
Out-of-Distribution Generalization in Kernel
Regression

Abdulkadir Canatar
Department of Physics

Harvard University
Cambridge, MA 02138

canatara@g.harvard.edu

Blake Bordelon
John A. Paulson School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

blake_bordelon@g.harvard.edu

Cengiz Pehlevan
John A. Paulson School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

cpehlevan@g.harvard.edu

Abstract

In real word applications, the data generating process for training a machine
learning model often differs from what the model encounters in the test stage.
Understanding how and whether machine learning models generalize under such
distributional shifts remains a theoretical challenge. Here, we study generalization
in kernel regression when the training and test distributions are different using
the replica method from statistical physics. We derive an analytical formula
for the out-of-distribution generalization error applicable to any kernel and real
datasets. We identify an overlap matrix that quantifies the mismatch between
distributions for a given kernel as a key determinant of generalization performance
under distribution shift. Using our analytical expressions we elucidate various
generalization phenomena including possible improvement in generalization when
there is a mismatch. We develop procedures for optimizing training and test
distributions for a given data budget to find best and worst case generalizations
under the shift. We present applications of our theory to real and synthetic datasets
and for many kernels. We compare results of our theory applied to Neural Tangent
Kernel with simulations of wide networks and show agreement. We analyze linear
regression in further depth.

1 Introduction

Machine learning models are trained to accurately predict on previously unseen samples. A central
goal of machine learning theory has been to understand this generalization performance [1, 2].
While most of the theory in this domain focused on generalizing in-distribution, i.e. when the
training examples are sampled from the same distribution as that of the test examples, in real world
applications there is often a mismatch between the training and the test distributions [3]. Such
difference, even when small, may lead to large effects in generalization performance [4, 5, 6, 7, 8].

In this paper, we provide a theory of out-of-distribution (OOD) generalization for kernel regression
[9, 10, 11] applicable to any kernel and real datasets. Besides being a popular machine learning
method itself, kernel regression is recovered from an infinite width limit of neural networks [12],
making our results relevant to understanding OOD generalization in deep neural networks. Indeed, it

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

has been argued that understanding generalization in kernel methods is necessary for understanding
generalization in deep learning [13].

Using methods from statistical physics [14] and building on techniques developed in a recent line of
work [15, 16], we obtain an analytical expression for generalization in kernel regression when test
data is drawn from a different distribution than the training distribution. Our results apply to average
or typical case learning curves and describe numerical experiments well including those on real data.
In contrast, most previous works focus on worst-case OOD generalization bounds in the spirit of
statistical learning theory [17, 18, 19, 20, 21, 22, 23].

We show examples of how mismatched training and test distributions affect generalization and in
particular, demonstrate that the mismatch may improve test performance. We use our analytical
expression to develop a procedure for minimizing generalization error with respect to the training/test
distributions and present applications of it. We study OOD generalization with a linear kernel in
detail and present examples of how dimensional reduction of the training distribution can be helpful
in generalization, including shifting of a double-descent peak [24]. We present further analyses of
various models in Supplementary Information (SI).

2 OOD Generalization Error for Kernel Regression from the Replica
Method

We consider kernel regression in the setting where training examples are sampled i.i.d. from a
distribution p(x) but the test examples are drawn from a different distribution p̃(x). We derive our
main analytical formula for the generalization error here, and illustrate and discuss its implications in
the following sections.

2.1 Problem setup

We consider a training set D = {(xµ, yµ)}Pµ=1 of size P where the D-dimensional inputs x ∈ RD
are drawn independently from a training distribution p(x) and the noisy labels are generated from a
target function yµ = f̄(xµ) + εµ where the noise covariance is E[εµεν] = ε2δµν . Kernel regression
model is trained through minimizing the training error:

f∗D = arg min
f∈H

1

2

P∑
µ=1

(
f(xµ)− yµ

)2
+ λ 〈f, f〉H , (1)

where subscript D emphasizes the dataset dependence. Here H is a Reproducing Kernel Hilbert
Space (RKHS) associated with a positive semi-definite kernel K(x,x′) : RD ×RD → R, and 〈., .〉H
is the Hilbert inner product.

The generalization error on the test distribution p̃(x) is given by Eg(D) =∫
dx p̃(x)

(
f∗D(x)− f̄(x)

)2
. We note that this quantity is a random variable whose value

depends on the sampled training dataset. We calculate its average over the distribution of all datasets
with sample size P :

Eg = ED
[∫

dx p̃(x)
(
f∗D(x)− f̄(x)

)2]
. (2)

As P grows, we expect fluctuations around this average to fall and Eg(D) to concentrate around Eg .
We will demonstrate this concentration in simulations.

2.2 Overview of the calculation

We calculate Eg using the replica method from statistical physics of disordered systems [14, 25].
Details of calculations are presented in Section SI.1. Here we give a short overview. Readers may
choose to skip this part and proceed to the main result in Section 2.3.

Our goal is to calculate the dataset averaged estimator f∗(x) ≡ EDf∗D(x) and its covariance
ED
[(
f∗D(x)− f∗(x)

)(
f∗D(x′)− f∗(x′)

)]
. From these quantities, we can reconstruct Eg using

2

the bias-variance decomposition of Eg = B + V , where B =
∫
dx p̃(x)

(
f∗(x)− f̄(x)

)2
and

V = ED
[∫

dx p̃(x)
(
f∗D(x)− f∗(x)

)2]
.

For this purpose, it will be convenient to work with a basis in the RKHS defined by Mercer’s theorem
[26]. One can find a (possibly infinite dimensional) complete orthonormal basis {φρ}Mρ=1 for L2(RD)
with respect to the training probability distribution p(x) due to Mercer’s theorem [26] such that

K(x,x′) = Φ(x)>ΛΦ(x′),

∫
dx p(x)Φ(x)Φ(x)> = I, (3)

where we defined M ×M diagonal eigenvalue matrix Λργ = ηρδργ and the column vector Φ(x) =(
φ1(x), φ2(x), . . . , φM (x)

)
. Eigenvalues and eigenfunctions satisfy the integral eigenvalue equation∫

dx′p(x′)K(x,x′)φρ(x
′) = ηρφρ(x). (4)

We note that the kernel might not express all eigenfunctions if the corresponding eigenvalues
vanish. Here we assume that all kernel eigenvalues are non-zero for presentation purposes, however
in Section SI.1 we consider the full case. We also define a feature map via the column vector
Ψρ(x) ≡ (Λ1/2Φ(x))ρ =

√
ηρφρ(x) so that 〈Ψ(x),Ψ(x)〉H = I. The complete basis Φ(x) can

be used to decompose the target function:

f̄(x) = ā>Φ(x) = w̄>Ψ(x), (5)

where w̄ = (Λ−1/2ā), and ā and w̄ are vectors of coefficients. A function belongs to the RKHSH if
it has finite Hilbert norm 〈f, f〉2H = a>Λ−1a <∞.

With this setup, denoting the estimator as f(x) = w>Ψ(x) and the target function f̄(x)
as given in Eq.(5), kernel regression problem reduces to minimization of the energy function
H(w;D) ≡ 1

2λ

∑P
µ=1

(
(w̄ −w)>Ψ(xµ) + εµ

)2
+ 1

2‖w‖
2
2. with optimal estimator weights w∗D =

arg minw H(w;D). We again emphasize the dependence of the optimal estimator weights w∗D to
the particular choice of training data D.

We map this problem to statistical mechanics by defining a Gibbs distribution ∝ e−βH(w;D) over
estimator weights w which concentrates around the kernel regression solution w∗D as β →∞. This
can be used to calculate any function O(w∗;D) by the following trick:

O(w∗;D) = lim
β→∞

∂

∂J
logZ[J ;β,D]

∣∣
J=0

, Z[J ;β,D] =

∫
dwe−βH(w;D)+JO(w), (6)

where Z is the normalizer of the Gibbs distribution, also known as the partition function. Next,
we want to compute the average of EDO(w∗;D) which requires computing ED logZ. Further,
experience from the study of physics of disordered systems suggests that the logarithm of the
partition function concentrates around its mean (is self-averaging) for large P [14], making our
theory applicable to the typical case. However, this average is analytically hard to calculate due to the
partition function appearing inside the logarithm. To proceed, we resort to the replica method from
statistical physics [14], which uses the equality ED logZ = limn→0

EDZn−1
n . The method proceeds

by calculating the right hand side for integer n, analytically continuing the resulting expression to
real valued n, and performing the limit. While non-rigorous, the replica method has been successfully
used in the study of the physics of disordered systems [14] and machine learning theory [27]. A
crucial step in our computation is approximating w>Ψ(x) as a Gaussian random variable via its first
and second moments when averaged over the training distribution p(x). It has been shown that this
approximation yields perfect agreement with experiments [28, 15, 16]. Details of our calculation is
given in Supplementary Section SI.1.

2.3 Main Result

The outcome of our statistical mechanics calculation (Section SI.1) which constitutes our main
theoretical result is presented in the following proposition.
Proposition 1. Consider the kernel regression problem outlined in Section 2.1, where the model
is trained on p(x) and tested on p̃(x). Consider the Mercer decomposition of the RKHS kernel

3

K(x,x′) = Φ(x)>ΛΦ(x′), where we defined M × M (M possibly infinite) diagonal eigen-
value matrix Λργ = ηρδργ and the column vector Φ(x) =

(
φ1(x), φ2(x), . . . , φM (x)

)
, with∫

dx p(x)Φ(x)Φ(x)> = I. Also consider an expansion of the target function in the Mercer basis
f̄(x) = ā>Φ(x).

The dataset averaged out-of-distribution generalization error is given by:

Eg = E0,p(x)
g +

γ′ − γ
1− γ

ε2 + κ2ā>(PΛ + κI)−1O ′(PΛ + κI)−1ā,

κ = λ+ κTr (P + κΛ−1)−1, γ = P Tr (P + κΛ−1)−2, γ′ = P Tr O(P + κΛ−1)−2, (7)

where κ must be solved self-consistently, and we defined the M ×M overlap matrix

Oργ =

∫
dx p̃(x)φρ(x)φγ(x), O ′ = O − 1− γ′

1− γ
I. (8)

Here E0,p(x)
g denotes the generalization error when both training and test distributions are matched

to p(x) and is given by:

E0,p(x)
g =

γ

1− γ
ε2 +

κ2

1− γ
ā>(PΛ + κI)−2ā, (9)

which coincides with the findings of [15, 16]. Further, the expected estimator is:

f∗(x;P) =
∑
ρ

Pηρ
Pηρ + κ

āρφρ(x). (10)

Several remarks are in order.
Remark 1. Our result is general in that it applies to any kernel, data distribution and target function.
When applied to kernels arising from the infinite width limit of neural networks [12], the information
about the architecture of the network is in the kernel spectrum Λ and the target weights ā obtained by
projecting the target function onto kernel eigenbasis.
Remark 2. Formally, the replica computation requires a thermodynamic limit in which P → ∞,
where variations in Eg due to the sampling of the training set become negligible. The precise nature
of the limit depends on the kernel and the data distribution, and includes scaling of other variables
such as D and M with P . We will give examples of such limits in SI. However, we observe in
simulations that our formula predicts average learning curves accurately for even as low as a few
samples.
Remark 3. We recover the result obtained in [15, 16] when the training and test distributions are the
same (O = I which implies Eg = E

0,p(x)
g).

Remark 4. Mismatched training and test distributions may improve test error. Central to our
analysis is the shifted overlap matrix O ′ which may have negative eigenvalues and hence cause better
generalization performance when compared to in-distribution generalization.
Remark 5. The estimator f∗ only depends on the training distribution and our theory predicts that the
estimator eventually approaches to the target f∗ → f̄ for large enough P which performs perfectly
on the training distribution unless there are out-of-RKHS components in target function. The latter
case is studied in depth in Section SI.1.
Remark 6. While stated for a scalar output, our result can be trivially generalized to a vector output
by simply adding the error due to each component of the output vector, as described in [15].

Next we analyze this result by studying various examples.

3 Applications to Real Datasets

First, we test our theory on real datasets and demonstrate its broad applicability. To do that, we define
Dirac training and test probability measures for a fixed dataset D of size M with some point mass
on each of the data points p(x) =

∑
xµ∈D p

µδ(x − xµ) and p̃(x) =
∑

xµ∈D p̃
µδ(x − xµ). With

this measure, the kernel eigenvalue problem in Eq.(4) becomesKdiag(p)Φ = ΦΛ, where diag(p)
denotes the diagonal matrix of probability masses of each data point. In this setup the number of

4

0 20 40 60 80 100
Image Index

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

P

beneficial
detrimental
uniform

(a) Optimized Test Measures

Uniform

0.2

0.1

0.0

0.1

0.2
Beneficial

0.2

0.1

0.0

0.1

0.2
Detrimental

0.2

0.1

0.0

0.1

0.2

(b) Measure change matrix O ′

100 101 102 103

k

1
0
1
2
3
4
5
6
7

k(
)

beneficial
detrimental
uniform

(c) Spectrum of O ′

0 20 40 60 80 100
P

0.0
0.2
0.4
0.6
0.8
1.0
1.2

E g

beneficial
detrimental
uniform

(d) Learning Curves

Figure 1: Shifts in the test distribution can be understood through the matrix O ′. (a) We ran gradient
descent (beneficial) and gradient ascent (detrimental) on the theoretical generalization error Eg with
respect to the test measure on 1000 MNIST images. (a) The final probability of the first 100 images
sorted by probability mass for the beneficial measure. (b) For these three distributions (uniform,
beneficial, detrimental), the measure change matrices O ′ are plotted for the top 10 modes. The
beneficial and detrimental matrices are roughly opposite. (c) The spectrum of O ′ reveals both
negative and positive eigenvalues which demonstrates that increase or a decrease in the generalization
error is possible. (d) The learning curves show the predicted generalization error (lines) along with
trained neural network (triangles) and corresponding NTK regression experiments (dots). Error bars
indicate standard deviation over 35 random trials.

eigenfunctions, or eigenvectors, are equal to the size of entire dataset D. Once the eigenvalues Λ and
the eigenvectors Φ have been identified, we compute the target function coefficients by projecting the
target data yc onto these eigenvectors ac = Φ>diag(p)yc for each target c = 1, . . . , C. Once all of
these ingredients are obtained, theoretical learning curves can be computed using Proposition 1. This
procedure is similar to the one used in [15, 16].

3.1 Shift in test distribution may help or hurt generalization

To analyze the influence of distribution shift on generalization error, we first study the problem of a
fixed training distribution and a shifting test distribution. While one may naively expect that a shift in
the test distribution would always result in worse performance, we demonstrate that mismatch can be
either beneficial or detrimental to generalization. A similar point was made in [4].

Since our generalization error formula is a differentiable function with respect to the training measure,
we numerically optimize Eg with respect to {p̃µ} using gradient descent to find beneficial test
measures where the error is smaller than for the case where training and test measures are matched.
Similarly, we perform gradient ascent to find detrimental test measures, which give higher test error
than the matched case.

The result of this procedure is shown in Figure 1. We perform gradient descent (labeled beneficial)
and gradient ascent (labeled detrimental) on M = 1000 MNIST digits 8’s and 9’s, where target
outputs are binary {−1, 1} corresponding to two digits. We use a depth 3 ReLU fully-connected
neural network with 2000 hidden units at each layer and its associated Neural Tangent Kernel (NTK)
which are computed using the NeuralTangents API [29]. The probability mass assigned to the first
50 points are provided in Figure 1(a). We see that points given high mass for the beneficial test
distribution are given low probability mass for the detrimental test distribution and vice versa. We
plot the measure change matrix O ′ which quantifies the change in the generalization error due to
distribution shift. Recall that in the absence of noise, Eg is of the form Eg = Ematched

g + v>O ′v for

5

Algorithm 1: Optimizing Training Measure at sample size P

Result: GET_LOSS(z ∈ RM ,K ∈ RM×M , y ∈ RM×C , λ ∈ R+)
Compute normalized distribution p = softmax(z);
Diagonalize on Train MeasureKdiag(p)Φ = ΦΛ with Φ>diag(p)Φ = I ;
Get Target Function Weights a = Φ>diag(p)y;
Get Overlap Matrix O = 1

MΦ>Φ ;

Solve Implicit Equation κ = ODE-INT
[
κ̇ = λ+ κ

∑
k

Λkk
ΛkkP+κ − κ

]
;

return Eg(κ, P,Λ,O) (see Proposition 1);
;
Result: OPT_MEASURE(K ∈ RM×M , y ∈ RM , P , T ,η, λ)

Initialize z = 0 ∈ RM , t = 0;
Diagonalize Kernel on Uniform Measure 1

MK = Φ̃Λ̃Φ̃>;
while t < T do

z = z − η GRAD[GET_LOSS(z,K,y, λ)];
t = t+ 1;

end
return softmax(z) ;

a vector v which depends on the task, kernel, training measure and sample size P . Depending on the
eigenvalues and eigenvectors of O ′, and the vector v, the quadratic form v>O ′v may be positive or
negative, resulting in improvement or detriment in the generalization error. In Figure 1(b), we see that
the O ′ matrix for the beneficial test measure appears roughly opposite that of the detrimental measure.
This is intuitive since it would imply the change in the generalization error to be opposite in sign for
beneficial and detrimental measures v>

(
−O ′

)
v = −v>O ′v. The spectrum of the matrix, shown in

Figure 1(c), reveals that it possesses both positive and negative eigenvalues. We plot the theoretical
and experimental learning curves in Figure 1(d). As promised, the beneficial (blue) measure has
lower generalization error while the detrimental measure (orange) has higher generalization error
than the matched case (black). Experiments show excellent match to our theory. In Section SI.2, we
present another application of this procedure to adversarial attacks during testing.

3.2 Optimized Training Measure for Digit Classification with Wide Neural Networks

Often in real life tasks test distribution is fixed while one can alter the training distribution for
more efficient learning. Therefore, we next study how different training distributions affect the
generalization performance of kernel regression when the test distribution is fixed. We provide
pseudocode in Algorithm 1 which describes a procedure to optimize the expected generalization
error with respect to a training distribution of P data points. This optimal training distribution has
been named the dual distribution to p̃(x) [4]. All of the operations in the computation of Eg support
automatic differentiation with respect to logits z ∈ RM that define the training distribution through
softmax(z), allowing us to perform gradient descent on the training measure [30].

As an example, we fix the test distribution to be uniform MNIST digits for 8’s and 9’s and optimize
over the probability mass of each unique digit to minimize Eg, again using a depth 3 ReLU neural
tangent kernel and binary targets {−1, 1}. Our results indicate that it is possible to reduce generaliza-
tion when the training distribution is chosen differently than the uniform test distribution (See Section
SI.2 for extended discussion). In Figure 2, we optimize Eg for P = 30 training samples to extract
the optimal training distribution on NTK. We observe that the high mass training digits are closer
to the center of their class, Figure 2(e). However we also find that optimizing the distribution for
different values of P may cause worse generalization beyond the P used to optimize the distribution
Figure 2(g, h).

We also test our results on neural networks, exploiting a correspondence between kernel regression
with the Neural Tangent Kernel, and training infinitely wide neural networks [12]. Figure 2(i) shows
that our theory matches experiments with ReLU networks of modest width 2000.

6

100 101 102 103

Image Index

10 6

10 5

10 4

10 3

10 2

Pr
ob

 M
as

s

Optimized P = 30
Original Measure

(a) Optimized Measure (b) High Mass Training Digits (c) Low Mass Training Digits

0 20 40 60 80 100
P

0.2

0.4

0.6

0.8

1.0

E g

Optimized P = 30
Original Uniform Measure

(d) Learning Curves

0 200 400 600 800 1000
Image Index

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

W
ith

in
 C

la
ss

 D
ist

an
ce

(e) Within Class Distance (f) Measure Change Matrix

100 101 102 103

Image Index

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Pr
ob

 M
as

s

Optimized P = 10
Optimized P = 25
Optimized P = 50
Original Measure

(g) Optimized Measures

0 20 40 60 80 100
P

0.2

0.4

0.6

0.8

1.0

1.2

E g

Optimized P = 10
Optimized P = 25
Optimized P = 50
Original Uniform Measure

(h) Kernel Regression

0 20 40 60 80 100
P

0.2

0.4

0.6

0.8

1.0

1.2

E g

Optimized P = 10
Optimized P = 25
Optimized P = 50
Original Uniform Measure

(i) Width 2000 Neural Network

Figure 2: We study regression with a uniform test distribution on MNIST 8’s and 9’s. For this fixed
task, we optimize our theoretical generalization error expression over training distributions at P = 30.
This gives a probability distribution over MNIST digits shown in (a). The 30 images with highest
probability mass (b) appear qualitatively more representative of handwritten 8’s and 9’s than those
given the lowest probability mass (c). We plot the theoretical (solid) and experimental (dots) learning
curves for the optimized and original uniform training measure, showing that changing the sampling
strategy can improve generalization. Error bars display standard deviation over 30 repeats. (e) After
ordering each point by their probability mass on the optimized measure, we calculate the average
feature space (in the sense of the kernel) distance to all other points from the same class. This measure
rises with image index, indicating that images with higher probability are approximately centroids
for each class. (f) The optimized measure induces a non-zero measure change matrix O ′. (g) The
optimized probability distributions have different shapes for different training budget sizes P , with
flatter distributions at larger P . (h) Kernel regression experiments agree with theory for each of these
measures. A measure which performs best at low sample sizes may give sub-optimal generalization
at larger sample sizes. (i) The theory also approximates learning curves for finite width 2000 fully
connected neural networks with depth 3, initialized with NTK initialization [12].

4 Linear Regression: An Analytically Solvable Model

Next we study linear regression to demonstrate various interesting OOD generalization phenomena.
Consider a linear target function f̄(x) = β>x where x, β ∈ RD and a linear kernel K(x,x′) =
1
Dx>x′ (in this model M = D). Data are sampled from zero-mean Gaussians with arbitrary
covariance matrices C and C̃ for training and test distributions, respectively.

In this case, the kernel eigenvalue equation can be solved exactly. Denoting the eigenvalues and
eigenvectors of the covariance matrix of the training distribution as CU = UΣ where Σργ = σ2

ρδργ
is the diagonal eigenvalue matrix and U is an orthogonal matrix with columns being eigenvectors of

7

101 102

P

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

E g Mr = 30
Mr = 40
Mr = 60
Mr = 80
Mr = 100
Mr = 120

(a) Varying Training Measure Dimension (b) Effect of Training Measure

Figure 3: (a) Learning curves for linear regression on a target f̄ = β>x where βρ≤40 ∼ N (0, 1),
β60>ρ>40 ∼ N (0, 0.01) and βρ>60 = 0, hence N = 60. Input dimension, label noise and ridge
parameter are D = 120, ε2 = 0 and λ = 10−3. Altering the training measure dimensionality below
or aboveMr = 60 hurts generalization. For all curvesEg → 0 as P →∞ except the blue and orange
lines at Mr = 30, 40 where there is irreducible error since some portion of the target coefficients are
not learned. (b) Same experiment with ε2 = 0.1 label noise and with varying ridge parameters λ.
Target coefficients are βρ≤40 ∼ N (0, 1) and βρ>40 = 0 (N = 40). The variances of training and test
distributions are σ2 = σ̃2 = 1. Left panel and right panels are the learning curves for Mr = 40, 120,
respectively. Dashed vertical lines indicate the number P = Mr = 40, 120. Dots are experiment,
lines are theory. Error bars represent standard deviation over 30 trials.

C, the integral eigenvalue problem becomes ηρφρ(x) = 〈K(x, .), φρ(.)〉p(x) =
σρ
D u>ρ x. Therefore,

the normalized eigenfunctions are φρ(x) = u>ρ x/σρ and the eigenvalues are ηρ = σ2
ρ/D. The

overlap matrix is

Oργ = 〈φρ(.), φγ(.)〉p̃(x) = Σ−1/2U>C̃UΣ−1/2. (11)

Finally computing the target weights as a = Σ1/2U>β, we obtain the generalization error Eq.(1):

Eg = E0,p(x)
g +

γ′ − γ
1− γ

ε2 + (κD)2β>(PC + κDI)−1

(
C̃− 1− γ′

1− γ
C

)
(PC + κDI)−1β,

γ = P Tr C2(PC + κDI)−2, γ′ = P Tr C̃C(PC + κDI)−2,

κ = λ+ κTr C(PC + κDI)−1 (12)
and

E0,p(x)
g =

γ

1− γ
ε2 +

(κD)2

1− γ
β>C(PC + κDI)−2β. (13)

As a consistency check, we note that the generalization error is minimized (Eg = 0) when C̃ = 0
corresponding to a Dirac measure at the origin. This makes sense since target function at origin is 0
and the estimator on the test distribution is also 0.

Next, we consider a diagonal covariance matrix C̃ = σ̃2I for test distribution and
C = diag (σ2, . . . σ2︸ ︷︷ ︸

Mr

, 0, . . . 0︸ ︷︷ ︸
D−Mr

) (14)

for training distribution to demonstrate how training distribution affects generalization in a simplified
setting. The integer Mr corresponds to the rank of the training measure’s covariance which is also
the number of non-zero kernel eigenvalues for the linear kernel. Furthermore we take the target
function to have power only in the first N features (βρ>N = 0) where we adopt to the normalization∑N
ρ=1 β

2
ρ = 1. Thus, the target does not depend on the D −N remaining dimensions xρ>N and we

study how compressing some directions in training distribution influences generalization.

In this case, the self-consistent equation for κ becomes exactly solvable. The generalization error
reduces to:

Eg = σ̃2

(
ε2

σ2

α

(κ′ + α)2 − α
+

κ′2

(κ′ + α)2 − α

Mr∑
ρ=1

β2
ρ +

N∑
ρ=Mr+1

β2
ρ

)
, (15)

8

where κ′ = κ
σ2Mr/D

= 1
2

[
(1 + λ̃ − α) +

√
(1 + λ̃+ α

)2 − 4α], λ̃ = λ
σ2Mr/D

and α = P/Mr.
This result matches that of [16] analyzing in-distribution generalization error when Mr = N = D
and σ2 = σ̃2. We identify λ̃ as an effective regularization parameter as it assumes the role λ plays for
in-distribution generalization (compare to Eq. 7 of [16]).

First, we note that the generalization linearly scales with the variance of the test distribution. This is
due to the linearity of the target and the estimator; any mismatch between them is amplified when the
test points are further away from the origin.

Next, when the dimension of training measure is smaller than the dimension of the target function,
Mr < N , there is an irreducible error due to the fact that kernel machine cannot fit the N −Mr

dimensions which are not expressed in the training data (Figure 3a). However in certain cases
choosing Mr < N may help generalization if the data budget is limited to P ∼ Mr since the
learning happens faster compared to larger Mr. As illustrated in Figure 3a, if the target power is
distributed such that

∑N
ρ=N ′+1 β

2
ρ �

∑N ′

ρ=1 β
2
ρ , choosing Mr = N ′ can be a better strategy despite

the irreducible error due to unexplored target power. In Figure 3a, we picked N = 60 and N ′ = 40
which is the number of directions target places most of its power on. If the data budget was limited to
P < N , choosing Mr = N ′ (orange curve in Figure 3a) performs better than Mr = N (green curve)
although for P ≥ N the Mr < N curve has irreduible error while the Mr = N does not. Reducing
Mr below N ′ (blue curve in Figure 3a) on the other hand does not provide much benefit at small P .

Next, we observe that κ′ is a monotonically decreasing function of α and shows a sharp decrease
near α ≈ 1 + λ̃ which also implies a sharp change in generalization error. In fact when λ̃ = 0, κ′
becomes zero at α = 1 and its first derivative diverges implying either a divergence in generalization
error due to label noise or vanishing of Eg in the absence of noise (Section SI.3). When the labels
are noisy, this non-monotonic behavior α = 1 in Eg (called sample-wise double-descent) signals the
over-fitting of the labels beyond which the kernel machine is able to average over noise and converge
to the true target function [24, 31, 32, 33, 34, 35, 36, 37, 38, 39, 16]. Hence reducing Mr means
that this transition occurs earlier in the learning curve (P ∼ (1 + λ̃)Mr) which implies that less
training samples are necessary to estimate the target function well. Intuitively, sampling from an
effectively higher dimensional space increases the necessary amount of training data to fit the modes
in all directions. In Figure 3(b), we demonstrate this prediction for a linear target and obtain perfect
agreement with experiment.

Finally, we show that increasing effective regularization λ̃, which is controlled by the training
distribution (σ2, Mr), leads to the suppression of double-descent peak, hence avoiding possible
non-monotonicities. However large λ̃ leads to slower learning creating a trade-off. Results from
previous studies [36, 16] have shown the existence of an optimal ridge parameter in linear regression
minimizing the generalization error for all P . Minimizing Eq.(15) with respect to λ, we find that the
optimal ridge parameter is given by:

λ∗ =
Mr

D
ε2. (16)

In Figure 3(b), we show that choosing optimal ridge parameters indeed mitigates the double descent
and results in the best generalization performance.

5 Further Results

In SI, we present other analytically solvable models and further analysis on distribution mismatch for
real data applications.

• In Section SI.2, we analyze the gradient descent/ascent procedures performed in Section 3 and provide
further experiments to motivate how our theory can be used to find mismatched train/test distributions
which improve generalization. We also apply our theory to adversarial attacks during testing.

• In Section SI.3, we study a more general linear regression model with diagonal overlap matrix where
train/test distributions, target function and number of directions kernel expresses vary. When the
target has out-of-RKHS components, we show how distribution shifts may help in generalization.

• In Section SI.4, we apply our theory to rotation invariant kernels such as the Gaussian RBF kernel
and NTK [12] acting on spherical data in high-dimensions. We examine how a mismatched sphere
radius affects the generalization error in the limit P,D →∞ similar to the case solved in [15, 16].

9

• In Section SI.5, we study interpolation versus extrapolation in linear regression and regression in
Fourier space by studying rectangular distributions with different ranges for one-dimensional inputs.

6 Discussion

Interest in kernel methods has recently surged due to their profound connections to deep neural
networks [12, 13, 40, 41], and the replica method of statistical physics proved useful in studying
its generalization properties, inductive biases and non-monotonic learning curves [15, 16, 28, 42,
43, 44, 37, 45]. Along the lines of these works, we analyzed generalization performance of kernel
regression under distribution mismatch and obtained analytical expressions which fit experiments
perfectly including those with wide neural networks. We demonstrated that our formula can be
used to optimize over training distribution on MNIST which revealed that certain digits are better
to sample more often than others. We considered several analytically solvable models, particularly
linear regression for which we demonstrated how dimensional reduction of the training distribution
can be helpful in generalization, including shifting of a double-descent peak. Our theory brings many
insights about how kernel regression generalizes to unseen distributions.

In this work, we focused on generalization error for specific mismatched training and test distributions,
as in [4, 46]. One could, instead, consider a set of possible test distributions that the model could
encounter, and assess out-of-distribution generalization error based on the worst performance on
that set. This distributional robustness approach [47] has been the focus of most previous studies
[19, 48, 49, 50] where one can train a model by minimizing a more general empirical risk on a subset
of all test distributions using robust optimization techniques [51]. More recent approaches aim to
learn invariant relationships across all distributions [21, 22, 20]. It will be interesting to see if our
approach can be generalized to ensembles of training and test distributions.

While our theory accurately describes experiments, it has limitations. First, using it to optimize for a
training distribution requires the knowledge of exact test distribution which could not be available
at the time of training. Second, the theory requires an eigendecomposition of the kernel which is
computationally costly for large datasets. This problem, however, can potentially be solved by using
stochastic methods to compute the kernel regression solution [52]. Third, our theory uses the replica
theory [14], which is not fully rigorous. Fourth, if to be used to describe neural networks, our theory’s
applicability is limited to their kernel regime.

References

[1] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
[2] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.

MIT Press, 2018.
[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.
[4] Carlos R González and Yaser S Abu-Mostafa. Mismatched training and test distributions can

outperform matched ones. Neural computation, 27(2):365–387, 2015.
[5] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep

neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.
[6] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.

Exploring the landscape of spatial robustness. In International Conference on Machine Learning,
pages 1802–1811. PMLR, 2019.

[7] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International Conference on Machine Learning, pages
5389–5400. PMLR, 2019.

[8] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[9] Grace Wahba. Spline models for observational data. SIAM, 1990.
[10] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and

support vector machines. Advances in computational mathematics, 13(1):1, 2000.

10

[11] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[12] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

[13] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning. In International Conference on Machine Learning, pages 541–549,
2018.

[14] Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: An Intro-
duction to the Replica Method and Its Applications, volume 9. World Scientific Publishing
Company, 1987.

[15] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning
curves in kernel regression and wide neural networks. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

[16] Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model
alignment explain generalization in kernel regression and infinitely wide neural networks.
Nature Communications, 12(1):1–12, 2021.

[17] Joaquin Quiñonero-Candela, Masashi Sugiyama, Neil D Lawrence, and Anton Schwaighofer.
Dataset shift in machine learning. Mit Press, 2009.

[18] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79(1):151–175, 2010.

[19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

[20] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex), 2020.

[21] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization, 2019.

[22] Martin Arjovsky. Out of Distribution Generalization in Machine Learning. PhD thesis, New
York University, 2020.

[23] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younes Bennani. Advances
in domain adaptation theory. Elsevier, 2019.

[24] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[25] Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

[26] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[27] Madhu Advani, Subhaneil Lahiri, and Surya Ganguli. Statistical mechanics of complex neural
systems and high dimensional data. Journal of Statistical Mechanics: Theory and Experiment,
2013(03):P03014, 2013.

[28] Rainer Dietrich, Manfred Opper, and Haim Sompolinsky. Statistical mechanics of support
vector networks. Physical review letters, 82(14):2975, 1999.

[29] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks
in python. In International Conference on Learning Representations, 2020.

[30] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

11

[31] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. In International Conference on
Learning Representations, 2019.

[32] A Krogh and J. Hertz. Generalization in a linear perceptron in the presence of noise. Journal of
Physics A: Mathematical and General, 25:1135, 01 1999.

[33] J A Hertz, A Krogh, and G I Thorbergsson. Phase transitions in simple learning. Journal of
Physics A: Mathematical and General, 22(12):2133–2150, Jun 1989.

[34] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

[35] Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent. arXiv
preprint arXiv:1912.07242, 2019.

[36] Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and Tengyu Ma. Optimal regularization can
mitigate double descent. arXiv preprint arXiv:2003.01897, 2020.

[37] Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of
overfitting: Where and why do they appear? arXiv preprint arXiv:2006.03509, 2020.

[38] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm
interpolants and restricted lower isometry of kernels. volume 125 of Proceedings of Machine
Learning Research, pages 2683–2711. PMLR, 09–12 Jul 2020.

[39] Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design your own
generalization curve, 2020.

[40] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference
on Learning Representations, 2018.

[41] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pages 8570–8581,
2019.

[42] Bruno Loureiro, Cédric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mézard,
and Lenka Zdeborová. Capturing the learning curves of generic features maps for realistic data
sets with a teacher-student model. arXiv preprint arXiv:2102.08127, 2021.

[43] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.
Phys. Rev. A, 45:6056–6091, Apr 1992.

[44] M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of the optimal perceptron to generalise.
Journal of Physics A: Mathematical and General, 23(11):L581–L586, jun 1990.

[45] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in
double descent : Bias and variance(s) in the lazy regime. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

[46] Wouter Marco Kouw and Marco Loog. A review of domain adaptation without target labels.
IEEE transactions on pattern analysis and machine intelligence, 2019.

[47] Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pages 265–280, 1945.

[48] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[49] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. arXiv preprint
arXiv:1905.02175, 2019.

[50] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of
why overparameterization exacerbates spurious correlations. In International Conference on
Machine Learning, pages 8346–8356. PMLR, 2020.

[51] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
university press, 2009.

12

[52] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, and Le Song.
Scalable kernel methods via doubly stochastic gradients, 2014.

[53] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

[54] Tommaso Castellani and Andrea Cavagna. Spin-glass theory for pedestrians. Journal of
Statistical Mechanics: Theory and Experiment, 2005(05):P05012, May 2005.

[55] Feng Dai and Yuan Xu. Approximation Theory and Harmonic Analysis on Spheres and Balls.
Springer New York, 2013.

[56] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. arXiv preprint
arXiv:1905.12173, 2019.

[57] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks, 2021.

[58] Ekaba Bisong. Google colaboratory. In Building Machine Learning and Deep Learning Models
on Google Cloud Platform, pages 59–64. Springer, 2019.

[59] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

13

Supplemental Information for
“Out-of-Distribution Generalization in Kernel Regression”

SI.1 Calculation of Generalization Error

SI.1.1 Problem Formulation

We consider a probability distribution p(x) on the input space X ⊂ RD and an orthonormal basis
{φρ(x)}|Mρ=0 (M is typically infinite) spanning the space of square integrable functions L2(X) such
that any square integrable function can be expanded as:

f(x) =

M∑
ρ=1

aρφρ(x), 〈f, f〉p(x) =

M∑
ρ=1

a2
ρ <∞, (SI.1.1)

where 〈f, f〉p(x) denotes the L2 norm of the function.

A reproducing kernel Hilbert space (RKHS) H is a Hilbert space endowed with an inner product
〈., .〉H where evaluation operator is continuous, mapping any function f ∈ H to its value at f(x)
[26, 53]:

f(x) = 〈f(.),K(.,x)〉H ∀f ∈ H. (SI.1.2)

Here the so-called reproducing kernel K : X × X → R is a positive-definite function whose partial
evaluation K(.,x) itself belongs toH. It can be characterized by the integral operator TK :

[TKf](x) =

∫
dx′p(x′)K(x,x′)f(x′), (SI.1.3)

where TK has spectral decomposition [TKφρ](x) = ηρφρ(x) for ρ = 1, . . . ,M . Then Mercer’s
theorem allows the following kernel representation in terms of orthonormal functions {φρ(x)}|Mρ=0:

K(x,x′) =

N∑
ρ=1

ηρφρ(x)φρ(x
′) = Φ(x)>ΛΦ(x′) = Ψ(x)>Ψ(x), (SI.1.4)

ψρ(x) ≡ √ηρφρ(x), 〈ψρ(x), ψγ(x)〉H = δργ ,

where we defined the diagonal eigenvalue matrix Λργ = ηρδργ , M -dimensional vector
(
Φ(x)

)
ρ

=

φρ(x) and features ψρ. With this representation Hilbert inner product 〈., .〉H reduces to:

〈f, g〉H ≡
M∑
ρ=1

aρbρ
ηρ

, (SI.1.5)

for two functions f(x) = a>Φ(x) and g(x) = b>Φ(x). A function belongs to this RKHS only if
its Hilbert norm is finite:

‖f‖2H ≡ 〈f, f〉H =

M∑
ρ=1

a2
ρ

ηρ
<∞. (SI.1.6)

Note that the kernel does not have to represent all M -features meaning that its eigenvalues may
truncate at some integer N < M : ηρ>N = 0. If this is the case, then functions which have power on
modes ρ > N are out-of-RKHS functions since they have infinite Hilbert norm.

Given a finite training data D = {xµ, yµ}Pµ=1 where inputs are drawn from probability distribution
p(x), we wish to study kernel regression on the RKHS H. First, we assume that the labels are
generated by a target function f̄(x) with additive noise:

yµ = f̄(xµ) + εµ, (SI.1.7)

where E[εµεν] = ε2δµν are independent for each training sample. In general, the target function does
not have to be in the RKHS and the out-of-RKHS components need to be treated separately when

1

ηρ = 0 for some ρ. However we find that taking the limit ηρ → 0 at the end of the calculation yields
the correct expressions for out-of-RKHS cases hence we keep all ηρ 6= 0 for now. Expanding the
target function in terms of the eigenfunctions with respect to p(x):

yµ = ā>Φ(x) + εµ = w̄>Ψ(xµ) + εµ. (SI.1.8)
The problem of interest is the minimization of the energy function H[f ;D] with respect to functions
f ∈ H:

w∗ = argminw∈RMH(w;D), H(w;D) ≡ 1

2λ

P∑
µ=1

(
Ψ(xµ) · (w̄ −w) + εµ

)2
+

1

2
‖w‖22,

(SI.1.9)

Then the resulting estimator becomes:

f∗(x;D) = w∗>Ψ(x), (SI.1.10)
Note that the estimator is always in the RKHS, meaning it should not depend on eigenfunctions φρ(x)
if the corresponding eigenvalue ηρ = 0.

The estimator above depends on the particular choice of a training set and it is difficult to obtain an
analytical expression for it. Hence we would like to compute the average case estimator which only
depends on the input distribution, size of the dataset, target function and the hypothesis classH but
not the individual training samples. Next we discuss how to perform dataset averaging for kernel
regression using methods from statistical physics.

SI.1.2 Replica Calculation for Generalization

We would like to calculate the observables O[f∗] of the estimator f∗(x) averaged over the training
dataset D. These observables include the generalization and training errors. For our purposes, we
only need to calculate the mean and variance of the estimator which completely determines the
generalization error. To perform this calculation, we introduce the following partition function:

Z[ξ,χ] =

∫
dwe−βH(w;D)+βξ·w+ β

2 χ>ww>χ, (SI.1.11)

where β is inverse temperature and ξ,χ are source terms to compute expectation values of the
estimator weights. The partition function represents a probability distribution over all possible
estimators w and as β →∞ it concentrates around the kernel regression solution w∗.

We can calculate the dataset averaged estimator f∗(x) and its correlation function via:

√
ηαEDw∗α(D) = lim

β→∞

1

β

∂

∂ξ′α
EDlogZ[ξ,χ]

∣∣∣∣
ξ,χ=0

√
ηαηβED[w∗α(D)w∗β(D)] = lim

β→∞

1

β

∂2

∂χ′α∂χ
′
β

EDlogZ[ξ,χ]

∣∣∣∣∣
ξ,χ=0

, (SI.1.12)

where the primed quantities are defined as ξ = Λ1/2ξ′ and χ = Λ1/2χ′. Hence one can read out:

EDf∗(x,D) =
∑
α

EDw∗α(D)
√
ηαφα(x)

ED[f∗(x,D)f∗(x′,D)] =
∑
αβ

ED[w∗α(D)w∗β(D)]
√
ηαηβφα(x)φβ(x′). (SI.1.13)

However, computing the average of logZ over all possible training samples and noises is a challenging
task due to the integrals of logarithms. This is where we resort to replica trick which replaces averaging
logZ with averaging Zn, n-times replicated partition function:

EDlogZ = lim
n→0

EDZn − 1

n
. (SI.1.14)

2

The calculation of EDZn is done for integer n and then analytically continued to real numbers to
perform the limit. Despite being non-rigorous, the replica method has proven powerful and predictive
in the study of disordered systems as well as neural networks and machine learning (see [14, 54, 27]
for reviews).

Plugging in the eigenfunction expansions derived above, Zn becomes:

EDZn = e−
nβ
2 (W̄−ξ)>w̄

∫ (n∏
a=1

dwa

)
e−

β
2

∑n
a=1 wa>(I−χχ>)wa−βW̄>∑n

a=1 wa

×
〈
e−

β
2λ

∑n
a=1

(
wa·Ψ(x)+εa

)2〉P
x∼p(x),{εa}

, (SI.1.15)

where we shifted wa → wa + w̄ and defined W̄ = (w̄− ξ)− (χ>w̄)χ for notational convenience.
A crucial step is to compute the expectation value over possible realizations of training sets which
behave as quenched disorders in our system. Our strategy to perform this quenched average is
approximating the exponent as a Gaussian random variable defined by qa = (wa − w̄) ·Ψ(x) + εa

whose second-order statistics is given by:

µa ≡ 〈qa〉 = 0,

Cab ≡ 〈qaqb〉 = (wa − w̄)> 〈Ψ(x)Ψ(x)T 〉 (wb − w̄) + 〈εaεb〉 = (wa − w̄)>Λ(wb − w̄) + Σab,
(SI.1.16)

where Σ = (ε2 + ‖ā‖22)11> is the covariance matrix of noise across replicas. We assumed that
the kernel does not include a constant mode so that µa = 0. Noticing that qa is a summation
of many uncorrelated random variables (

〈
ψρ(x), ψρ′(x)

〉
p(x)

= ηρδρρ′) and a Gaussian noise, we
approximate the probability distribution of qa by a multivariate Gaussian with its mean and covariance
given by Eq.(SI.1.16):

P ({qa}) =
1√

(2π)n det(C)
exp

(
− 1

2

∑
a,b

qa
(
Cab

)−1
qb
)
, (SI.1.17)

The Gaussian approximation proves accurate given the excellent match of our theory to simulations.
This reduces the average over quenched disorder to:〈

e−
β
2λ

∑n
a=1

(
(wa−w̄)·Ψ(x)+εa

)2〉
x,{εa}

≈
∫
{dqa}P ({qa}) exp

(
− β

2λ

n∑
a=1

(qa)2

)
= exp

(
− 1

2
log det

(
I +

β

λ
C

))
.

(SI.1.18)

Combining everything together, the averaged replicated partition function becomes:

EDZn = e−
nβ
2 (W̄−ξ)>w̄

∫ (n∏
a=1

dwa

)
e−

β
2

∑n
a=1 wa>(I−χχ>)wa−βW̄>∑n

a=1 wa−P2 log det(I+ β
λC),

(SI.1.19)
Using the definitions Eq.(SI.1.16), we insert the following identity to the integral:

1 =

(
iP

2π

)n(n+1)
2

∫ (∏
a≥b

dCabdĈab

)
exp

[
− P

∑
a≥b

Ĉab

(
Cab −wa>Λwb −Σab

)]
(SI.1.20)

Here, the integral over Ĉ runs over the imaginary axis and we explicitly scaled conjugate variables
by P . Then defining:

GE =
1

2
log det

(
I +

β

λ
C

)
, (SI.1.21)

e−GS =

∫ (n∏
a=1

dwa

)
exp

−β
2

∑
a≥b

wa>
((

I− χχ>
)
Iab − 2P

β
ΛĈab

)
wb − βW̄>

n∑
a=1

wa

,
(SI.1.22)

3

we obtain:

EDZn = e
n(n+1)

2 log(iP2π)−nβ2 (W̄−ξ)>w̄

∫ (∏
a≥b

dCabdĈab

)
exp

−P∑
a≥b

Ĉab(Cab −Σab)− PGE −GS

 .
(SI.1.23)

Next, we need to evaluate the integral in GS . First we would like to express the ordered sum∑
a≥bw

a>((I− χχ>)Iab − 2P
β ΛĈab

)
wb as an unordered sum over a, b. Note that

∑
a,b

wa>
((

I− χχ>
)
Iab − 2P

β
ΛĈab

)
wb

= 2
∑
a≥b

wa>
((

I− χχ>
)
Iab − 2P

β
ΛĈab

)
wb −

∑
a,b

wa>
((

I− χχ>
)
Iab − 2P

β
Λdiag(Ĉ)ab

)
wb

Hence, we obtain:

∑
a≥b

wa>
((

I− χχ>
)
Iab − 2P

β
ΛĈab

)
wb =

∑
a,b

wa>Xabwb,

where we defined:

Xab =
(
I− χχ>

)
Iab − P

β
Λ
(
Ĉ + diag(Ĉ)

)ab
. (SI.1.24)

In order to evaluate the Gaussian integral, we will cast the function and target weights into an nM
dimensional vector:

w =
(
w1 w2 .. wa .. wn

)
nM×1

W̄⊗n =
(
W̄ W̄ . . . W̄

)
nM×1

(SI.1.25)

Furthermore, we introduce the nM × nM matrix X as:

X =

X11 X12 X1n

X21 X22 X2n

...
...

. . .
...

... . . . Xab . . .
...

Xn1 Xnn

nM×nM

(SI.1.26)

Finally, we denote the integration measure as Dw =
∏
a,ρ dw

a
ρ . With these definitions, GS becomes:

e−GS =

∫
Dw e−

β
2 w>Xw−βW̄>

⊗nw (SI.1.27)

Hence, we turned the integral in GS to a simple Gaussian integral. The result is:

e−GS =

(
2π

β

)nM
2 (

det X
)− 1

2 exp

(
β

2
W̄>
⊗nX−1W̄⊗n

)
. (SI.1.28)

4

Now the integral in Eq.(SI.1.23) can be evaluated using the method of steepest descent. In Eq.(SI.1.23),
we see that all the terms in the exponent is O(n). Furthermore, we will use P as the saddle point
parameter going to infinity with proper scaling. Therefore, defining the following function:

S[C, Ĉ,µ, µ̂] =
1

n

∑
a≥b

Ĉab(Cab −Σab) +
1

nP

(
PGE +GS +

nβ

2
(W̄ − ξ)>w̄

)

GE =
1

2
log det

(
I +

βK
λ

C

)
GS =

1

2
log det X− β

2
W̄>
⊗nX−1W̄⊗n, (SI.1.29)

we obtain:

EDlogZ = lim
n→0

1

n

(
EDZn − 1

)
,

EDZn = e
n(n+1)

2 log(iP2π)+nM
2 log 2π

β

∫ (∏
a≥b

dCabdĈab

)
e−nPS[C,Ĉ]. (SI.1.30)

The reader may question the dependence of various quantities in S on P , since we are taking a
P →∞ limit. This is because we want to keep our treatment general. Depending on the kernel and
data distribution, there are other quantities here that can scale with P . Specific examples will be
given.

SI.1.3 Replica Symmetry and Saddle Point Equations

To proceed with the saddle point integration, we further assume replica symmetry relying on the
convexity of the problem:

C0 = Caa, Ĉ0 = Ĉaa,

C = Ca6=b, Ĉ = Ĉa 6=b. (SI.1.31)

Therefore, we have C = (C0 −C)I +C11> and Ĉ = (Ĉ0 − Ĉ)I + Ĉ11>. In this case, the matrix
X has the form:

X =

X0 X1 X1 . . . X1

X1 X0 X1 . . . X1

X1 X1 X0 . . .
...

...
. . .

...
X1 X0

 = In×n ⊗ (X0 −X1)M×M + 1n×n ⊗ (X1)M×M ,

(SI.1.32)

where:

X0 ≡ Xaa =
(
I− χχ>

)
− 2PĈ0

β
Λ

X1 ≡ Xa 6=b = −PĈ
β

Λ.

It is straightforward to calculate the inverse of this matrix using Sherman-Morrison-Woodbury
formula (A+B)−1 = A−1 −A−1BA−1(I +BA−1)−1:

X−1 = In ⊗ (X0 −X1)−1 −
(
1n ⊗ (X0 −X1)−1X1(X0 −X1)−1

)(
In ⊗ IM + 1n ⊗X1(X0 −X1)−1

)−1

= In ⊗Q−1 − 1n ⊗Q−1X1Q
−1 +O(n),

5

where we defined,

Q ≡ X0 −X1 = I− P (2Ĉ0 − Ĉ)

β
Λ− χχ>, (SI.1.33)

for shorthand notation. Hence, we get:

W̄>
⊗nX−1W̄⊗n = nW̄>Q−1W̄ +O(n2). (SI.1.34)

We also need to calculate the determinant of this matrix which can be done by using Gaussian
elimination method to bring it into a block-triangular form. The result is:

det X = det(X0 −X1)
n−1

det
(
X0 + (n− 1)X1

)
= det(X0 −X1)

n−1
det(X0 −X1 + nX1).

(SI.1.35)

Taylor expanding the last term using det(I + nC) = 1 + nTr C +O(n2), we obtain:

log det X =n log det Q + nTr
(
X1Q

−1
)

+O(n2) = n log det Q− nPĈ
β

Tr ΛQ−1 +O(n2).

(SI.1.36)

Next, using the matrix determinant lemma det
(
A+ uvT

)
= det(A)(1 + vTA−1u), we obtain:

det

(
I +

β

λ
C

)
=
[
1 +

β

λ
(C0 − C)

]n(
1 + n

βC

λ+ β(C0 − C)

)
,

⇒ log det

(
I +

β

λ
C

)
= n log

(
1 +

β

λ
(C0 − C)

)
+ n

βC

λ+ β(C0 − C)
,

(SI.1.37)

Finally, we need to simplify
∑
a≥bĈ

ab(Cab −Σab) under the replica symmetry up to leading order
in n: ∑

a≥b

Ĉab(Cab −Σab) = n
(
Ĉ0(C0 − ε2)− 1

2
Ĉ(C − ε2)

)
. (SI.1.38)

Therefore, under replica symmetry, the function S given in Eq.(SI.1.29) simplifies to:

S[C, Ĉ] =Ĉ0(C0 − ε2)− 1

2
Ĉ(C − ε2) +

1

2
log

(
1 +

β

λ
(C0 − C)

)
+

1

2

βC

λ+ β(C0 − C)

+
1

2P

(
log det Q− PĈ

β
Tr ΛQ−1

)
− β

2P
W̄>Q−1W̄ +

β

2P
(W̄ − ξ)>w̄,

(SI.1.39)

where we recall that Q = I− P (2Ĉ0−Ĉ)
β Λ− χχ>. The saddle point equations of S with respect to

C0 and C are simple:

∂S

∂C
= 0⇒ Ĉ =

β2C(
λ+ β(C0 − C)

)2 ,

∂S

∂C0
= 0⇒ Ĉ0 =

1

2
Ĉ − 1

2

β

λ+ β(C0 − C)
. (SI.1.40)

The equation ∂S/∂Ĉ = 0 yields:

6

C =
PĈ

β2
Tr ΛQ−1ΛQ−1 + W̄>Q−1ΛQ−1W̄ + ε2, (SI.1.41)

and the equation ∂S/∂Ĉ0 = 0 yields:

C0 = C +
1

β
Tr ΛQ−1. (SI.1.42)

Two commonly appearing forms are:

κ ≡ λ+β(C0 − C) = λ+ Tr ΛQ−1,

2Ĉ0 − Ĉ
β

= − 1

λ+ β(C0 − C)
= − 1

κ
.

(SI.1.43)

Plugging second equation to the expression for G, we get:

Q = I +
P

κ
Λ− χχ>, (SI.1.44)

hence we obtain the following implicit equation:

κ = λ+ Tr Λ

(
I +

P

κ
Λ− χχ>

)−1

. (SI.1.45)

In terms of κ, final saddle point equations reduce to:

Ĉ∗0 =
1

2
Ĉ∗ − 1

2

β

κ
,

Ĉ∗ =
β2C∗

κ2
,

C∗0 = C∗ +
κ− λ
β

,

C∗ = C∗
P

κ2
Tr ΛQ−1ΛQ−1 + W̄>Q−1ΛQ−1W̄ + ε2. (SI.1.46)

Here, ∗ indicates the quantities that give the saddle point. Finally, solving for C∗ in the last equation,
we obtain:

C∗ =
1

1− P
κ2 Tr ΛQ−1ΛQ−1

(
W̄>Q−1ΛQ−1W̄ + ε2

)
. (SI.1.47)

Having obtained the saddle points, we can evaluate the saddle point integral. In the limit P →∞,
the dominant contribution is:

EDZn ≈ e−nPS[C∗,Ĉ∗]. (SI.1.48)

Taking the n→ 0 limit and plugging in the saddle point solutions to the expression Eq.(SI.1.39), we
obtain the free energy EDlogZ = −PS to be:

EDlogZ =
P

2

κ− λ
κ
− P

2
log

κ

λ
− P

2
log det Q− βP

2

ε2

κ
+
β

2
W̄>Q−1W̄ − β

2
(W̄ − ξ)>w̄,

κ = λ+ Tr ΛQ−1,

Q = I +
P

κ
Λ− χχ>,

W̄ = (w̄ − ξ)− (χ>w̄)χ. (SI.1.49)

7

SI.1.4 Expected Estimator and the Correlation Function

Finally, we can calculate the RKHS weights of the expected function and its variance:

√
ηαEDw∗α = lim

β→∞

1

β

∂

∂ξ′α
EDlogZ

∣∣∣∣
ξ,χ=0

√
ηαηβED[w∗α(D)w∗β(D)] = lim

β→∞

1

β

∂2

∂χ′α∂χ
′
β

EDlogZ

∣∣∣∣∣
ξ,χ=0

, (SI.1.50)

where the derivatives are with respect to ξ′α = ξα/
√
ηα and χ′α = χα/

√
ηα, respectively. Taking

derivatives for each entry of ξ′, we obtain:

1

β

∂

∂ξ′α
EDlogZ =

√
ηαw̄α −

κ
√
ηα(w̄α − ξα)

Pηα + κ
=
Pηα
√
ηαw̄α + κ

√
ηαξα

Pηα + κ
. (SI.1.51)

Hence the average estimator has the following form:

EDf∗(x;P) =
∑
ρ

Pηρ
Pηρ + κ

w̄ρψρ(x), (SI.1.52)

which approaches to the target function as P →∞. Note that the learned function can only express
the components which span the RKHS. If the target function has out-of-RKHS components, those
will never be learned.

Finally, we want to calculate the correlation function of the estimator. Given the partition function
Z =

∫
dwe−βH(w;D)+βξ·w+ β

2 χ>ww>χ, notice that the variance:

1

β2

∂2

∂ξα∂ξβ
EDlogZ = ED[〈wαwβ〉w − 〈wα〉w 〈wβ〉w] =

1

β

κ

Pηα + κ
δαβ (SI.1.53)

vanishes as β →∞ since there is a unique solution. However, there is variance to the estimator due
to averaging over different training sets which is given by:

ED[〈wαwβ〉w]− ED 〈wα〉w ED 〈wβ〉w , (SI.1.54)

and it is finite as β →∞. The first term, the eigenfunction expansion coefficients of the correlation
function of the estimator 〈f(x)f(x′)〉, can be calculated by taking two derivatives of EDlogZ with
respect to χ′. To simplify the calculation, we first redefine Q ≡ I + P

κΛ − Λ1/2χ′χ′>Λ1/2 by
setting J = 0 and introduce the notation ∂α ≡ ∂

∂χ′α
for notational simplicity. First, we calculate the

derivatives of κ:

∂ακ = −Tr ΛQ−1

(
− P

κ2
Λ∂ακ−Λ1/2∂α(χ′χ′>)Λ1/2

)
Q−1

= ∂ακ
P

κ2
Tr Λ2Q−2 + Tr ΛQ−1Λ1/2∂α(χ′χ′>)Λ1/2Q−1

= ∂ακ
P

κ2
Tr Λ2Q−2 + 2

∑
ρ

ηρQ
−1
ρα

√
ηα

(∑
σ

√
ησχ

′
σQ−1

σρ

)
. (SI.1.55)

Hence, we find that:

8

∂χ′κ|χ′=0 = ∂χ′Q|χ′=0 = 0. (SI.1.56)

This greatly simplifies the second derivative of κ:

∂α∂βκ|χ′=0 =

[
∂α∂βκ

P

κ2
Tr Λ2Q−2 + 2

∑
ρ

ηρQ
−1
ρα
√
ηαηβQ−1

βρ

]∣∣∣∣
χ′=0

= (∂α∂βκ|χ′=0)
∑
ρ

Pη2
ρ

(Pηρ + κ)2
+

2κ2

P

Pη2
α

(Pηα + κ)2
δαβ

=
2κ2

P

1

1− γ
Pη2

α

(Pηα + κ)2
δαβ , (SI.1.57)

where γ =
∑
ρ

Pη2ρ
(Pηρ+κ)2 as defined before. Now we calculate the variance of the expected function:

√
ηαηβED[w∗α(D)w∗β(D)] = lim

β→∞

1

β
∂α∂βEDlogZ

∣∣
ξ′,χ′=0

=
P

2

ε2

κ2
∂α∂βκ+

√
ηαηβw̄αw̄β − κ

√
ηαηβw̄αw̄β

Pηβ + κ
− κ
√
ηαηβw̄αw̄β

Pηα + κ

− 1

2
W̄>G−1

(
− P

κ2
Λ∂α∂βκ−Λ1/2∂α∂β(χ′χ′>)Λ1/2

)
G−1W̄

=
1

1− γ

(
ε2 + κ2

∑
ρ

ηρw̄
2
ρ

(Pηρ + κ)2

)
Pη2

α

(Pηα + κ)2
δαβ + κ2

√
ηαηβw̄αw̄β

(Pηα + κ)(Pηβ + κ)

+
Pηβ
√
ηαηβw̄αw̄β

Pηβ + κ
− κ
√
ηαηβw̄αw̄β

Pηα + κ
. (SI.1.58)

Now we can calculate the coefficients of covariance of the estimator:

√
ηαηβ

(
ED[w∗αw

∗
β]− EDw∗αEDw∗β

)
(SI.1.59)

=
1

1− γ

(
ε2 + κ2

∑
ρ

ηρw̄
2
ρ

(Pηρ + κ)2

)
Pη2

α

(Pηα + κ)2
δαβ + κ2

√
ηαηβw̄αw̄β

(Pηα + κ)(Pηβ + κ)

+
(Pηα + κ)Pηβ

√
ηαηβw̄αw̄β

(Pηα + κ)(Pηβ + κ)
− κ

(Pηβ + κ)
√
ηαηβw̄αw̄β

(Pηα + κ)(Pηβ + κ)
−
P 2ηαηβ

√
ηαηβw̄αw̄β

(Pηα + κ)(Pηβ + κ)

=
1

1− γ

(
ε2 + κ2

∑
ρ

ηρw̄
2
ρ

(Pηρ + κ)2

)
Pη2

α

(Pηα + κ)2
δαβ .

Hence the covariance of the estimator is:

Cov[
〈
f∗(x;P)f∗(x′;P)

〉
D] =

∑
αβ

(
ED[w∗αw

∗
β]− EDw∗αEDw∗β

)
ψα(x)ψβ(x′). (SI.1.60)

SI.1.5 Generalization Error

Having computed the mean and covariance of the estimator, now we can calculate the average
generalization error which can be decomposed as:

9

EDEg =

∫
dx p̃(x)ED(f∗2(x))− 2

∫
dx p̃(x)EDf∗(x)f̄(x) +

∫
dx p̃(x)f̄(x)2, (SI.1.61)

where we compute the data average over a new distribution p̃(x). A useful quantity is the overlap
matrix defined as:

Oργ =

∫
dx p̃(x)φρ(x)φγ(x), (SI.1.62)

and γ′ =
∑
ρ Oρρ

Pη2ρ
(Pηρ+κ)2 . In terms of these quantities, using the calculation above, we find:

∫
dx p̃(x)ED(f∗2(x))−

∫
dx p̃(x)EDf∗(x)EDf∗(x) =

γ′

1− γ

(
ε2 + κ2

∑
ρ

ηρw̄
2
ρ

(Pηρ + κ)2

)
∫
dx p̃(x)EDf∗(x)EDf∗(x) =

∑
ρ,γ

Oργ
Pη

3/2
ρ w̄ρ

Pηρ + κ

Pη
3/2
γ w̄γ

Pηγ + κ∫
dx p̃(x)EDf∗(x)f̄(x) =

∑
ρ,γ

Oργ
√
ηρw̄ρ

Pη
3/2
γ w̄γ

Pηγ + κ∫
dx p̃(x)f̄(x)2 =

∑
ρ,γ

Oργ
√
ηρw̄ρ

√
ηγw̄γ , (SI.1.63)

where the first line is the contribution to generalization error due to the estimator variance. Hence
generalization error is:

EDEg =
γ′

1− γ

(
ε2 + κ2

∑
ρ

ā2
ρ

(Pηρ + κ)2

)
︸ ︷︷ ︸

Variance V

+κ2
∑
ργ

Oργ
āρ

Pηρ + κ

āγ
Pηγ + κ︸ ︷︷ ︸

BiasB

(SI.1.64)

where we replaced āρ =
√
ηρw̄ρ which are the L2 weights of the target. This is the bias-variance

decomposition of generalization error in our setting where the bias term is monotonically decreasing
while the variance term is solely responsible for any non-monotonicity appearing in the generalization
error.

This expression also shows simply how to handle out-of-RKHS components of the target function.
Assume that the kernel is band-limited, meaning ηρ>N = 0 for some N < M . Then generalization
error becomes:

EDEg =
γ′

1− γ

(
ε̃2 + κ2

N∑
ρ=1

ā2
ρ

(Pηρ + κ)2

)
+ κ2

N∑
ρ,γ=1

Oργ
āρ

Pηρ + κ

āγ
Pηγ + κ

+ 2κ

M∑
ρ=N+1

N∑
γ=1

Oργ
āρāγ

Pηγ + κ
+

M∑
ρ,γ=N+1

Oργ āρāγ , (SI.1.65)

where we define the effective noise ε̃2 = ε2 +
∑M
ρ=N+1 āρ. Therefore, bias decomposes into three

terms which correspond to three block components of the overlap matrix. The last diagonal block of
the overlap matrix yields an irreducible error on the generalization error.

We are mostly interested in how out-of-distribution generalization deviates from when the training
and test distributions are same. The in-distribution generalization is simply given by setting overlap
matrix to identity:

E0,p(x)
g =

γ

1− γ

(
ε2 + κ2

N∑
ρ=1

ā2
ρ

(Pηρ + κ)2

)
+ κ2

N∑
ρ=1

ā2
ρ

(Pηρ + κ)2
, (SI.1.66)

10

where E0,p(x)
g denotes the generalization error when both training and test distributions are p(x).

Note that the data {āρ} and {ηρ} are obtained with respect to p(x) and can be replaced by {˜̄aρ} and
{η̃ρ} if the test distribution is fixed and the training distribution is varied. We will first consider the
former case with fixed training distribution and varying test distribution:

∆Eg ≡ Eg − E0,p(x)
g =

γ′ − γ
1− γ

ε2 + κ2ā>(PΛ + κI)−1O ′(PΛ + κI)−1ā (SI.1.67)

where we defined O ′ = O − 1−γ′
1−γ I which captures the effect of distribution mismatch on the

generalization error. An example of shifted overlap matrix O ′ has been shown in Figure 1 and
Figure 2.

SI.1.6 Symmetries of Overlap Matrix

The overlap matrix naturally arises when one considers the kernel eigenvalue problem with respect to
two different input distributions:∫

dx′ p(x′)K(x,x′)φρ(x
′) = ηρφρ(x), ⇒ K(x,x′) =

∑
ρ

ηρφρ(x)φρ(x)∫
dx′ p̃(x′)K(x,x′)φ̃ρ(x

′) = η̃ρφ̃ρ(x), ⇒ K(x,x′) =
∑
ρ

η̃ρφ̃ρ(x)φ̃ρ(x) (SI.1.68)

Therefore we have two sets of orthonormal bases {φρ} and {φ̃ρ} with respect to distributions p(x)
and p̃(x), both spanning L2(X). A square integrable function in this space can be expanded as:

f(x) =
∑
ρ

aρφρ(x) =
∑
ρ

ãρφ̃ρ(x), 〈φρ, φγ〉p = δργ , 〈φ̃ρ, φ̃γ〉p̃ = δργ , (SI.1.69)

where we defined the inner product 〈f, g〉p(x) =
∫
dx p(x)f(x)g(x). Expansion coefficients can be

found in terms of each other via:

ãρ =
∑
γ

aγ 〈φγ , φ̃ρ〉p̃ = (Ãa)ρ, Ãργ ≡ 〈φ̃ρ, φγ〉p̃ ,

aρ =
∑
γ

ãγ 〈φ̃γ , φρ〉p = (Aã)ρ, Aργ ≡ 〈φρ, φ̃γ〉p . (SI.1.70)

This immediately implies that:

ÃA = AÃ = I (SI.1.71)

We call A, Ã cross-overlap matrices and in general they do not correspond to norm-preserving
transformations. Note that the L2 norm of a function depends on the probability measure on the
space:

‖f‖2p(x) =
∑
ρ

a2
ρ 6=

∑
ρ

(Ãa)2
ρ = ‖f‖2p̃(x) (SI.1.72)

Later we show that the Hilbert norm ‖f‖H is independent of the probability measures if f ∈ H.

These matrices also connect the eigenfunctions:

Φ = Ã>Φ̃, Φ̃ = A>Φ (SI.1.73)

Using these relations, cross-overlap matrices can be related to overlap matrix O:

Oργ =

∫
dx p̃(x)φρ(x)φγ(x) =

∑
γ′

Ã>γγ′

∫
dx p̃(x)φρ(x)φ̃γ′(x) = (Ã>Ã)ργ

Õργ =

∫
dx p(x)φ̃ρ(x)φ̃γ(x) =

∑
γ′

A>γγ′

∫
dx p(x)φ̃ρ(x)φγ′(x) = (A>A)ργ , (SI.1.74)

11

which, together with Eq.(SI.1.71), have inverses O−1 = AA> and Õ−1 = ÃÃ>. Furthermore, this
shows that O and Õ are symmetric positive definite matrices.

Now we connect these matrices to the kernel eigenvalues. Kernel features defined by Ψ(x) =
Λ1/2Φ(x) are orhonormal with respect to the Hilbert inner product on the RKHS but their L2 inner
product depends on the probability measure:

〈Ψ(x),Φ(x)>〉H = I,

∫
dx p(x)Ψ(x)Ψ(x)> = Λ

〈Ψ̃(x), Φ̃(x)>〉H = I,

∫
dx p̃(x)Ψ̃(x)Ψ̃(x)> = Λ̃, (SI.1.75)

where 〈., .〉H is defined in Eq.(SI.1.5). In terms of features, kernel can be expressed as:

K(x,x′) = Ψ(x)>Ψ(x′) = Ψ̃(x)>Ψ̃(x′). (SI.1.76)

We note that the Hilbert inner product of two functions f, g ∈ H does not depend on the measure
against which the kernel is diagonalized [26]. Hence for any function f(x) = w>Ψ(x) = w̃>Ψ̃(x)
we have:

‖f‖2H = w>w = w̃>w̃, (SI.1.77)

which immediately implies that there exists an orthogonal transformation U which rotates the features
and the weights as follows:

Ψ̃(x) = UΨ(x), w̃ = Uw, (SI.1.78)

where U> = U−1. Using the relations in Eq.(SI.1.75), one can obtain the relations:

Λ1/2OΛ1/2 = U>Λ̃U

Λ̃1/2ÕΛ̃1/2 = UΛU>. (SI.1.79)

Furthermore, one can easily find U in terms of matrices A, Ã:

U = Λ1/2Ã>Λ̃−1/2, U> = Λ̃1/2A>Λ−1/2 (SI.1.80)

Of course this relation requires eigenvalue matrices to be invertible otherwise one must replace
inverses with pseudo-inverses.

Finally, we obtain how the two eigenvalue matrices connect to each other:

K(x,x′) = Φ>ΛΦ = Φ̃>Λ̃Φ̃ ⇒ Λ̃ = ÃΛÃ>, Λ = AΛ̃A>. (SI.1.81)

These transformations help us to rewrite the generalization error in terms of the test eigenvalues and
weights.

SI.1.7 Generalization Error In Terms of Test Distribution

Using the identities in SI.1.6, we first start with expressing κ in terms of the test distribution
eigenvalues:

κ = λ+ κTr
{

Λ(PΛ + κI)−1
}

= λ+ κTr
{

Λ̃(P Λ̃ + κÕ−1)−1
}
, (SI.1.82)

where we used the identity Λ̃1/2ÕΛ̃1/2 = UΛU> and the properties of trace. Similarly we have:

γ = P Tr
(
Λ2(PΛ + κI)−2

)
= P Tr

(
Λ̃(P Λ̃ + κÕ−1)−1Λ̃(P Λ̃ + κÕ−1)−1

)
γ′ = P Tr

(
OΛ2(PΛ + κI)−2

)
= P Tr

(
OΛ̃(P Λ̃ + κÕ−1)−1Λ̃(P Λ̃ + κÕ−1)−1

)
(SI.1.83)

Generalization error is given by:

Eg =
γ′

1− γ
(
ε2 + κ2ā>(PΛ + κI)−2ā

)
+ κ2ā>(PΛ + κI)−1O(PΛ + κI)−1ā. (SI.1.84)

12

Using the relations Λ = AΛ̃A>, ã = Ãa and ÃÃ> = Õ−1, we get:

Eg =
γ′

1− γ
(
ε2 + κ2 ˜̄a>(P Λ̃ + κÕ−1)−1Õ−1(P Λ̃ + κÕ−1)−1 ˜̄a

)
+ κ2 ˜̄a>(P Λ̃ + κÕ−1)−1Õ−2(P Λ̃ + κÕ−1)−1 ˜̄a. (SI.1.85)

As we have done before, we can compare this to in-distribution generalization error when both
training and test distributions are p̃(x):

E0,p̃(x)
g =

γ̃

1− γ̃

(
ε2 + κ̃2

N∑
ρ=1

˜̄a2
ρ

(P η̃ρ + κ̃)2

)
+ κ̃2

N∑
ρ=1

˜̄a2
ρ

(P η̃ρ + κ̃)2
, (SI.1.86)

where κ̃ = λ+ κ̃Tr
(
Λ̃(P Λ̃ + κ̃I)−1

)
and γ̃ = P Tr

(
Λ̃2(P Λ̃ + κ̃I)−2

)
.

SI.2 Further Analysis for Real Data Applications and Additional
Experiments

The form for OOD generalization with label noise ε2 = 0 given by Eq.(1) has a simple form in terms
of the overlap matrix:

∆Eg = v(P)>O ′v(P)

O ′ = O − I +
Tr (O − I)M(P)

1− Tr M(P)
I

Oργ =

∫
dx p̃(x)φρ(x)φγ(x), (SI.2.1)

where v and M are independent of the test distribution and only given by target weights and kernel
eigenvalues with respect to training distribution. In this section, we further study how mismatched
train and test distributions can improve generalization.

Fixed Training Distribution: Consider minimizing ∆Eg in Eq.(SI.2.1) with respect to the overlap
matrix. For fixed training distribution, the gradient with respect to O will be always positive-definite
since the overlap matrix appears linearly in ∆Eg and is the only test distribution related quantity. This
implies that ∆Eg does not have a non-trivial extremum except for the trivial ∆Eg = −E0,p(x)

g which
is possible only if O = 0. This implies that OOD generalization can be reduced to zero and often
never happens except for very special cases where all eigenfunctions become zero at some point x∗

(φρ(x∗) = 0) and the test distribution sharply centers around the same point x∗ (p̃(x) = δ(x− x∗)).

However, a more likely scenario where ∆Eg is minimized is picking a test distribution which sharply
centers around a point x∗ which yields the smallest error:

x∗ = min
x∈D

(f∗(x)− f̄(x))2. (SI.2.2)

Then keep testing on this single point (in the sense that p̃(x) = δ(x − x∗)) should yield the best
OOD generalization hence minimizing ∆Eg. This has been noted in [4] and also what we observe
in our experiments when we run gradient descent with respect to test distribution on Eg for fixed
training distribution. In Figure SI.2.1, we show an experiment where we fix the training distribution
to be uniform and obtain beneficial/detrimental test distributions by running gradient descent/ascent
on Eg for different epochs. In Figure SI.2.1 (a), we see that when number of epochs is small, the test
distribution stays close to the uniform distribution. But with increasing epochs, it sharpens more and
more around a particular point. Here we also show that images which have high probability mass in
beneficial distribution have low probability mass in detrimental distribution. In Figure SI.2.1 (b,c),
we show that the empirical generalization error gets smaller/larger for beneficial/detrimental test
distributions and matches perfectly with our theory.

Fixed Test Distribution: The other way ∆Eg can be minimized is by fixing test distribution and
varying training distribution. Note that, for fixed test distribution p̃(x),∇O|p̃(x)∆Eg is much harder
to evaluate since the only way we can change overlap matrix is by changing the training distribution
which in turn alters all training distribution related quantities. Hence, a priori, it is not obvious if the

13

a)

c)b)

Figure SI.2.1: Optimal test distributions for fixed uniform training distribution. a) As the number of
epochs increase for gradient descent/ascent, the test distribution concentrates more and more around
a particular sample. We also see that the images which have high probability mass in beneficial
test distribution are assigned low probability mass during gradient ascent. b) The generalization
error curves for a trained neural network and kernel regression with the corresponding kernel. Both
experiments match perfectly with theory (dashed lines). We see that beneficial test distributions yield
better generalization than the in-distribution generalization. c) Same experiment with detrimental test
distributions. As expected the generalization is worse than in-distribution case. The errorbars show
standard deviation for 50 trials.

gradient descent procedure explained in Algorithm 1 converges to a fixed training distribution. Next,
we show that it indeed converges to a fixed training measure for MNIST experiments with NTK and
we discuss its implications.

We first note that our formula for generalization error depends on the number of training set size P
and hence the optimized training/test measures. Then our problem is what is the optimal choice of
training examples for a limited training budget Pbudget so that generalization performance is maximal.
This problem intuitively makes sense; for kernel ridgeless regression it would be the best to train
uniformly on all samples if we had infinite training budget since we can exactly fit all samples. Or
conversely, for few shot learning (low Pbudget), we would like to choose the best few training samples
which yields the best generalization performance.

In Figure SI.2.2, we show experiments where the test distributions is fixed to uniform and optimal
training distributions are obtained via gradient descent on ∆z ∝ −∇O|p̃(x)∆Eg(Pbudget) for several
training budgets where z are logits which translate to training probability masses via p = softmax(z).
In Figure SI.2.2(a), we show that in fact the gradient descent converges to a fixed training distribution
for all Pbudget’s. Furthermore, we compute the participation ratio given by 1∑

µ(pµ)2 which quantifies
how uniform the probability masses are. We find that this quantity approaches roughly to Pbudget
meaning that GD finds ∼ Pbudget samples which are most beneficial for generalization and discards
the rest. In Figure SI.2.2(b), we show the training distributions for each Pbudget where each distribution
is sorted from high to low probability masses. We again see that only ∼ Pbudget examples have high
probability mass and the rest are effectively ignored. The resulting high and low probability mass
images are shown in Figure SI.2.2(c). We find that for low Pbudget, easier samples are preferred to
train on but for high Pbudget’s we do not see an apparent qualitative difference between low and high
probability mass images. Finally in Figure SI.2.2(d), we test if these optimized training distributions
help generalization. We find that the training distributions optimized for a certain Pbudget performs

14

a) b)

c)

d)

Figure SI.2.2: Optimal training distributions for fixed test distribution. a) Gradient descent on Eg(P)
with respect to training distribution converges for various Pbudget. We also see that the participation
ratio converges to ∼ Pbudget, implying that gradient descent finds the best Pbudget samples for fixed
training budget to obtain an optimal generalization error. b) The training distributions for several
Pbudget’s. For larger training budgets, the training distribution approaches to the test distribution which
is uniform. c) High and low probability mass images for Pbudget = {10, 1000}. For smaller budgets
(P = 10), GD finds the simplest examples to train on. For high training budgets (P = 1000), there
is no qualitative difference. d) The corresponding generalization error for each optimized training
distribution compared to kernel regression experiments on NTK (dots).

the best until the number of training samples hit Pbudget after which the generalization error stays
constant.

SI.2.1 Adversarial Attacks during Testing

We finally consider how our theory can be used in more practical settings such as adversarial attacks
during testing. We devise a simple experiment where a kernel machine is trained on a subset of
MNIST dataset with uniform training distribution and tested on the same subset but with noise added
on the images. Then we identify the images which were correctly classified before adding noise
but misclassified after. We create a new dataset where we add these misclassified images to the
original dataset and run gradient descent/ascent on the generalization error to see if these images
will be assigned low/high probability masses. We fix the training distribution to be uniform on the
original images and have zero probability mass on the adversarial samples. On the other hand, the
test probability masses stay as variables for the adversarial samples as well as the original samples.

In Figure SI.2.3 (a), we show the probability masses of each adversarial MNIST images obtained
after gradient descent/ascent. We find that the beneficial test distribution places considerably low
probability mass to the adversarial images than the detrimental test distribution. Figure SI.2.3
(b) shows the first few high and low probability mass images during gradient descent, where the
adversarial examples are among the low probability mass images.

SI.3 Linear Regression

As we discussed in the main text, it is straightforward to show that the generalization error reduces to
the Eq.(4) when the input distributions are Gaussian with arbitrary covariance matrices C and C̃ for
training and test distributions.

15

a) b)

Figure SI.2.3: Adversarial samples in optimal test distribution. a) Probability masses of the adversarial
samples after running gradient descent/ascent with respect to test distribution. Gradient descent/ascent
places low/high probability mass to adversarial examples. b) The high and low probability mass
images obtained after gradient descent. The adversarial examples get low probability mass.

Here, we generalize the discussion of linear regression with diagonal covariance matrices to include
the out-of-RKHS scenarios. Similarly, we consider D-dimensional inputs and a linear target of the
form f̄ =

∑D
ρ=1 βρxρ. Furthermore, we take the training and test distributions to be of the form:

C = diag (σ2, . . . σ2︸ ︷︷ ︸
Mr

, 0, . . . 0︸ ︷︷ ︸
D−Mr

)

C̃ = diag (σ̃2, . . . σ̃2︸ ︷︷ ︸
Ms

, 0, . . . 0︸ ︷︷ ︸
D−Ms

), (SI.3.1)

where Mr,Ms ≤ D. Finally, we allow the kernel to have less features then the ambient space so
that it does not express the whole RD: K(x,x′) = 1

M

∑M
ρ=1 xρx

′
ρ where M ≤ D. Therefore, we

have 6 parameters: 1) Mr,Ms representing how many directions training and test distributions have
non-zero variance on, 2) N quantifying how many directions target depends on and M how many
directions kernel can represent, 3) σ2, σ̃2 respectively the variances of training and test distributions.

Then plugging the parameters of this setting in Eq.(4), the generalization error simplifies to:

κ′ =
1

2

[(
1 + λ̃− α

)
+

√(
1 + λ̃+ α

)2 − 4α

]
, λ̃ =

λ

σ2 min(1,Mr/M)
, (SI.3.2)

γ =
α

(κ′ + α)2
,

Eg =
Nrs
Nr

γ

1− γ

(
σ̃2

σ2
ε2 +

σ̃2κ′2

(α+ κ′2)

Nr∑
ρ=1

β2
ρ + σ̃2

Mr∑
ρ=Nr+1

β2
ρ

)
+

σ̃2κ′2

(α+ κ′2)

Nrs∑
ρ=1

β2
ρ + σ̃2

Ms∑
ρ=Nrs+1

β2
ρ ,

(SI.3.3)

where we defined α = P/Nr, Nr = min{M,Mr} and Nrs = min{M,Mr,Ms}. Hence, the
learning rate is determined by the minimum between number of features and the number of nonzero
variance directions in the training distribution. Although complicated looking, Eq.(SI.3.2) predicts
several interesting phenomena:

1. When there is an out-of-RKHS component in the target function, those components act like
noise causing the effective noise given by:

ε̃2 = σ̃2Nrs
Nr

(
ε2

σ2
+

Mr∑
ρ=Nr+1

β2
ρ

)
. (SI.3.4)

Hence, even there is no label noise in the training set, we observe a double-descent due to
the effective noise.
Our theory suggests that the only way avoiding the contribution to noise from out-of-RKHS
components is to not train on those directions, i.e. setting Mr ≤ M . This has been
demonstrated in Figure SI.3.1(a).

16

2. When the target depends on all dimensions, the irreducible error (last term) can be avoided if
Ms < Nr. This simply means that only testing on the features which are not learned (either
due to not training on those directions or the kernel not expressing them as features) causes
an irreducible error in Eg. This has been demonstrated in Figure SI.3.1(b). Note that there
is still double-descent since we are still training on the directions kernel does not express.

3. If the irreducible error is avoided by not testing on the directions where the training dis-
tribution has zero variance or kernel does not express (Ms ≤ M,Mr), the generalization
error approaches to 0 as P →∞ even though the target has out-of-RKHS components (See
Figure SI.3.1(b)).

101 102 103 104

P

100E g

a) Mr > M
Mr < M

101 102 103 104

P
10 3

10 2

10 1

100

E g

b) Ms > Nr

Ms < Nr

Figure SI.3.1: Effect of training and test distributions for out-of-RKHS target functions. The error
bars indicate standard deviation over 30 averages.

SI.4 Rotation Invariant Kernels and Neural Tangent Kernel

Another application of our theory is the study of rotation invariant kernels on high-dimensional input
spaces. This type of kernels includes many popular kernels including Laplace kernels, radial basis
function kernels and neural tangent kernel (NTK). Specifically, the kernel only depends on the inner
product of two inputs: K(x,x′) = K(x · x′). In this case Mercer’s decomposition takes the form:

K(x,x′) =
∑
k,m,n

ηk,m,nRn(‖x‖)Rn(
∥∥x′∥∥)Yk,m(x)Yk,m(x′) (SI.4.1)

where Ykm are the hyper-spherical harmonics [55] which only depend on the angular coordinates of
x and Rn depend on the norm of the input which are usually orthonormal polynomials of order n. If
the kernel is rotation invariant, the eigenvalues only depend on the degree of the spherical harmonics
k but not on the azimuthal coordinates m which means N(D, k) ∼ O(Dk) times degeneracy for
each ηk,m,n = ηk,n. Note that ηk,n ∼ O(N(D, k)−1) for kernel to have finite trace. Then we define
OD(1) quantity η̄k,n ≡ N(D, k)ηk,n.

Furthermore, we assume that the target function f̄(x) =
∑
k,m,n āk,m,nRn(‖x‖)Yk,m(x) has finite

L2 norm which implies that ā2
k,n ≡ 1

N(D,k)

∑
m ā

2
k,m,n is finite for each mode k. Note that the

overlap matrix

Okmn;k′m′n′ =

∫
dx p̃(x)Rn(‖x‖)Rn′(‖x‖)Yk,m(x)Yk′,m′(x)

is in general very difficult to calculate analytically without assuming specific probability distributions.
To simplify, we consider probability distributions on hyperspheres with radius R and R̃ for training
and test distributions, respectively. Then considering the limit P,D → ∞ while keeping αk ≡
P/N(D, k) finite, we find that the different degree k modes decouple over angular indices leading:

Eg =
γ′

1− γ

(
ε2 +

∑
k′>k

∑
n

ā2
k′,n

)
+ κ2

∑
n,n′

āk,n
αkη̄k,n + κ

(Onn′ +
γ′

1− γ
I)

āk,n′

αkη̄k,n′ + κ

+
∑
k′>k

∑
nn′

Onn′ āk′,nāk′,n′ , (SI.4.2)

17

where Onn′ =
∫
dx p̃(x)Rn(‖x‖)Rn′(‖x‖) and

κ = λ+
∑

k′>k,n

η̄k′n + κ
∑
n

η̄k,n
αkη̄k,n + κ

, γ = αk
∑
n

η̄2
k,n

(αkη̄k,n + κ)2
, γ′ = αk

∑
n

Onnη̄2
k,n

(αkη̄k,n + κ)2
.

(SI.4.3)

We notice that the effective regularization becomes λ̃ ∝ λ+
∑
k′>k,n η̄k′n implying that the inductive

bias of the kernel machine solely depends on the training distribution and can be altered by changing
it. Furthermore, the target power for k′ > k acts as an effective noise and this is in fact an example of
out-of-RKHS generalization: in the limit P,D →∞ for finite αk ≡ P/N(D, k), the modes larger
than k are not in the sub-RKHS defined by polynomials of degree k. This has also been pointed out
in [16]. There is also an irreducible error due to the target power for k′ > k which depends on both
training and test distribution.

To conclude this section, we finally consider ReLU NTK regression with arbitrary depth. Note that
the ReLU networks are homogeneous maps with respect to the norm of inputs [56]:

K(x,x′) = ‖x‖
∥∥x′∥∥k(x · x′

‖x‖‖x′‖

)
, (SI.4.4)

and therefore we can drop n-indices in the computation above. Notice that the self-consistent equation
κ in this case can be solved exactly and the solution is very similar to the one for linear regression:

κ′ = κ/η̄k = 1
2

[
(1 + λ̃k − αk) +

√
(1 + λ̃k + αk

)2 − 4αk] where the effective regularization is

λ̃k = (λ +
∑
k′>k η̄k′)/η̄k. In this case the learning rate is controlled by the degeneracy of mode

k: α = P/N(D, k). Homogeneity of the NTK Eq.(SI.4.4) implies that for inputs restricted to a
D-sphere of radius R, the eigenvalues simply are multiplied by the norm squared: ηk → R2ηk.
Therefore when an NTK regression is performed on a training set with radius R and tested on a
sphere with radius R̃, the overlap matrix simply becomes diagonal with components R̃2

R2 and the
analysis for linear regression can be directly applied here:

Ekg = R̃2

(
ε̃2

R2

αk
(κ′ + αk)2 − α

+
κ′2

(κ′ + αk)2 − αk

)
+
R̃2

R2

∑
k′>k

ā2
k, (SI.4.5)

where we define effective noise to be ε̃2 = ε2 +
∑
k′>k ā

2
k. Ekg is the generalization error in learning

stage k for large P,D limit and shows that it is very similar to linear regression we studied in Section
4. At each learning stage k, the kernel machine learns the kth mode and the higher modes act as
irreducible error given by R̃2

R2

∑
k′>k ā

2
k. This implies that the irreducible error is controlled by the

ratio of radii of the test and target distributions. Note that for larger test radius, generalization error
increases for large width neural networks. We demonstrate this in Figure SI.4.1 where the inputs are
randomly drawn from a sphere of radius R for training set and test inputs are drawn from a sphere of
radius R̃ for 2-layer NTK regression.

SI.5 Interpolation vs. Extrapolation

Another subject where understanding OOD distribution is crucial is extrapolation from training data
to test data whose support lies outside the training distribution. Our theory can also explain how
kernel regression generalizes in extrapolation tasks for simple models like linear regression and
band-limited Fourier kernels.

To understand extrapolation in linear regression, we introduce rectangular distributions for each
direction xρ defined as:

p(x) = Rσ1(x1) . . . RσD (xD), Rσα(x) =

{
1

2
√

3σα
−
√

3σα ≤ x ≤
√

3σα

0 otherwise

p̃(x) = Rσ̃1
(x1) . . . Rσ̃D (xD). (SI.5.1)

Then one can take σ̃2
α > σ2

α to change the support of train and test distributions. Note that the
Gaussian measure is an example of interpolation since the support of the data is always Supp(p(x)) =

18

101 102 103 104

P
10 6

10 5

10 4

10 3

10 2

10 1

E g
(P

)

NTK Regression with = 0
= 1.5e 02
= 2.8e 02
= 3.5e 02

(a) R = R̃ = 1

101 102 103 104

P
10 6

10 5

10 4

10 3

10 2

10 1

E g
(P

)

NTK Regression with = 0
= 1.5e 02
= 2.8e 02
= 3.5e 02

(b) R = 1 and R̃ = 0.5

Figure SI.4.1: 2-Layer NTK Regression on random spherical data. a) The training and test distribution
radii are the same R = R̃ = 1. b) Training distribution radius is R = 1 and test distribution radius is
R̃ = 0.5. As predicted by theory, Eg is lower in the former case.

(−∞,∞). One can easily show that the solution to the integral eigenvalue problem for kernel is the
same as when the distributions are Gaussian with diagonal covariance matrices: the kernel eigenvalues
are given by ηρ = σ2

ρ/D and eigenfunctions are φρ(x) = xρ/σρ leaving the features unchanged.
Then the analysis in Section 4 exactly applies to the extrapolation in this scenario implying that the
extrapolation and interpolation are the same when linear regression for linear tasks are concerned.
For NTK, this finding has been stated in [57] that as long as all xρ with nonzero power in target is
expressed in the kernel, the kernel regression should be able to extrapolate. This intuitively makes
sense since once the parameters are β are found, the extrapolation should be trivial.

However, with nonlinear features we find that learning nonlinear functions, although possible, is
much more costly when extrapolating with rectangular distributions than Gaussian distributions.
Heuristically, we claim that the Gaussian distribution has always the same support and can still be
thought of as interpolation no matter how much the variance is changed, while in the rectangular
case supports for training and test distributions may be different and the kernel machine might not be
trained on the region it is tested on. Here we demonstrate an example to explain why this is the case.

We consider a band-limited kernel with Fourier features in 1D,K(x, x′) =
∑N
k=1 cos kπ(x−x′) and

a periodic target function f̄(x) = ecos(πx−θ) + ecos(πx+θ) centered around its mean. For the inputs,
we consider centered Gaussian distributions with varying variances and rectangular distributions on
the interval x ∈ [−a, a] with varying a. By α = P/N , we denote the ratio of training samples to the
number of features and for certain values of α we compare the estimator (Eq.(SI.1.52)) to the target
function f̄ . In Figure SI.5.1(a,b), we find that the estimator perfectly matches the target when α = 4
for both narrow and wide Gaussian training distributions. On the contrary, when the rectangular
distributions are used for training in Figure SI.5.1(c,d), we find that interpolation is achieved as soon
as α = 1 while extrapolation requires much more samples α = 250. We attribute this behavior to the
observation that some eigenvalues in the rectangular distribution case effectively goes to 0 as can
be seen from Figure SI.5.1(f) while for Gaussian distribution they stay large Figure SI.5.1(e). This
means that as the range of the rectangular distribution gets smaller, more modes in the target function
become out-of-RKHS leading to an irreducible error.

SI.6 Numerical Methods

We performed our experiments using JAX software [30] and NeuralTangents package [29] on Google
Colaboratory environment [58]. Specifically, the automatic differentiation capabilities of JAX helped
us optimize over training and test distributions on MNIST digits [59]. All code used to perform
experiments and generate figures can be accessed at https://github.com/Pehlevan-Group/kernel-ood-
generalization.

19

https://github.com/Pehlevan-Group/kernel-ood-generalization
https://github.com/Pehlevan-Group/kernel-ood-generalization

a) b) e)

c) d) f)

Figure SI.5.1: Interpolation with Gaussian distribution (first row) vs. Extrapolation with Rectan-
gular distribution (second row). The estimator obtained from kernel regression is presented. a, b)
Interpolation with narrower width (a) requires more training samples than wider widths (b). c, d) In
comparison, rectangular distributions work are able to interpolate well (at α = 1) while extrapola-
tion takes much more samples (α ∼ 100) to extrapolate. (e,f) The kernel eigenvalues on training
distribution and target power are shown for Gaussian and rectangular distributions, respectively.
Dashed lines indicate the number of features N represented in the kernel. We observe that for varying
Gaussian distribution widths, the spectrum does not change significantly while for rectangular case
some eigenvalues effectively go to 0 implying an irreducible error in the generalization.

20

	Introduction
	OOD Generalization Error for Kernel Regression from the Replica Method
	Problem setup
	Overview of the calculation
	Main Result

	Applications to Real Datasets
	Shift in test distribution may help or hurt generalization
	Optimized Training Measure for Digit Classification with Wide Neural Networks

	Linear Regression: An Analytically Solvable Model
	Further Results
	Discussion
	Calculation of Generalization Error
	Problem Formulation
	Replica Calculation for Generalization
	Replica Symmetry and Saddle Point Equations
	Expected Estimator and the Correlation Function
	Generalization Error
	Symmetries of Overlap Matrix
	Generalization Error In Terms of Test Distribution

	Further Analysis for Real Data Applications and Additional Experiments
	Adversarial Attacks during Testing

	Linear Regression
	Rotation Invariant Kernels and Neural Tangent Kernel
	Interpolation vs. Extrapolation
	Numerical Methods

