient flow, but we describe large step
size in Appendix M.

S =
∑
`µν

∫
dtds

[
Φ̂`µν(t, s)Φ`µν(t, s) + Ĝ`µν(t, s)G`µν(t, s)− γ2A`νµ(s, t)B`µν(t, s)

]

+
∑
µ

∫
dt∆̂µ(t)

[
∆µ(t)− yµ +

∑
ν

∫
dsΘ(t− s)Kµν(s)∆ν(s)

]

+
∑
µν

∫
dtK̂µν(t)

[
Kµν(t)−

∑
`

G`+1
µν (t)Φ`µν(t)

]
+
∑
`

lnZ`[∆, Φ̂`, Ĝ`,Φ`−1,G`+1,A`−1,B`] (32)

where the single site moment generating functionals Z` have the form

Z` =E{h`µ(t),z`µ(t)} exp

(
−
∑
µν

∫
dtds

[
φ(h`µ(t))φ(h`ν(s))Φ̂`µν(t, s) + g`µ(t)g`ν(s)Ĝ`µν(t, s)

])

h`µ(t) = u`µ(t) + γ

∫ t

0

ds
∑
ν

[
Φ`−1
µν (t, s)∆ν(s) +A`−1

µν (t, s)
]
g`ν(s) , {u`µ(t)} ∼ GP(0,Φ`−1)

z`µ(t) = r`µ(t) + γ

∫ t

0

ds
∑
ν

[
G`+1
µν (t, s)∆ν(s) +B`µν(t, s)

]
φ(h`ν(s)) , {r`µ(t)} ∼ GP(0,G`+1)

(33)

with g`µ(t) = φ̇(h`µ(t))z`µ(t). The saddle point equations give the infinite width evolution of our order
parameters.

∂S

∂Φ̂`µν(t, s)
= Φ`µν(t, s)−

〈
φ(h`µ(t))φ(h`ν(s))

〉
= 0

∂S

∂Ĝ`µν(t, s)
= G`µν(t, s)−

〈
g`µ(t)g`ν(s)

〉
= 0

∂S

∂A`νµ(s, t)
= −γ2B`µν(t, s) + γ

〈
∂φ(h`µ(t))

∂r`ν(s)

〉
= 0

∂S

∂B`νµ(s, t)
= −γ2A`µν(t, s) + γ

〈
∂g`µ(t)

∂u`ν(s)

〉
= 0

∂S

∂K̂µν(t)
= Kµν(t)−

∑
`

G`+1
µν (t, t)Φ`µν(t, t) = 0

∂S

∂∆̂µ(t)
= ∆µ(t)− yµ +

∫ t

0

ds
∑
ν

Kµν(s)∆ν(s) = 0 (34)

These equations exactly recover the mean field description obtained [9]. Note that 〈〉 for field averages
is an average defined by Z` and is distinct from the types averages 〈〉 , 〈〉∞ we have been considering
over the order parameters q. The complementary set of equations for the primal variables, such as

∂S
∂Φ`µν(t,s)

= 0, give that K̂ = ∆̂ = Φ̂ = Ĝ = 0 at the saddle point. We now set out to compute the

Hessan ∇2
qS. To simplify the set of expressions, we will only explicitly write out the nonvanishing

23

blocks. We will start with second derivatives involving only pairs of dual variables {Φ̂, Ĝ, A,B}
∂2S

∂Φ̂`µν(t, s)∂Φ̂`αβ(t′, s′)
=
〈
φ(h`µ(t))φ(h`ν(s))φ(h`α(t′))φ(h`β(s′))

〉
− Φ`µν(t, s)Φ`αβ(t′, s′)

≡ κΦ`

µναβ(t, s, t′, s′)

∂2S

∂Ĝ`µν(t, s)∂Ĝ`αβ(t′, s′)
=
〈
g`µ(t)g`ν(s)g`α(t′)g`β(s′)

〉
−G`µν(t, s)G`αβ(t′, s′)

≡ κG
`

µναβ(t, s, t′, s′)

∂2S

∂Φ̂`µν(t, s)∂Ĝ`αβ(t′, s′)
=
〈
φ(h`µ(t))φ(h`ν(s))g`α(t′)g`β(s′)

〉
− Φ`µν(t, s)G`αβ(t′, s′)

≡ κΦ`G`

µναβ(t, s, t′, s′)

∂2S

∂Φ̂`µν(t, s)∂A`−1
βα (s′, t′)

= −γ

〈
∂φ(h`µ(t))

∂u`β(s′)
φ(h`ν(s))g`α(t′)

〉

− γ

〈
φ(h`µ(t))

∂φ(h`ν(t))

∂u`β(s′)
g`α(t′)

〉

− γ

〈
φ(h`µ(t))φ(h`ν(s))

∂g`α(t′)

∂u`β(s′)

〉
− γ2Φ`µν(t, s)B`−1

αβ (t′, s′)

≡ −γκΦ`B`−1

µναβ (t, s)

∂2S

∂Φ̂`µν(t, s)∂B`βα(s′, t′)
= −γ

〈
∂φ(h`µ(t))

∂r`β(s′)
φ(h`ν(s))φ(h`α(t′))

〉

− γ

〈
φ(h`µ(t))

∂φ(h`ν(t))

∂r`β(s′)
φ(h`α(t′))

〉

− γ

〈
φ(h`µ(t))φ(h`ν(s))

∂φ(h`α(t′))

∂r`β(s′)

〉
− γ2Φ`µν(t, s)A`αβ(t′, s′)

≡ −γκΦ`A`

µναβ(t, s)

∂2S

∂Ĝ`µν(t, s)∂A`−1
βα (s′, t′)

= −γ

〈
∂g`µ(t)

∂u`β(s′)
g`ν(s)g`α(t′)

〉
− γ

〈
g`µ(t)

∂g`ν(t)

∂u`β(s′)
g`α(t′)

〉

− γ

〈
g`µ(t)g`ν(s)

∂g`α(t′)

∂u`β(s′)

〉
− γ2G`µν(t, s)B`−1

αβ (t′, s′)

≡ −γκG
`B`−1

µναβ (t, s)

∂2S

∂Ĝ`µν(t, s)∂B`βα(s′, t′)
= −γ

〈
∂g`µ(t)

∂r`β(s′)
g`ν(s)φ(h`α(t′))

〉
− γ

〈
g`µ(t)

∂g`ν(t)

∂r`β(s′)
φ(h`α(t′))

〉

= −γ

〈
g`µ(t)g`ν(s)

∂φ(h`α(t′))

∂r`β(s′)

〉
− γ2G`µν(t, s)A`αβ(t′, s′)

≡ −γκG
`A`

µναβ(t, s)

∂2S

∂A`µν(t, s)∂B`βα(s′, t′)
= −γ2δµαδνβδ(t− t′)δ(s− s′)

∂2S

∂A`−1
νµ (s, t)∂B`βα(s′, t′)

= γ2

〈
∂2

∂u`ν(s)∂r`β(s′)

[
g`µ(t)φ(h`α(t′))

]〉
− γ4B`−1

µν (t, s)A`αβ(t′, s′)

≡ κB
`−1A`

µναβ (t, s, t′, s′) (35)

24

Next, we consider the second derivatives involving only primal variables {Φ`, G`,K,∆} which all
vanish

∂2S

∂Φ`µν(t, s)∂Φ`
′
αβ(t′, s′)

= 0

∂2S

∂G`µν(t, s)∂G`
′
αβ(t′, s′)

= 0

∂2S

∂Φ`µν(t, s)∂G`
′
αβ(t′, s′)

= 0

∂2S

∂Φ`µν(t, s)∂Kαβ(s′)
= 0

∂2S

∂G`µν(t, s)∂Kαβ(s′)
= 0

∂2S

∂Φ`µν(t, s)∂∆α(s′)
= 0

∂2S

∂G`µν(t, s)∂∆α(s′)
= 0

∂2S

∂Kµν(t)∂Kαβ(s)
= 0

∂2S

∂Kµν(t)∂∆α(s)
= 0

∂2S

∂∆µ(t)∂∆α(s)
= 0 (36)

Now we consider all derivatives which involve one of the dual variables {Φ̂`, Ĝ`, A`, B`} and the
primal variable ∆

∂2S

∂Φ̂`µν(t, s)∂∆α(t′)
= −

〈
∂

∂∆α(t′)
[φ(h`µ(t))φ(h`ν(s))]

〉
≡ −DΦ`∆

µνα (t, s, t′)

∂2S

∂Ĝ`µν(t, s)∂∆α(t′)
= −

〈
∂

∂∆α(t′)
[g`µ(t)g`ν(s)]

〉
≡ −DG`∆

µνα (t, s, t′)

∂2S

∂A`−1
νµ (s, t)∂∆α(t′)

= γ

〈
∂

∂∆α(t′)∂u`ν(s)
g`µ(t)

〉
≡ γDB`−1,∆

µνα (t, s, t′)

∂2S

∂B`νµ(s, t)∂∆α(t′)
= γ

〈
∂

∂∆α(t′)∂r`ν(s)
φ(h`µ(t))

〉
≡ γDA`∆

µνα (t, s, t′)

25

Now, we consider the second derivatives involving one derivative on a dual variable {Φ̂`, Ĝ`, A,B}
and one of the primal variables {Φ`, G`}.

∂2S

∂Φ̂`µν(t, s)∂Φ`
′
αβ(t′, s′)

= δ`,`′δµνδ(t− t′)δ(s− s′)

− δ`−1,`′
∂

∂Φ`−1
αβ (t′, s′)

〈
φ(h`µ(t))φ(h`ν(s))

〉
≡ δ`,`′δµνδ(t− t′)δ(s− s′)− δ`−1,`′D

Φ`Φ`−1

µναβ (t, s, t′, s′)

∂2S

∂Ĝ`µν(t, s)∂G`
′
αβ(t′, s′)

= δ`,`′δµνδ(t− t′)δ(s− s′)− δ`+1,`′
∂

∂G`+1
αβ (t′, s′)

〈
g`µ(t)g`ν(s)

〉
≡ δ`,`′δµνδ(t− t′)δ(s− s′)− δ`−1,`′D

G`G`+1

µναβ (t, s, t′, s′)

∂2S

∂Φ̂`µν(t, s)∂G`+1
αβ (t′, s′)

= − ∂

∂G`+1
αβ (t′, s′)

〈
φ(h`µ(t))φ(h`ν(s))

〉
≡ −DΦ`,G`+1

µναβ (t, s, t′, s′)

∂2S

∂Ĝ`µν(t, s)∂Φ`−1
αβ (t′, s′)

= − ∂

∂Φ`−1
αβ (t′, s′)

〈
g`µ(t)g`ν(s)

〉
≡ −DG`,Φ`−1

µναβ (t, s, t′, s′)

∂2S

∂A`−1
νµ (s, t)∂Φ`−1

αβ (t′, s′)
= γ

∂

∂Φ`−1
αβ (t′, s′)

〈
∂g`µ(t)

∂r`ν(s)

〉
≡ γDB`−1,Φ`−1

µναβ (t, s, t′, s′)

∂2S

∂B`νµ(s, t)∂Φ`−1
αβ (t′, s′)

= γ
∂

∂Φ`−1
αβ (t′, s′)

〈
∂φ(h`µ(t))

∂u`ν(s)

〉
≡ γDA`,Φ`−1

µναβ (t, s, t′, s′)

∂2S

∂A`−1
νµ (s, t)∂G`+1

αβ (t′, s′)
= γ

∂

∂G`+1
αβ (t′, s′)

〈
∂g`µ(t)

∂r`ν(s)

〉
≡ γDB`−1,G`+1

µναβ (t, s, t′, s′)

∂2S

∂B`νµ(s, t)∂G`+1
αβ (t′, s′)

= γ
∂

∂G`+1
αβ (t′, s′)

〈
∂φ(h`µ(t))

∂u`ν(s)

〉
≡ γDA`,G`+1

µναβ (t, s, t′, s′) (37)

We note that terms such as ∂

∂Φ`−1
αβ (t′,s′)

〈
φ(h`µ(t))φ(h`ν(s))

〉
can be further decomposed since the

average over the {u`µ(t)} ∼ GP(0,Φ`−1) and h`’s explicit dynamics both depend on Φ`−1

∂

∂Φ`−1
αβ (t′, s′)

〈
φ(h`µ(t))φ(h`ν(s))

〉
=

1

2

〈
∂2

∂u`α(t′)∂u`β(s′)
φ(h`µ(t))φ(h`ν(s))

〉

+

〈
∂

∂Φ`−1
αβ (t′, s′)

φ(h`µ(t))φ(h`ν(s))

〉
(38)

where the first term comes from differentiating the Gaussian probability density for u` (e.g. Price’s
theorem) and the second term is an explicit derivative of the preactivation fields with u` treated as
constant. Next we consider the nonvanishing terms which involve {∆̂, K̂,∆,K} which give

∂2S

∂∆̂µ(t)∂∆α(s)
= δµαδ(t− s) + Θ(t− s)Kµα(s)

∂2

∂∆̂µ(t)∂Kαβ(s)
= δµαΘ(t− s)∆β(s)

∂2S

∂K̂µν(t)∂Kαβ(t′)
= δµαδνβδ(t− t′)

∂2S

∂K̂µν(t)∂Φ`αβ(t′, s′)
= δµαδνβG

`+1
αβ (t′, s′)δ(t− t′)δ(t− s′)

∂2S

∂K̂µν(t)∂G`αβ(t′, s′)
= δµαδνβΦ`−1

αβ (t′, s′)δ(t− t′)δ(t− s′) (39)

26

This enumerates all possible non-vanishing terms in the Hessian. We can now construct a block
matrix of these Hessians by partitioning our order parameters q = [q1, q2]> where

q1 = Vec{Φ`µν(t, s), G`µν(t, s),Kµν(t),∆µ(t), Φ̂`µν(t, s), Ĝ`µν(t, s), K̂µν(t), ∆̂µ(t)} (40)

q2 = Vec{A`µν(t, s), B`µν(t, s)}. (41)
This choice will become apparent shortly.

∇2
qS =

[
∇2
q1S ∇2

q1q2S
∇2
q2q1S ∇2

q2S

]
(42)

To calculate the full propagator Σ = −
[
∇2
qS
]−1

, we will assume invertibility of the upper block

Σ0 = −
[
∇2
q1S
]−1

and use this in the Schur complement

Σ = −
[
∇2
qS
]−1

=

[
Σ11 Σ12

Σ21 Σ22

]
Σ11 = Σ0 −Σ0

[
∇2
q1q2S

] (
∇2
q2S + (∇2

q2q1S)Σ0(∇2
q1q2S)

)−1 [∇2
q2q1S

]
Σ0

Σ12 = Σ>21 = −Σ0
[
∇2
q1q2S

] (
∇2
q2S + (∇2

q2q1S)Σ0(∇2
q1q2S)

)−1

Σ22 = −
(
∇2
q2S + (∇2

q2q1S)Σ0(∇2
q1q2S)

)−1
(43)

We now need to solve for Σ0 = −
[
∇2
q1S
]−1

. To perform this inverse, we again partition q1 into
two sets of order parameters q1 = [q1

1 , q
2
1] where q1

1 = Vec{Φ`µν(t, s), G`µν(t, s),Kµν(t),∆µ(t)}
and q2

1 = Vec{Φ̂`µν(t, s), Ĝ`µν(t, s), K̂µν(t), ∆̂µ(t)}

∇2
q1S =

[
0 U>

U κ

]
, κ ≡ ∇2

q21
S , U ≡ ∇2

q21q
1
1
S (44)

We seek a physically sensible inverse where the variance of q2
1 is vanishing [51, 53]. This leads to

the following sub-propagator Σ0

Σ0 = −[∇2
q1S]−1 =

[
U−1κ[U−1]> −U−1

−[U>]−1 0

]
(45)

Thus given κ,U , we can solve for Σ0 and ultimately for the full propagator Σ. The relevant entries
in κ and U are given by those second derivatives calculated above. We note that each of the field
derivatives needed for U can be computed implicitly from the field dynamics. For example, for the
∆µ(t) derivatives we have

∂

∂∆ν′(t′)
h`µ(t) = γΘ(t− t′)Φ`−1

µν′ (t, t
′)g`ν(t′)

+ γ

∫ t

0

ds
∑
ν

[
A`−1
µν (t, s) + Φ`−1

µν (t, s)∆ν(s)
] ∂g`ν(s)

∂∆ν′(t′)

∂

∂∆ν(t′)
z`µ(t) = γΘ(t− t′)G`+1

µν (t, t′)φ(h`ν(t′))

+ γ

∫ t

0

ds
∑
ν

[
B`µν(t, s) +G`+1

µν (t, s)∆ν(s)
] ∂φ(h`ν(s))

∂∆ν′(t′)
(46)

These can then be used in the averages such as
〈

∂
∂∆ν′ (t

′)φ(h`µ(t))φ(h`ν(s))
〉

. Similarly, we can

compute terms such as
∂h`µ(t)

∂Φ`
αβ(t′,s′)

through the following closed equations

∂h`µ(t)

∂Φ`−1
αβ (t′, s′)

= γδ(t− t′)δµαΘ(t− s′)∆β(s′)

+ γ

∫ t

0

ds
∑
ν

[
A`−1
µν (t, s) + ∆ν(s)Φ`−1

µν (t, s)
] ∂g`ν(s)

∂Φ`αβ(t′, s′)

∂z`µ(t)

∂Φ`−1
αβ (t′, s′)

= γ

∫ t

0

ds
∑
ν

[
B`µν(t, s) + ∆ν(s)G`+1

µν (t, s)
] ∂φ(h`ν(s))

∂Φ`−1
αβ (t′, s′)

(47)

These terms can then be used to compute quantities like DΦ` .

27

F Solving for the Propagator
In this section we sketch out the required steps to obtain the propagator Σ.

• Step 1: Solve the infinite width DMFT equations for q∞ which include the prediction error
dynamics ∆µ(t), the feature kernels Φ`µν(t, s), gradient kernels G`µν(t, s). This step corresponds
to algorithm in Bordelon & Pehlevan ’22 and defines the dynamics one would expect at infinite
width [9]. See below for more detail.

• Step 2: Compute the entries of the Hessian of S evaluated at the q∞ computed in the first step.
Some of these entries look like fourth cumulants of features like κ =

〈
φ(h)4

〉
−
〈
φ(h)2

〉2
and some

of them measure sensitivity of one order parameter to a perturbation in another order parameter
DΦ` = ∂

∂Φ`−1

〈
φ(h`)2

〉
. The averages 〈〉 used to calculate κ and DΦ` should be performed over

the infinite width stochastic processes for preactivations h` which are defined in equation (19).
• Step 3: After populating the entries of the block matrix for the Hesssian∇2S, we then calculate the

propagator Σ with a matrix inversion. Since we discretized time, this is a finite dimensional matrix.

The step 1 above demands a solution to the infinite width DMFT equations (solving for the saddle
point q∞). We will now give a detailed set of instructions about how the infinite width limit for q∞
is solved (step 1 above). This corresponds to the algorithm of Bordelon & Pehlevan 2022 to solve
the saddle point equations ∂

∂qS(q)|q∞ = 0 [9].

• Step 1: Start with a guess for the kernels Φ`µν(t, s), G`µν(t, s) and for the predictions through time
fµ(t). We usually use the lazy limit (e.g. Φ`µν(t, s) = Φ`µν(0, 0) ...) as an initial guess.

• Step 2: Sample Gaussian sources u`µ(t) and r`µ(t) based on the current covariances Φ` and G`.
• Step 3: For each sample, solve integral equations for h(t) and z(t).

h`µ(t) = u`µ(t) + γ

∫ t

0

ds
∑
ν

[A`−1
µν (t, s) + Φ`−1

µν (t, s)][φ̇(h`ν(s))z`ν(s)]

z`µ(t) = r`µ(t) + γ

∫ t

0

ds
∑
ν

[B`µν(t, s) +G`+1
µν (t, s)]φ(h`ν(s)) (48)

These will be samples from the single site distribution for h, z
• Step 4: Average over the Monte Carlo samples to produce a new estimate of the kernels: Φ`(t, s) =〈

φ(h`(t))φ(h`(s))
〉
. A similar procedure is performed for G` and the response functions A`, B`.

• Step 5: Compute the NTK estimate K(t) =
∑
`G

`+1(t, t)Φ`(t, t) and then integrate prediction
dynamics from the dynamics of the NTK d

dtfµ(t) =
∑
ν Kµν(t)∆ν(t).

• Repeat steps 2-5 until the order parameters converge.
Below we provide a pseudocode algorithm to solve for the propagator elements.

Algorithm 1: Propagator Solver

Data: Kx,y, Initial Guesses {Φ`,G`}L`=1, {A`,B`}L−1
`=1 , Sample count S, Update Speed β

Result: Propagator Matrix Σ
1 Solve DMFT equations with Algorithm 2 for order parameters fµ(t),Φ`µα(t, s), ... ;
2 Draw S samples {u`µ,n(t)}Sn=1 ∼ GP(0,Φ`−1), {r`µ,n(t)}Sn=1 ∼ GP(0,G`+1);
3 Integrate dynamics for each sample to get {h`µ,n(t), z`µ,n(t)}Sn=1;
4 Estimate κ functions with Monte Carlo integration, for instance
5 κΦ`

µναβ(t, s, t′, s′) =
1
S
∑
n∈[S] φ(h`µ,n(t))φ(h`ν,n(s))φ(h`α,n(t′))φ(h`β,n(s′))− Φ`µν(t, s)Φ`αβ(t′, s′) ;

6 For each sample, compute field sensitivities to error signals, such as
∂h`µ,n(t)

∂∆ν(s) , and kernels
∂h`µ,n(t)

∂Φ`αβ(t′,s′)
implicitly using equations (46) (47) ;

7 Use these sensitivities to compute the necessary D tensors such as
DΦ`∆
µνα = 1

S
∑
n∈[S]

∂
∂∆α(t′)

[
φ(h`µ,n(t))φ(h`ν,n(s))

]
;

8 Invert U matrix and compute Σ0 in equation (45);
9 Compute the Schur-complement in equation (43) to handle the response functions ;

28

The above propagator solver builds on the solution to the DMFT equations which is provided below.

Algorithm 2: Alternating Monte Carlo Solution to Saddle Point Equations

Data: Kx,y, Initial Guesses {Φ`,G`}L`=1, {A`,B`}L−1
`=1 , Sample count S, Update Speed β

Result: Final Kernels {Φ`,G`}L`=1, {A`,B`}L−1
`=1 , Network predictions through training fµ(t)

1 Φ0 = Kx ⊗ 11>,GL+1 = 11> ;
2 while Kernels Not Converged do
3 From {Φ`,G`} computeKNTK(t, t) and solve d

dtfµ(t) =
∑
α ∆α(t)KNTK

µα (t, t);
4 ` = 1;
5 while ` < L+ 1 do
6 Draw S samples {u`µ,n(t)}Sn=1 ∼ GP(0,Φ`−1), {r`µ,n(t)}Sn=1 ∼ GP(0,G`+1);
7 Integrate dynamics for each sample to get {h`µ,n(t), z`µ,n(t)}Sn=1;
8 Compute new Φ`,G` estimates:
9 Φ̃`µα(t, s) = 1

S
∑
n∈[S] φ(h`µ,n(t))φ(h`α,n(s)), G̃`µα(t, s) = 1

S
∑
n∈[S] g

`
µ,n(t)g`α,n(s) ;

10 Solve for Jacobians on each sample ∂φ(h`n)
∂r`>n

,
∂g`n
∂u`>n

;
11 Compute newA`,B`−1 estimates:

12 Ã` = 1
S
∑
n∈[S]

∂φ(h`n)
∂r`>n

, B̃`−1 = 1
S
∑
n∈[S]

∂g`n
∂u`>n

;
13 `← `+ 1;
14 end
15 ` = 1;
16 while ` < L+ 1 do
17 Update feature kernels: Φ` ← (1− β)Φ` + βΦ̃`,G` ← (1− β)G` + βG̃` ;
18 if ` < L then
19 UpdateA` ← (1− β)A` + βÃ`,B` ← (1− β)B` + βB̃`

20 end
21 `← `+ 1
22 end
23 end
24 return {Φ`,G`}L`=1, {A`,B`}L−1

`=1 , {fµ(t)}Pµ=1

G Leading Correction to the Mean Order Parameters

In this section we use the propagator structure derived in the last section to reason about the leading
finite size correction to 〈q〉 at width N . Letting the indices i, j, k, n enumerate all entries of the order
parameters in q (technically this is a sum over samples and an integral over time for gradient flow),
we find the leading Pade Approximant for the mean has the form (App D)

〈qi − q∞i 〉N =
N 〈(qi − q∞i)V 〉∞ + N2

2

〈
(qi − q∞i)V 2

〉
∞ ...

1 +N 〈V 〉∞ + N2

2 〈V 2〉∞ + ...

∼ 1

3!N

∑
jkl

∂3S

∂qj∂qk∂ql
〈δiδjδkδl〉∞ +O(N−2). (49)

=
1

2N

∑
jkl

∂3S

∂qj∂qk∂ql
ΣijΣkl +O(N−2) (50)

where δj =
√
N(qj − q∞j) and the derivatives are computed at the saddle point. In the last line, we

utilized Wick’s theorem and the permutation symmetry of the third derivative ∂3S
∂qi∂qj∂qk

to evaluate
the four point averages in terms of the propagator Σij , which was provided in the preceding section
E. In practice computing even the full set of second derivatives for the DMFT action to get Σ is
quite challenging. Despite the challenge of computing the mean order parameter correction, these
corrections are relevant in practice and crucially distinguish the training timescales of deep networks
at different widths as we show in Figures 7 and A.4.

29

G.1 Correction to Mean Predictions and Full MSE Correction

Supposing that we solved for the propagator Σ, using the formalism in the preceeding section, we
can compute the O(N−1) correction to the average network prediction error due to finite size. We let
〈∆(t)〉 represent the average of errors over an ensemble of width N networks.

d

dt
〈∆µ(t)〉 = −

∑
ν

〈Kµν(t)∆ν(t)〉

= −
∑
ν

〈Kµν(t)〉 〈∆ν(t)〉 −
∑
ν

Cov (Kµν(t),∆ν(t))

∼ −
∑
ν

〈Kµν(t)〉 〈∆ν(t)〉 − 1

N

∑
ν

ΣK∆
µνν(t, t) +O(N−2) (51)

where ΣK∆
µνν(t, t) is the leading covariance (propagator element) between the kernel Kµν(t) and

prediction error ∆ν(t). We see that the average kernel 〈Kµν(t)〉 (which depends on the finite width
N) plays an important role in characterizing the timescales of the average prediction dynamics. Once
this equation is solved for 〈∆µ(t)〉, the square loss at width N and time t has the form∑
µ

〈
∆µ(t)2

〉
∼
(

1− 2

N

)∑
µ

∆∞µ (t)2 +
2

N

∑
µ

〈∆µ(t)〉∞∆∞µ (t) +
1

N

∑
µ

Σ∆
µµ(t, t) +O(N−2)

(52)

We will now comment on the structure of the cross term in this above solution. First, if 〈K〉 �K∞
and ΣK∆ is negligible then the average errors at finite width will decay more rapidly than the infinite
width model. However, we suspect that in general, 〈K〉 −K∞ contains many negative eigenvalues
since signal propagation at finite width tends to reduce the scale of feature kernels [14]. We suspect
that this is the cause of the slower dynamics of ensembled predictors for narrower networks in Figure
7 and Figure A.4. Additionally, the term involving ΣK∆ will generically increase the cross term
since the dynamics of ∆ cause its fluctuations to become anti-correlated with the fluctuations in K.
In general, it is challenging to make strong definitive statements about the relative scale of these
competing effects on the cross term. However, we can say more about this solution in the lazy limit,
where we find that the cross term will generically be positive, leading to larger MSE (Appendix H.2).

G.2 Perturbation Theory in Rates rather than Predictions

In experiments on deep CNNs trained on CIFAR-10 in 7 and A.4, we find that the loss curves for
the ensemble averaged predictors are effectively time rescaled by a function of network width. In
this section, we argue that a proper way to account for this is to compute a perturbation expansion in
the exponent which defines the rate of decay of the training errors. To illustrate the point, we first
consider the case of a single training example before describing larger datasets. In this case, we
consider the change of variables ∆(t) = e−r(t)y. We now treat r as an order parameter of the theory
with dynamics

d

dt
r(t) = K(t) (53)

Note that this equation is now a linear relation between two order parameters (r(t),K(t)), whereas
the relation was previously quadratic. In the lazy limit, if K → K − ε then r → r − εt, giving an
effective rescaling of training time by 1− ε

K .

For multiple training examples, we introduce the notion of a transition matrix T (t) ∈ RP×P which
has dynamics

d

dt
T (t) = −K(t)T (t) , T (0) = I. (54)

The solution to the training prediction errors can be obtained at any time t by multiplying the initial
condition ∆(0) = y with the transition matrix ∆(t) = T (t)y, where y are the training targets. In
this case, the relevant rate matrix, which would be an alternative order parameter is

R(t) = − logT (t) (55)

30

where log is the matrix logarithm function. Note that in general T (t) admits a Peano-Baker series
solution [62–64]. In the special case whereK(t) commutes with K̄(t) = 1

t

∫ t
0
dsK(s), we obtain

the following simplified formula for the rate matrixR

R(t) =

∫ t

0

dsK(s) (56)

The benefit of this representation is the elimination of coupled order parameter dynamics which are
quadratic in fluctuations (in ∆ andK) into a linear dynamical relation between order parametersR
andK. An expansion inR will thus give better predictions at long times t than a direct expansion in
∆. In the lazy γ → 0 limit, the constancy of K(t) = K gives the further simplification R = Kt.
Working with this representation, we have the following finite width expression for the training loss

〈
|∆(t)|2

〉
= y> 〈exp (−2R(t))〉y

∼ y> exp

(
−2

(
R∞(t) +

1

N
R1(t)

))
y

+
1

2

∑
µναβ

ΣRµναβ(t, t)
∂2

∂Rµν∂Rαβ
y> exp (−2R)y|R=R∞(t)+ 1

NR
1(t) +O(N−2) (57)

where 〈R〉 ∼ R∞+ 1
NR

1 +O(N−2) is the leading correction to the meanR. In this representation,
it is clear that finite width can alter the timescale of the dynamics through a correction to the mean of
R, as well as contribute an additive correction from fluctuations. This justifies the study perturbation
analysis of rates RN as a function of 1/N in Figures 7 and A.4.

H Variance in the Lazy Limit

We can simplify the propagator equations in the lazy γ → 0 limit. To demonstrate how to use our
formalism, we go through the complete process of inverting the Hessian, however, for this case, this
procedure is a bit cumbersome. A simplified derivation for the lazy limit can be found below in
section H.1 which relies only on linearizing the dynamics around the infinite width solution. In the
γ → 0 limit, all of the D tensors vanish and the κ tensors are constant in time. Thus, it suffices to
analyze the kernels restricted to t = 0 and study the evolution of the prediction variance ∆(t).

S =

∫
dt
∑
µ

∆̂µ(t)

(
∆µ(t)− yµ +

∫
ds
∑
ν

Θ(t− s)Kµν∆ν(s)

)

+
∑
`

∑
µν

[
Φ̂`µνΦ`µν +G`µνĜ

`
µν

]
+
∑
µν

K̂µν

[
Kµν −

∑
`

G`+1
µν Φ`µν

]
+
∑
`

lnZ`

Z` = E{u`µ},{r`µ} exp

(
−
∑
µν

Φ̂`µνφ(u`µ)φ(u`ν)−
∑
µν

Ĝ`µνg
`
µg
`
ν

)
, g`µ = r`µφ̇(u`µ) (58)

where {u`µ} ∼ N (0,Φ`−1), {r`µ} ∼ N (0,G`+1). Taking two derivatives with respect to {Φ̂`, Ĝ`}
give terms of the form

κΦ`

µναβ =
〈
φ(u`µ)φ(u`ν)φ(u`α)φ(u`β)

〉
− Φ`µνΦ`αβ

κG
`

µναβ =
〈
g`µg

`
νg
`
αg

`
β

〉
−G`µνG`αβ

κΦ`,G`

µναβ =
〈
φ(u`µ)φ(u`ν)g`αg

`
β

〉
− Φ`µνG

`
αβ (59)

31

Given these we also have the relevant non-vanishing sensitivity tensors

DΦ`+1Φ`

µναβ =
∂2

∂Φ`αβ

〈
φ(u`+1

µ)φ(u`+1
ν)

〉
, DG`G`+1

µναβ =
∂

∂G`+1
αβ

〈
g`µg

`
ν

〉
DG`Φ`−1

µναβ =
∂

∂Φ`−1
αβ

〈
g`µg

`
ν

〉
(60)

DKΦ`

µναβ = δµαδνβG
`+1
µν , DKG`

µναβ = δµαδνβΦ`−1
µν

D∆K
µαβ(t) =

∫
dsΘ(t− s)δµα∆β(s) (61)

As before we let q1 = Vec{∆µ(t),Φ`µν , G
`
µν ,Kµν} and q2 = Vec{∆̂µ(t), Φ̂`µν , Ĝ

`
µν , K̂µν}. The

propagator has the form

U ≡ ∇2
q2q1S =

I + ΘK 0 0 D∆K

0 I−DΦ,Φ 0 0
0 −DGΦ I−DGG 0
0 −DKΦ −DKG I

 , ∇2
q2q2S =

0 0 0 0
0 κΦ,Φ κΦG 0
0 κGΦ κGG 0
0 0 0 0

(62)

The propagator of interest is Σq1 = U−1
[
∇2
q2q2S

]
U−1>. We can exploit the block structure of U

to find an inverse

U−1 =

U−1

∆∆ U−1
∆Φ U−1

∆G U−1
∆K

0 U−1
ΦΦ 0 0

0 U−1
GΦ U−1

GG 0
0 U−1

KΦ U−1
KG I

 (63)

where each sub-block can be computed with the Schur-complement formula. Altogether, we multiply
through to get the propagator

Σ =

0 U−1

∆Φκ
ΦΦ +U−1

∆Gκ
GΦ U−1

∆Φκ
ΦG +U−1

∆Gκ
GG 0

0 U−1
ΦΦκ

ΦΦ U−1
ΦΦκ

ΦG 0
0 U−1

GΦκ
ΦΦ +U−1

GGκ
GΦ U−1

GΦκ
ΦG +U−1

GGκ
GG 0

0 U−1
KΦκ

ΦΦ +U−1
KGκ

GΦ U−1
KΦκ

ΦG +U−1
KGκ

GG 0

×

U−1

∆∆ 0 0 0
[U−1

∆Φ]> U−1
ΦΦ [U−1

GΦ]> [U−1
KΦ]>

[U−1
∆G]> 0 U−1

GG [U−1
KG]>

[U−1
∆K]> 0 0 I

 (64)

Two of these blocks corresponding toK,∆ are especially important for characterizing the fluctuations
of network predictions. The covariance structure for K has the form

ΣK = U−1
KΦκ

ΦΦ[U−1
KΦ]> +U−1

KGκ
GΦ[U−1

KΦ]> +U−1
KΦκ

ΦG[U−1
KG]> +U−1

KGκ
GG[U−1

KG]> (65)

Next we use the fact that U−1
∆Φ = U−1

∆KU
−1
KΦ and that U−1

∆G = U−1
∆KU

−1
KG, which follows from the

block structure of U . Consequently we arrive at the identity

Σ∆ = U−1
∆Φκ

ΦΦ[U−1
∆Φ]−1 +U−1

∆Gκ
GΦ[U−1

∆Φ]−1 +U−1
∆Gκ

GΦ[U−1
∆Φ]−1 +U−1

∆Gκ
GG[U−1

∆G]−1

= U−1
∆KΣK [U−1

K∆]>. (66)

Lastly, we note that, by the Schur-complement formula that U−1
∆K = − (I + ΘK)

−1
D∆K . Thus,

writing (I + ΘK) Σ∆ (I + ΘK)
>

= D∆KΣK [D∆K]> as an integral equation, we find

Σ∆
µν(t, s) +

∫ t

0

dt′
∑
α

KµαΣ∆
αν(t′, s) +

∫ s

0

ds′
∑
β

KνβΣ∆
µβ(t, s′)

+

∫ t

0

dt′
∫ s

0

ds′
∑
αβ

KµαKνβΣ∆
αβ(t′, s′) =

∑
αβ

∫ t

0

∆α(t′)

∫ s

0

ds′∆β(s′)ΣKµα,νβ (67)

32

Differentiation with respect to t and s gives a simple differential equation

∂2

∂t∂s
Σ∆
µν(t, s) +

∑
α

Kµα
∂

∂s
Σ∆
αν(t, s) +

∑
β

Kνβ
∂

∂t
Σ∆
µβ(t, s)

+
∑
αβ

KµαKνβΣ∆
αβ(t, s) =

∑
αβ

∆α(t)∆β(s)ΣKµα,νβ (68)

Let {ψk} be the eigenvectors of the kernel matrixK. Projecting these dynamics on the eigenspace
Σk`(t, s) = ψ>k Σ(t, s)ψ` recovers the equation in the main text(

∂

∂t
+ λk

)(
∂

∂s
+ λ`

)
Σk`(t, s) =

∑
k′`′

∆k′(t)∆`′(s)Σ
K
kk′``′ (69)

Replacing ΣK = κ recovers the equation (7) in the main text.

H.1 Perturbed Linear System

In this section, we provide a simpler derivation of the lazy limit training error variance dynamics. In
this case, we merely perturb the dynamics around its infinite width value ∆(t) = ∆∞(t) + ε∆(t)
andK = K∞ + εK , and keep terms only linear in these perturbations. The perturbation εK is fixed
in time and the dynamics of ε∆(t) are

d

dt
ε∆(t) = −K∞ε∆(t)− εK∆∞(t) (70)

Projecting this equation on the eigenspace ofK∞ gives

d

dt
ε∆k (t) = −λkεk(t)−

∑
k′

εKkk′∆
∞
k′ (t) (71)

This immediately recovers the final result of the last section

N

(
∂

∂t
+ λk

)(
∂

∂t
+ λk

)〈
ε∆k (t)ε∆` (s)

〉
=

(
∂

∂t
+ λk

)(
∂

∂t
+ λk

)
Σ∆
k`(t, s)

=
∑
k′`′

ΣKkk′``′∆
∞
k′ (t)∆

∞
`′ (s) (72)

Qualitatively, the process of computing this linear correction (in εK) to the dynamics of ∆ is identical
to the argument utilized in prior work on perturbative feature learning corrections [11]. In that context,
the perturbation is caused by small amounts of feature learning, rather than initialization fluctuations.

H.2 Mean Prediction Error Correction in the Lazy Limit

Using a similar heuristic as in the preceeding section, we now consider the correction to the mean
predictor 〈∆µ(t)〉 in the lazy limit. Taylor expanding 〈∆(t)〉 in powers of 1/N , we find

d

dt
〈∆(t)〉 =

d

dt
∆∞(t) +

1

N

d

dt
∆1(t) + ...

= −〈(K −K∞ +K∞) (∆−∆∞ + ∆∞)〉
= −K∞∆∞ −K∞ 〈∆−∆∞〉
− 〈(K −K∞)〉∆∞ − 〈(K −K∞) (∆−∆∞)〉

∼ −K∞∆∞ − 1

N
K∞∆1 − 1

N
K1∆∞ − 1

N

〈
εKε∆

〉
∞ +O(N−2) (73)

From the previous section we have that

d

dt
ε∆ = −K∞ε∆ − εK∆∞ =⇒ ε∆(t) = −

∫ t

0

ds exp (−K∞(t− s)) εK exp (−K∞s)y

(74)

33

Projecting these dynamics onto the eigenspace of the kernel gives

ε∆k (t) = −
∑
`

εKk`
e−λ`t − e−λkt

λk − λ`
y` (75)

where ` = k should be seen as the limit where λk → λ` of the above. Thus we find that the leading
mean correction to the error solves the following differential equation(

d

dt
+ λk

)
∆1
k(t) = −

∑
`

K1
k`y`e

−λ`t +
∑
``′

ΣKk```′
e−λ`′ t − e−λ`t

λ` − λ`′
y`′ .

=
∑
`

y`e
−λ`t

[
−K1

k` + ΣKk```t
]

+
∑
` 6=`′

ΣKk```′
e−λ`′ t − e−λ`t

λ` − λ`′
y`′ (76)

We see that at late sufficiently large t, that the terms involving ΣK will dominate. We can gain
more intuition by considering the special case of a single training data point where the mean error
correction has the form(

d

dt
+ λ

)
∆1(t) = ye−λt

[
−K1 + tΣK

]
=⇒ ∆1(t) = y

[
−tK1 +

1

2
t2ΣK

]
e−λt

=⇒
〈
∆(t)2

〉
∼ ∆∞(t)2 +

1

N

[
2y2te−2λt

[
−K1 +

1

2
tΣK

]
+ Σ∆(t, t)

]
+O(N−2)

∼ ∆∞(t)2 +
2

N
y2te−2λt

[
−K1 + ΣKt

]
+O(N−2) (77)

While the term involving ΣK is positive for all t, K1 could be positive or negative for a given
architecture. If K1 is positive, then MSE is initially improved at early times but after t > K1

ΣK
the

MSE is worse than the infinite width. On the other hand, if K1 is negative (as we suspect is typically
the case), then the MSE will strictly decrease with network width for any time t.

I Two Layer Equations and Time/Time Diagonal

In this section, we analyze two layer networks in greater detail. Unlike the deep network case, two
layer networks can be analyzed on the time-time diagonal: ie the dynamics only depend on Φ(t, t)
and G(t, t) rather than on all possible off-diagonal pairs of time points. Further, there are no response
functions A`, B` which complicate the recipe for calculating the propagator (Appendix E).

I.1 A Single Training Point

For a two layer network trained on a single training point with norm constraint |x|2 = D, we have
the following DMFT action

S[{K(t), K̂(t),∆(t), ∆̂(t)}] (78)

=

∫
dt

[
K(t)K̂(t) + ∆̂(t)

(
∆(t)− y +

∫
ds Θ(t− s)∆(s)K(s)

)]
+ lnZ[K̂, f] , Z = Eh,g exp

(
−
∫
dtK̂(t)[φ(h(t))2 + g(t)2]

)
.

The saddle point equations are
∂S

∂K̂(t)
= K(t)−

〈
[φ(h(t))2 + g(t)2]

〉
= 0

∂S

∂∆̂(t)
= ∆(t)− y +

∫
ds Θ(t− s)∆(s)K(s) = 0

∂S

∂K(s)
= K̂(s) + ∆(s)

∫
dt ∆̂(t)Θ(t− s) = 0

∂S

∂∆(s)
= ∆̂(s) +K(s)

∫
dt ∆̂(t)Θ(t− s) = 0 (79)

34

From these equations, we can compute the entries in the Hessian of the DMFT action S. Letting

q(t) =

[
∆(t)
K(t)

]
and q̂(t) =

[
∆̂(t)

K̂(t)

]
∂2S

∂q(t)∂q(s)>
= 0

∂2S

∂q̂(t)∂q(s)>
=

[
δ(t− s) + Θ(t− s)K(s) Θ(t− s)∆(s)

−
〈

∂
∂∆(s) (φ(h(t))2 + g(t)2)

〉
δ(t− s)

]
∂2S

∂q̂(t)∂q̂(s)>
=

[
0 0
0 κ(t, s)

]
(80)

where κ(t, s) =
〈
(φ(h(t))2 + g(t)2)(φ(h(s))2 + g(s)2)

〉
−K(t)K(s) is the NTK’s fourth cumulant.

We now vectorize our order parameters over time q = Vec{q(t)}t∈R+
and q̂ = Vec{q̂(t)}t∈R+

and
express the full Hessian

∇2S =

[
0 ∂2S

∂q∂q̂>

∂2S
∂q̂∂q>

∂2S
∂q̂∂q̂>

]
=⇒ −[∇2S]−1 =

[
(∂2S
∂q̂∂q>

)−1 ∂2S
∂q̂∂q̂ (∂2S

∂q∂q̂>
)−1 −(∂2S

∂q̂∂q>
)−1

−(∂2S
∂q∂q̂>

)−1 0

]
(81)

The covariance matrix of interest (for q(t)) is thus

Σq =

[
I + ΘK Θ∆

−D I

]−1 [
0 0
0 κ

] [
I + ΘK Θ∆

−D I

]−1>

. (82)

where [ΘK](t, s) = Θ(t − s)K(s) and [Θ∆](t, s) = Θ(t − s)∆(s). The above equations allow
one to use the infinite width DMFT dynamics for K(t),∆(t) to compute the finite size fluctuation
dynamics of the kernel K and the error signal ∆.

I.1.1 Computing Field Sensitivities

In this section, we compute D(t, s) by solving for the sensitivity of order parameters. We start with
the DMFT field equations

h(t) = u+ γ

∫ t

0

ds∆(s)g(s) , z(t) = r + γ

∫ t

0

ds∆(s)φ(h(t)). (83)

Now, differentiating both sides with respect to ∆(s′) gives

∂h(t)

∂∆(s′)
= γΘ(t− s′)g(s′) + γ

∫ t

0

ds∆(s)
∂g(s)

∂∆(s′)

∂z(t)

∂∆(s′)
= γΘ(t− s′)φ(h(s′)) + γ

∫ t

0

ds∆(s)
∂φ(h(s))

∂∆(s′)
. (84)

We can compute D Monte carlo by iteratively solving the above equations for each sampled trajectory
{h(t), z(t)} [65, 46]. Averaging the necessary fields over the Monte Carlo samples will give us the
final expressions for D(t, s).

D(t, s) =

〈
∂

∂∆(s)
(φ(h(t))2 + g(t)2)

〉
(85)

Similarly, the uncoupled kernel variance κ(t, s) can be evaluated via Monte Carlo sampling for
nonlinear networks.

I.2 Test Point Fluctuation Dynamics

We now are in a position to calculate the test/train kernel and test prediction fluctuations. To do this
systematically, we augment S with the test point prediction f? and field h? and introduce the kernel

35

K?(t) = 〈φ(h(t))φ(h?(t)) + g(t)g?(t)〉. The test prediction f? and field h? have dynamics

h?(t) = u? + γ

∫ t

0

ds∆(s)φ̇(h?(s))z(s)K
x
? , 〈u?u〉 = Kx

?

∂

∂t
f?(t) = K?(t)∆(t) , K?(t) = 〈φ(h(t))φ(h?(t)) + g(t)g?(t)〉 (86)

The augmented action for this DMFT has the form

S =

∫
dt f̂?(t)

(
f?(t)−

∫
dsΘ(t− s)∆(s)K?(s)

)
+

∫
dt K̂?(t)K?(t)

+

∫
dt ∆̂(t)

(
∆(t)− y +

∫
ds Θ(t− s)∆(s)K(s)

)
+

∫
dt K̂(t)K(t)

+ lnE exp

(
−
∫
K̂(t)(φ(h(t))2 + g(t)2)−

∫
K̂?(t)(φ(h(t))φ(h?(t)) + g(t)g?(t))

)
(87)

We let q(t) = [∆(t), f?(t),K(t),K?(t)]
>

∇2
q̂q̂S[q, q̂] =

0 0 0 0
0 0 0 0
0 0 κ κ>?
0 0 κ? κ??

 , ∇2
q̂,qS[q, q̂] =

I + ΘK 0 Θ∆ 0
−ΘK? I 0 −Θ∆

−D 0 I 0
−D? 0 0 I

D(t, s) =

〈
∂

∂∆(s)
(φ(h(t))2 + g(t)2)

〉
(88)

D?(t, s) =

〈
∂

∂∆(s)
(φ(h(t))φ(h?(t)) + g(t)g?(t))

〉
(89)

Our total covariance matrix / propagator is thus

Σ =

I + ΘK 0 Θ∆ 0
−ΘK? I 0 −Θ∆

−D 0 I 0
−D? 0 0 I

−1 0 0 0 0

0 0 0 0
0 0 κ κ>?
0 0 κ? κ??

I + ΘK 0 Θ∆ 0
−ΘK? I 0 −Θ∆

−D 0 I 0
−D? 0 0 I

−1>

(90)

This is the equation provided in the main text Equation (8).

I.3 Two Layer Linear Network Closed Form

For a linear network on a single data point, we can compute D(t, s) and κ(t, s) analytically. We start
from the field equations

dh(t)

dt
= γ∆(t)z(t) ,

dz(t)

dt
= γ∆(t)h(t) (91)

We can make a change of variables v+(t) = 1√
2
(h(t) + z(t)) and v−(t) = 1√

2
(h(t) − z(t)). We

note that v+(0) = 1√
2
(u+ r) and v−(0) = 1√

2
(u− r) are independent Gaussians. These functions

v+(t), v−(t) satisfy dynamics

dv+

dt
= γ∆(t)v+(t) ,

dv−(t)

dt
= −γ∆(t)v−(t)

=⇒ v+(t) = exp

(
γ

∫ t

0

ds∆(s)

)
v+(0) =⇒ ∂v+(t)

∂∆(s)
= γv+(t)Θ(t− s)

=⇒ v−(t) = exp

(
−γ
∫ t

0

ds∆(s)

)
v−(0) =⇒ ∂v+(t)

∂∆(s)
= −γv−(t)Θ(t− s) (92)

36

Now, we use the fact that v+(0) = 1√
2
(u + r) and v−(0) = 1√

2
(u − r) are independent standard

normal random variables to compute K(t) =
〈
h(t)2 + z(t)2

〉
=
〈
v+(t)2 + v−(t)2

〉
D(t, s) =

∂

∂∆(s)

〈
h(t)2 + z(t)2

〉
= 2γ

[〈
v+(t)2

〉
−
〈
v−(t)2

〉]
Θ(t− s)

= 2γ

[
exp

(
2γ

∫ t

0

ds∆(s)

)
− exp

(
−2γ

∫ t

0

ds∆(s)

)]
Θ(t− s) (93)

This operator is causal (D(t, s) = 0 for s > t) as expected and vanishes as t→ 0. If we take γ → 0,
we have D(t, s)→ 0 which agrees with our reasoning that fields h, z only depend on ∆ in the feature
learning regime. Since all fields are Gaussian in the linear network case, we can use Wick’s theorem
to obtain the exact uncoupled kernel variance in the two layer case.

κ(t, s) =
〈
(h(t)2 + z(t)2)(h(s)2 + z(s)2)

〉
−K(t)K(s)

= 2 〈h(t)h(s)〉2 + 2 〈h(t)z(s)〉2 + 2 〈z(t)h(s)〉2 + 2 〈z(t)z(s)〉2

= 〈v+(t)v+(s) + v−(t)v−(s)〉2 + 〈v+(t)v+(s)− v−(t)v−(s)〉2 (94)

The v±(t) functions are those given above. Using the fact that
〈
v+(0)2

〉
=
〈
v−(0)2

〉
= 1 allows us

to easily compute the single site average above.

J Multiple Samples with Whitened Data

In this section, we analyze the role that sample number plays in dynamics in a simplified model of a
two layer linear network trained on whitened data. Concretely, we assume that xµ·xνD = δµν . The
field equations for preactivations hµ(t) and pregradients z(t) obey

d

dt
hµ(t) = γ∆µ(t)z(t) ,

d

dt
z(t) = γ

P∑
µ=1

∆µ(t)hµ(t) (95)

We will assume the targets have unit norm |y|2 = 1 and we define the projection of ∆ onto the
target as ∆y(t) = y ·∆(t). The other P − 1 orthogonal components are denoted ∆⊥(t) so that
∆ = ∆y(t)y + ∆⊥(t) with ∆⊥(t) · y = 0. At infinite width, ∆⊥ = 0 and our field equations
become

d

dt
hy(t) = ∆y(t)z(t) ,

d

dt
z(t) = ∆y(t)hy(t) , ∆⊥(t) = 0 , h⊥ ∼ N (0, 1) (96)

However, at finite width N , the off-target predictions ∆⊥ fluctuate over random initialization. To
model all of the fluctuations simultaneously, we consider the following action

S = γ

∫
dt
∑
µ

∆̂µ(t)(∆µ(t)− yµ) + lnE exp

(∫
dt
∑
µ

∆̂µ(t)z(t)hµ(t)

)
(97)

which enforces the constraint that ∆µ(t) = yµ − 1
γ 〈z(t)hµ(t)〉 at infinite width. The Hessian over

order parameters q = Vec{∆µ(t), ∆̂µ(t)} has the form

∇2
qS =

[
0 (γI +D)>

γI +D κ

]
, Dµν(t, s) =

〈
∂

∂∆ν(s)
z(t)hµ(t)

〉
(98)

We thus get the following covariance for predictions Σ∆ = (γI +D)−1κ
[
(γI +D)−1

]>
. We now

compute the necessary components of the D tensor

∂hµ(t)

∂∆ν(s)
= γδµνΘ(t− s)z(s) + γ

∫ t

0

dt′∆µ(t′)
∂z(t′)

∂∆ν(s)

∂z(t)

∂∆ν(s)
= γΘ(t− s)hν(s) + γ

∫ t

0

dt′
∑
µ

∆µ(t′)
∂hµ(t′)

∂∆ν(s)

= γΘ(t− s)hν(s) + γ

∫ t

0

dt′∆y(t′)
∂hy(t′)

∂∆ν(s)
(99)

37

In the last line, we used the fact that these equations are to be evaluated at the mean field infinite width
stochastic process where ∆⊥(t) = 0. To compute the sensitivity tensor D, we find the following
equations for our correlators of interest:〈

∂hµ(t)

∂∆ν(s)
z(t)

〉
= δµνγΘ(t− s) 〈z(s)z(t)〉 , µ, ν 6= y〈

∂z(t)

∂∆ν(s)
hµ(t)

〉
= γΘ(t− s)δµν , µ, ν 6= y (100)〈

∂hy(t)

∂∆y(s)
z(t)

〉
= γΘ(t− s) 〈z(s)z(t)〉+ γ

∫ t

0

dt′∆y(t′)

〈
∂z(t′)

∂∆y(s)
z(t)

〉
〈

∂z(t)

∂∆y(s)
z(t′)

〉
= γΘ(t− s) 〈hy(s)z(t)〉+ γ

∫ t

0

dt′′∆y(t′′)

〈
∂hy(t′′)

∂∆y(s)
z(t′)

〉
We therefore see that the components of D decouple over indices. In the y direction, we have the
following equations

Dy(t, s) =

〈
∂hy(t)

∂∆y(s)
z(t)

〉
+

〈
∂z(t)

∂∆y(s)
hy(t)

〉
(101)

where the correlators must be solved self-consistently. We will provide this solution in one moment,
but first, we will look at the orthogonal directions. For the P − 1 orthogonal directions, we obtain the
explicit formula for D in each of these directions

D⊥(t, s) =

〈
∂h⊥(t)

∂∆⊥(s)
z(t)

〉
+

〈
∂z(t)

∂∆⊥(s)
h⊥(t)

〉
= γΘ(t− s) 〈z(t)z(s)〉+ γΘ(t− s) (102)

Now, we return to Dy. To solve these equations we utilize the change of variables employed in the
single sample case v+(t) = 1√

2
(hy(t) + z(t)), v−(t) = 1√

2
(hy(t)− z(t)) (see Appendix I.3). This

orthogonal transformation decouples the dynamics

d

dt
v+(t) = γ∆y(t)v+(t) ,

d

dt
v−(t) = −γ∆y(t)v−(t) (103)

As a consequence, the field derivatives close

∂v+(t)

∂∆y(s)
= γΘ(t− s)v+(s) +

∫ t

0

dt′∆y(t′)
∂v+(t′)

∂∆y(s)

∂v−(t)

∂∆y(s)
= −γΘ(t− s)v−(s)−

∫ t

0

dt′∆y(t′)
∂v−(t′)

∂∆y(s)
(104)

The correlator of interest is

〈hy(t)z(t)〉 =
1

2
〈[v+(t) + v−(t)][v+(t)− v−(t)]〉 =

1

2

〈
v+(t)2 − v−(t)2

〉
(105)

So we get that

Dy(t, s) =
1

2

〈
∂

∂∆y(s)

(
v+(t)2 − v−(t)2

)〉
=

〈
v+(t)

∂v+(t)

∂∆y(s)

〉
−
〈
v−(t)

∂v−(t)

∂∆y(s)

〉
(106)

Similarly, we can derive the on-target and off-target uncoupled variances κy(t, s) and κ⊥(t, s), which
satisfy

κy(t, s) = 〈v+(t)v+(s) + v−(t)v−(s)〉2 + 〈v+(t)v+(s)− v−(t)v−(s)〉2

κ⊥(t, s) =
1

2
〈v+(t)v+(s) + v−(t)v−(s)〉 (107)

38

Using these functions, we arrive at the following variance for each of the P dimensions

Σ∆y = (γI +Dy)
−1
κy (γI +Dy)

−1

Σ∆⊥ = (γI +D⊥)
−1
κ⊥ (γI +D⊥)

−1 (108)

Using the fact that all ∆⊥ variables are independent and identically distributed under the leading
order picture, the expected training loss has the form〈
|∆|2

〉
≈ ∆∞y (t)2 +

2

N
∆1
y(t)∆∞y (t) +

1

N
Σ∆y (t, t) +

(P − 1)

N
Σ∆⊥(t, t) +O(N−2). (109)

where
〈
∆y −∆∞y

〉
= 1

N∆1
y(t) +O(N−2). We note that the bias correction if O(N−1) while the

variance isO(P/N). We compare the above leading order theory with and without the bias correction
in Appendix Figure A.2.

K Online Learning

Our technology for computing finite size effects can easily be translated to a setting where the neural
network is trained in an online fashion, disregarding the effect of SGD noise. At each step, we
compute the gradient over the full data distribution p(x). Focusing on MSE loss, we study the
following equation

d

dt
∆(x, t) = −Ex′∼p(x′)K(x,x′; t)∆(x′, t) (110)

where K(x,x′; t) is the dynamic NTK and ∆(x, t) = y(x) − f(x, t) is the prediction error. In
general the distribution involves integration over an uncountable set of possible inputs x. To remedy
this, we utilize a countable orthonormal basis of functions for the data distribution {ψk(x)}∞k=1.
For example, if p(x) were the isotropic Gaussian density for N (0, I), then ψk could be Hermite
polynomials. We expand ∆ and K in this basis ψk, and arrive at the following differential equation

d

dt
∆k(t) = −

∑
`

Kk`(t)∆`(t) (111)

By orthonormality, the average turned into a sum over all possible orthonormal functions {ψk}.
We note that since K is evolving in time, there is not generally a fixed basis of functions that
diagonalize K, resulting in the couplings across eigenmodes in Equation (111). Since, in online
learning, there is no distinction between the training and test distribution, our error of interest is
simply L(t) =

∑
k ∆k(t)2. To obtain the finite size corrections to this quantity, we compute the joint

propagator for all variables {Kk`(t),∆k(t)}. If we wanted to pursue a perturbation theory in rates
(Appendix G.2), we could again define a transition matrix T and rate matrixR(t) as

R(t) = − logT (t) ,
d

dt
Tk`(t) = −

∑
k′

Kkk′(t)Tk′`(t) , Tk`(0) = δk` (112)

We can then obtain ∆ = exp(−R(t))y, where yk = Exψk(x)y(x). SinceR has a finite size mean
correction and finite size fluctuations, so too does the error ∆k(t) and the loss L (Appendix G.2).

K.1 Two Layer Networks

In the two layer case, instead of tracking kernels, we could instead deal with the distribution over
read-in vectors w ∈ RD and readout scalars a ∈ R as in the original works on mean field networks
[6, 66]. When training on the population risk equations for x ∼ N (0, I)

d

dt
w = aEx∆(x)φ̇(w · x)x = Ex

∂∆(x)

∂x
φ̇(w · x) + E∆(x)φ̈(w · x)w

d

dt
a = Ex∆(x)φ(w · x) (113)

The action has the form

S = γ

∫
dtdx∆̂(t,x)(∆(t,x)− y(x)) + lnEa,w exp

(∫
dtdx∆̂(t,x)a(t)φ(w(t) · x)

)
(114)

39

The Hessian over q = {∆µ(t), ∆̂µ(t)} is

∇2S =

[
0 I +D∆

I +D∆ κ

]
. (115)

where D∆(t,x; s,x′) =
〈

∂
∂∆(s,x′)a(t)φ(w(t) · x)

〉
We can use the following implicit rule

∂a(t)

∂∆(s,x)
= γΘ(t− s)p(x)φ(w(s) · x) + γEx′

∫ t

0

dt′∆(t′,x′)φ̇(w · x′)x′ · ∂w(t)

∂∆(s,x)

∂w(t)

∂∆(s,x)
= γΘ(t− s)p(x)a(s)φ̇(w(s) · x)x

+ γEx′
∫ t

0

dt′∆(t′,x′)

[
∂a(t′)

∂∆(s,x)
φ̇(w · x′) + a(t′)φ̈(w · x′) ∂w(t′)

∂∆(s,x)
· x′
]

(116)

The above equations could be solved and then used to compute D∆(t,x; s,x′) which must then be
inverted to get the observed prediction variance.

K.2 Linear Activations

Using the ideas in the preceding sections, we can make more progress in the case of a two layer
linear network in the online learning setting. The key idea is to track the kernel and prediction error
projections onto the space of linear functions. In this case we get the following DMFT over the order
parameter β(t) = 1

NW
>a ∈ RD.

d

dt
a(t) = γ(β? − β(t)) ·w(t)

d

dt
w(t) = γa(t)(β? − β(t))

β(t) =
1

γ
〈a(t)w(t)〉 (117)

At infinite width, we see that the dynamics can be reduced to tracking the projection of the weights
w and β on the β? direction. The D − 1 off-target dimensions vanish β⊥(t) = 0. At infinite width,
we arrive at the alignment dynamics studied in prior work [64, 9]

d

dt
β(t) = M(t)(β? − β(t))

d

dt
M(t) = γ2β(t)(β? − β(t))> + γ2β(t)(β? − β(t))>

+ 2γ2(β? − β(t)) · β(t)I (118)

We note that β(t) = β(t)β? and thatM has only one special eigenvector β? with eigenvalue m?(t).
It thus suffices to track evolution in this single direction

d

dt
β(t) = m?(t)(β? − β(t)) ,

d

dt
m?(t) = 4γ2β(t)(β? − β(t)) (119)

We note that this equation is identical to the differential equation for a single training example in
Appendix J. Here β? − β(t) plays the role of ∆y(t) and m?(t) plays the role of the kernel Ky(t).
A key observation is the conservation law 4γ2 d

dtβ(t)2 = d
dtm?(t)

2, from which it follows that
m?(t)

2 − 4 = 4γ2β(t) [9]

d

dt
β(t) = 2

√
1 + γ2β(t)2(β? − β(t)) (120)

This is identical to the differential equations for a single sample (producing prediction f(t) and kernel
K(t)) if the following substitutions are made

f(t)↔ β(t) , K(t)↔ m?(t) (121)

40

We now proceed to compute finite size corrections starting from the action

S = γ

∫
dtβ̂(t) · β(t) + lnE exp

(
−
∫
dtβ̂(t) ·w(t)a(t)

)
(122)

The necessary ingredients are

κ(t, s) =
〈
a(t)a(s)w(t)w(s)>

〉
− γ2β(t)β(s)

= 〈a(t)a(s)〉
〈
w(t)w(s)>

〉
+ 〈a(s)w(t)〉

〈
a(t)w(s)>

〉
∈ RD×D (123)

Similarly we have to compute the sensitivity tensor

D(t, s) =

〈
∂

∂β(s)>
a(t)w(t)

〉
∈ RD×D (124)

We start from the dynamics

d

dt
w(t) = γa(t)(β? − β(t)) ,

d

dt
a(t) = γ(β? − β(t)) ·w(t) (125)

Next, we have to calculate causal derivatives for fields

∂

∂β(s)>
w(t) = −γΘ(t− s)a(s)I + γ

∫ t

0

dt′(β? − β(t′))
∂a(t′)

∂β(s)>

∂

∂β(s)
a(t) = −γΘ(t− s)w(s) + γ

∫ t

0

dt′(β? − β(t′)) · ∂w(t′)

∂β(s)
(126)

Following an identical argument as in J, we see thatD has block diagonal structure with Dβ?(t, s)
on the β?β>? direction and D⊥(t, s) in any of the D − 1 remaining directions

Dβ?(t, s) =

〈
∂

∂β(s)
a(t)wβ?(t)

〉
, D⊥(t, s) =

〈
∂

∂β⊥(s)
a(t)w⊥(t)

〉
(127)

Similarly, κ(t, s) has a similar decomposition

κβ?(t, s) = 〈a(t)a(s)〉 〈wβ?(t)wβ?(s)〉+ 〈a(s)wβ?(t)〉 〈a(t)wβ?(s)〉
κ⊥(t, s) = 〈a(t)a(s)〉 〈w⊥(t)w⊥(s)〉+ 〈a(s)w⊥(t)〉 〈a(t)w⊥(s)〉 (128)

The processes have the following equations at infinite width

d

dt
wβ?(t) = γa(t)(β? − β(t)) ,

d

dt
a(t) = γwβ?(t)(β? − β(t)) ,

d

dt
w⊥(t) = 0 (129)

As a consequence we note that 〈w⊥(t)a(s)〉 = 0 so that κ⊥(t, s) = 〈a(t)a(s)〉. Letting v+(t) =
1√
2
(wβ?(t)+a(t)) and v−(t) = 1√

2
(wβ?(t)+a(t)), we find the same decoupled stochastic processes

as in Appendix I.3.

d

dt
v+(t) = γ(β? − β(t))v+(t) ,

d

dt
v−(t) = −γ(β? − β(t))v−(t) (130)

We can use these equations to perform the necessary averages for κβ? and Dβ? . Lastly, we use

∂

∂β⊥(s)
w⊥(t) = −γΘ(t− s)a(s) (131)

to evaluate D⊥(t, s). The observed covariances are just

Σβ? = (γI−Dβ?)−1κβ?(γI−Dβ?)−1> , Σ⊥ = (γI−D⊥)−1κ⊥(γI−D⊥)−1> (132)

We note that these expressions are identical to those in Appendix J under the substitution β?−β(t)→
∆(t) and D → P . Thus the expected test risk is〈

|β(t)− β?|2
〉
∼ (β(t)− β?)2 +

1

N
Σβ?(t, t) +

(D − 1)

N
Σβ⊥(t, t) +O(N−2) (133)

This recovers the variance we obtained in the multiple-sample whitened data case J.

41

K.3 Connections to Offline Learning in Linear Model

Remark 1 The finite size variance of generalization error in an online learning setting with linear
target function y = β∗ · x has an identical form as the model described above. In this setting, we
sample infinitely many fresh data points x ∼ N (0, I) at each step leading to the flow d

dtwi(t) =

γai(t)Ex∆(x)x and d
dtai(t) = γwi(t) ·Ex∆(x)x. The order parameter of interest in this setting is

β(t) = 1
γN

∑N
i=1wi(t)ai(t). The precise correspondence between this setting and the offline setting

is summarized in Table 2. We note that this argument could be extended to higher degree monomial
activations as well, at the cost of tracking higher degree tensors (eg for quadratic activations
M = 1

N

∑N
i=1 aiwiw

>
i ∈ RD×D is sufficient).

Setting Order Params. Target Off-target Dims. Loss Variance Infinite Quantity
Offline ∆ = y − f y P − 1 Train O(PN) D

Online β? − β β? D − 1 Test O(DN) P
Table 2: Summary of the equivalence between the leading 1/N correction in the offline setting and
the online setting for two layer linear networks. In the offline training setting, the order parameters
are the errors ∆ = y − f ∈ RP while in the online case they are β? − β ∈ RD.

As in the offline case, in Fig. 4 (c) and (d) we see that the variance contribution to test loss |β − β?|2
increases with input dimension D. We note that this perturbative effect to the loss dynamics is
reminiscent of the deviations from mean field behavior studied in SGD [43, 44], though this present
work concerns fluctuations driven by initialization variance rather than stochastic sampling of data.
In Fig. 4 (e) we show that richer networks have lower variance at fixed N . Similarly, leading order
theory for richer networks more accurately captures their dynamics as D/N increases (Fig. 4 (f)).

L Deep Linear Networks

For deep linear networks, the fields h`µ(t), g`µ(t) are Gaussian and have the following self-consistent
equations

h`µ(t) = u`µ(t) + γ

∫ t

0

ds
∑
ν

[
A`−1
µν (t, s) + ∆ν(s)H`−1

µν (t, s)
]
g`ν(s) , u`µ(t) ∼ GP(0,H`−1)

g`µ(t) = r`µ(t) + γ

∫ t

0

ds
∑
ν

[
B`µν(t, s) + ∆ν(s)G`+1

µν (t, s)
]
h`ν(s) , r`µ(t) ∼ GP(0,G`+1).

(134)

where H`
µν(t, s) =

〈
h`µ(t)h`ν(s)

〉
and G`µν(t, s) =

〈
g`µ(t)g`ν(s)

〉
and A`µν(t, s) =

〈
∂h`µ(t)

∂rν(s)

〉
and

B`µν(t, s) =

〈
∂h`µ(t)

∂rν(s)

〉
[9]. Therefore, we express the action as a differentiable function of the

order parameters by integrating over the Gaussian field distribution. For concreteness, we vectorize
our fields over time and samples h` = Vec{h`µ(t)}{µ∈[P],t∈R+}, g

` = Vec{g`µ(t)}{µ∈[P],t∈R+} we
consider the contribution of a single hidden layer.

Z` =

∫
dĥ`dĝ`dh`dg` exp

(
−1

2
ĥ`Σuĥ

` + iĥ` · (h` −C`g`)− 1

2
h`>Ĥ`h`

)
exp

(
−1

2
ĝ`Σ`

rĝ
` + iĝ` · (g` −D`h`)− 1

2
g`>Ĝ`g`

)
where C`µν(t, s) = γΘ(t − s)

[
A`−1
µν (t, s) +H`−1

µν (t, s)∆ν(s)
]

and D`
µν(t, s) = γΘ(t −

s)
[
B`µν(t, s) +G`+1

µν (t, s)∆ν(s)
]
. Performing the joint Gaussian integrals over (h`, g`, ĥ`, ĝ`)

we find

lnZ` = −1

2
ln det

−Ĥ` 0 I −D`>

0 −Ĝ` −C`> I
I −C` Σu 0
−D` I 0 Σr

 (135)

42

We can then automatically differentiate the DMFT action to get the propagator. For example, for a
three layer linear network, the full DMFT action has the form

S =
1

2
Tr
[
Ĥ1H1 + Ĥ2H2 + Ĝ1G1 + Ĝ2G2

]
− γ2TrAB

− 1

2
ln det

−Ĥ1 0 I −D1>

0 −Ĝ1 −C1> I
I −C1 11> 0
−D1 I 0 G2

− 1

2
ln det

−Ĥ2 0 I −D2>

0 −Ĝ2 −C2> I
I −C2 H1 0
−D2 I 0 11>

 (136)

where C1 = γΘ∆ and C2 = γΘ∆ �H1 + γA and D1 = γΘ∆ �G2 + γB and D2 = γΘ∆.
This above example can be extended to deeper networks. The total size of the block matrices which
we compute determinants over is 4PT × 4PT for a dataset of size P trained for T steps.

M Discrete Time Dynamics and Edge of Stability Effects

Large step size effects can induce qualitatively different dynamics in neural network training. For
instance, if the step size exceeds that required for linear stability with the initial kernel, the kernel can
decrease in order to stabilize the dynamics [57]. Alternatively, during training the kernel may exhibit
a “progressive sharpening" phase where its top eigenvalue grows before reaching a stability bound
set by the learning rate [19]. It is therefore well motivated to study how dynamics in this regime alter
finite size effects in neural networks. We will first solve a special model which was considered in
prior work [57]: a two layer linear network trained on a single training point. We will then provide
the full DMFT equations for the discrete time case and provide an outline for how one could obtain
finite size effects in that picture.

M.1 Two Layer Linear Equations

In a two layer linear network, the DMFT equations are

h(t+ 1) = h(t) + ηγ∆(t)z(t) , z(t+ 1) = z(t) + ηγ∆(t)h(t)

f(t) =
1

γ
〈z(t)h(t)〉 (137)

The NTK has the form K(t) =
〈
h(t)2 + z(t)2

〉
. We can easily show that the kernel and error have

coupled dynamics

f(t+ 1) = f(t) + η
〈
h(t)2 + z(t)2

〉
∆(t) + η2γ∆(t)2 〈h(t)z(t)〉

= f(t) + ηK(t)∆(t) + η2γ2∆(t)2f(t) (138)

K(t+ 1) = K(t) + 4ηγ∆(t) 〈h(t)z(t)〉+ η2γ2∆(t)2
〈
h(t)2 + z(t)2

〉
= K(t) + 4ηγ2∆(t)f(t) + η2γ2∆(t)2K(t) (139)

These equations define the infinite width evolution of ∆(t) and K(t). Already at this level of analysis,
we can reason about the evolution of K(t). In the small η limit, we could disregard terms of order
O(η2) and arrive at the following gradient flow approximation for K(t) ∼ 2

√
1 + γ2f(t)2 [9]. This

evolution will not reach the edge of stability provided that η < 1√
1+γ2y2

. For large γ and y = 1, this

leads to the constraint ηγ < 1. However, if η exceeds this bound, the gradient flow approximation is
no longer reasonable and the system reaches an edge of stability effect as shown in Figure 6.

To calculate the finite size effects, we need to compute κ and D(t, s) = ∂
∂∆(s)

〈
h(t)2 + z(t)2

〉
. To

evaluate these quantities we utilize the same change of variables employed in Appendix I.3. In
discrete time, these decoupled equations are

v+(t+ 1) = v+(t) + ηγ∆(t)v+(t) , v−(t+ 1) = v−(t)− ηγ∆(t)v−(t). (140)

43

Given ∆(t), these can be expressed as linear systems of equations. Now, we can easily compute the
uncoupled kernel variance

κ(t, s) = 2 〈h(t)h(s)〉2 + 2 〈z(t)z(s)〉2 + 2 〈h(t)z(s)〉2 + 2 〈z(t)h(s)〉2

= 〈v+(t)v+(s) + v−(t)v−(s)〉2 + 〈v+(t)v+(s)− v−(t)v−(s)〉2 . (141)

Similarly, we can calculate D(t, s) by using the fact
〈
h(t)2 + z(t)2

〉
=
〈
v+(t)2 + v−(t)2

〉
D(t, s) = 2

〈
v+(t)

∂v+(t)

∂∆(s)

〉
+ 2

〈
v−(t)

∂v−(t)

∂∆(s)

〉
∂v+(t)

∂∆(s)
= γΘ(t− s)v+(s) +

∑
t′<t

∆(t′)
∂v+(t′)

∂∆(s)

∂v−(t)

∂∆(s)
= −γΘ(t− s)v−(s)−

∑
t′<t

∆(t′)
∂v−(t′)

∂∆(s)
(142)

These can be directly solved as a linear system of equations.

N Computing Details

Experiments for Figures 3, 6 and 2 were conducted on a Google Colab GPU with JAX. Experiments
for Figures 5, A.3, 7 were performed on a NVIDIA SMX4-A100-80GB GPU. The total compute
required for all Figures in the paper took around 4 hours. Jupyter Notebooks to reproduce plots can
be found at https://github.com/Pehlevan-Group/dmft_fluctuations.

44

https://github.com/Pehlevan-Group/dmft_fluctuations

	Introduction
	Related Works

	Problem Setup
	Review of Dynamical Mean Field Theory
	Dynamical Fluctuations Around Mean Field Theory
	Lazy Training Limit
	Rich Regime in Two-Layer Networks
	Kernel and Error Coupled Fluctuations on Single Training Example
	Offline Training with Multiple Samples or Online Training in High Dimension

	Deep Networks
	Variance can be Small Near Edge of Stability
	Finite Width Alters Bias, Training Rate, and Variance in Realistic Tasks
	Discussion
	Additional Figures
	CIFAR-10 Experimental Details
	Review of DMFT: Deriving the Action
	Cumulant Expansion of Observables
	Square Deviation from DMFT
	Mean Deviation from DMFT
	Covariance of Order Parameters

	Propagator Structure for the full DMFT Action
	Solving for the Propagator
	Leading Correction to the Mean Order Parameters
	Correction to Mean Predictions and Full MSE Correction
	Perturbation Theory in Rates rather than Predictions

	Variance in the Lazy Limit
	Perturbed Linear System
	Mean Prediction Error Correction in the Lazy Limit

	Two Layer Equations and Time/Time Diagonal
	A Single Training Point
	Computing Field Sensitivities

	Test Point Fluctuation Dynamics
	Two Layer Linear Network Closed Form

	Multiple Samples with Whitened Data
	Online Learning
	Two Layer Networks
	Linear Activations
	Connections to Offline Learning in Linear Model

	Deep Linear Networks
	Discrete Time Dynamics and Edge of Stability Effects
	Two Layer Linear Equations

	Computing Details

