
A Kernel Analysis of Feature Learning in Deep
Neural Networks

Abdulkadir Canatar
Center for Computational Neuroscience

Flatiron Institute
New York City, NY, USA

acanatar@flatironinstitute.org

Cengiz Pehlevan
John A. Paulson School of Engineering and Applied Sciences,

and Center for Brain Science
Harvard University

Cambridge, MA, USA
cpehlevan@g.harvard.edu

Abstract—Deep neural networks learn useful representations
of data, yet the nature of these representations has not been
fully understood. Here, we empirically study the kernels induced
by the layer representations during training by analyzing their
kernel alignment to the network’s target function. We show that
representations from earlier to deeper layers increasingly align
with the target task for both training and test sets, implying better
generalization. We analyze these representations across different
architectures, optimization methods and batch sizes. Furthermore,
we compare the Neural Tangent Kernel (NTK) of deep neural
networks and its alignment with the target during training and
find that NTK-target alignment also increases during training.

Index Terms—deep learning, kernel methods

I. INTRODUCTION

Often complex tasks such as image classification or natural
language processing require transforming the inputs to a
different space where their classification is much simpler than
their respective input space. While a large number of studies are
dedicated to engineering such representations [1], deep neural
networks has proven many times to learn better representations
to solve such problems [2]. Yet, the complicated dynamics of
deep neural networks make the analysis of the features they
learn very hard.

A promising approach have gained attention in the last
few years. The Neural Tangent Kernel (NTK) introduced in
[3] initiated a large body of work on how neural networks
learn in the limit where the number of units in the hidden
layer are taken to infinity, or the infinite-width limit [4], [5].
Specifically, training an infinitely wide neural network with
mean-squared-loss and gradient-flow to interpolation recovers
a kernel regression predictor with the NTK specified by the
network architecture. Because of the tractability of kernel
regression, many insights were gained about generalization
properties of deep neural networks in the infinite-width limit,
i.e. [3], [6], [7], [8], [9], [10], [11], [12], [13] and more.

For our purposes, a problem with the infinite-width limit
of deep neural networks defined in [3] is that in this limit
representation learning does not occur: the network features
are static and do not adapt to data. Multiple approaches
were taken to address this problem. In one line of work,
alternative infinite-width limits were defined in which network
learn representations from data [14], [15]. Other work used
perturbation theory around the infinite-width limit to gain

insight into networks at finite-width where representation
learning occurs [16], [17], [18], [19], [20], [21], [22], [23].
It still remains to be shown that these approaches explain
realistic feature learning scenarios. They are still limited by
large-width approximations and may fall short of explaining
possible non-perturbative effects at finite width [24], [25].

Several relevant findings that potentially challenge these
theories could be noted here. Predictions from perturbative
studies imply that the feature kernels of the internal layers
of DNNs receive perturbatively small corrections related to
the outer product of the outputs on the training set [20], [16],
[23], [17]. This is in direct contrast to the recently discovered
phenomena of neural collapse [26], where the feature kernel
of the penultimate layer becomes the outer product of the
outputs. Furthermore, recent work found that the final output
of a trained neural network is equivalent to the output of a
kernel regression predictor with the empirical NTK obtained
at the end, not at the beginning, of the training under certain
conditions [27]. Other work showed that the final output can
be approximated well by the network’s linearization at the
later stages of training [28] which is also equivalent to kernel
regression with the empirical NTK [3]. These observations
motivate our empirical study of feature learning in deep neural
networks.

In this work, using several alignment metrics such as
kernel-target alignment [29] and task-model alignment [9],
we empirically study the feature kernels of the internal layers
of a DNN and report our results on how the target function
aligns with the internal representations throughout training. We
present an empirical survey on the feature learning properties
of different architectures trained with different optimizers.

A motivation for the comparison to the target function comes
from the kernel regression literature, which suggests that the
optimal kernel for a given target function in terms of sample-
complexity is proportional to the outer product of the target
function with itself [29]. We also explore whether the final
NTK approaches to this optimal kernel.

II. PROBLEM SETUP

We consider linear probes to the hidden layer features learned
by deep neural networks [30] to assess how the emerging
representations help solve the underlying task. We study a

20
22

 5
8t

h
An

nu
al

 A
lle

rt
on

 C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

n,
 C

on
tr

ol
, a

nd
 C

om
pu

tin
g

(A
lle

rt
on

) |
 9

79
-8

-3
50

3-
99

98
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AL
LE

RT
O

N
49

93
7.

20
22

.9
92

93
75

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

supervised learning setting with a dataset {xµ,yµ}Pµ=1 where
xµ ∈ X ⊂ RD are D−dimensional inputs assumed to be drawn
from a probability distribution dµ(x), and yµ ∈ Y ⊂ RC

are C−dimensional labels assumed to be generated by an
underlying target function f̄(x). We consider L hidden layer
deep neural networks of the form f(x) = Wψ(L)(x), where
ψ(L)(x) is an NL-dimensional vector of activations of the final
hidden layer features and W is a C ×NL matrix of readout
weights. Similarly, we denote the activations of other hidden
layers with ψ(ℓ)(x) with dimension Nℓ. We only consider
neural networks trained with mean-squared-error (MSE) loss.

At any time during training, we assess whether the feature
maps for each layer are good representations for the original
task by studying the linear regression performance in the feature
space. We define a model for each layer f (ℓ)(x) = W(ℓ)ψ(ℓ)(x)
where the parameters of the features ψ(ℓ)(x) are frozen.
Minimizing MSE loss for this model on the training set
corresponds to kernel regression [31] with a layer feature
kernel K(ℓ)(x,x′) = ψ(ℓ)(x)⊤ψ(ℓ)(x′).

III. METRICS FOR REPRESENTATIONAL ALIGNMENT AND
FEATURE LEARNING

In machine learning and deep learning literature, several
representational measures are considered based on statistical
techniques such as Canonical Correlation Analysis (CCA)
[32], [33] (see [34] for a review), Partial Least Squares
(PLS) regression [35], Kernel Independent Component Analysis
(Kernel ICA) [36], Hilbert Schmidt Independence Criterion
(HSIC) [37], Kernel-Target Alignment (KTA) [29] and Centered
Kernel Alignment [38], [29].

While all these methods are based on linear probes on
the features, they are qualitatively different. CCA, PLS and
Kernel ICA measure cross-correlations between two feature
representations and are related to each other [39], [36]. On
the other hand, HSIC, KTA and CKA measure population
level similarities based on the kernels induced by the inner
product of individual features. It has been shown in [40]
that CCA ignores the variance scale (eigenvalue) associated
to each principal component ϕ(ℓ)

ρ in analyzing the similarity
and treats each of them in equal footing. On the other hand,
CKA has been shown to be insensitive to the removal of
principal components which have small eigenvalues which
are nevertheless important in quantifying representations [41].
While several works used these measures to quantify the
representational similarity between learned features in different
neural networks [40], [41], [42], [43], [44], the notion of a
correct representational similarity metric for comparing the
representations of two feature maps remains unclear.

In this work we are only interested in comparing the internal
layer representations to the either input (image) or output
(label) representations which remain fixed for any architecture.
To refine the notion of representational alignment, we define
the scalar kernels induced by the input and output represen-
tations by Kx(x,x

′) = x⊤x′ and Kf̄ (x,x
′) = f̄(x)⊤f̄(x′),

respectively. Furthermore, we define the layer feature kernels

by K(ℓ)(x,x′) = ψ(ℓ)(x)⊤ψ(ℓ)(x′) for each layer. We con-
sider various metrics for measuring representational similarity
between two features via their corresponding kernel.

1) Cumulative Power for Task-Model Alignment (KTA)
Recent works show that the generalization performance
of kernel regression can be analytically obtained from the
spectral properties of the kernel [8], [9], [10], [13]. The
spectral decomposition for layer kernels can be obtained
by finding an orthonormal eigenbasis of L2

µ [45], [31]
such that

K(ℓ)(x,x′) = ψ(ℓ)(x)⊤ψ(ℓ)(x′) =
∞∑
ρ=1

η(ℓ)ρ ϕ(ℓ)
ρ (x)ϕ(ℓ)

ρ (x′),

(1)

where {η(ℓ)ρ } are the eigenvalues, and the eigenbasis
{ϕ(ℓ)

ρ } satisfies
∫
dµ(x)ϕ

(ℓ)
ρ (x)ϕ

(ℓ)
γ (x) = δργ . Moreover,

any L2
µ target function can be decomposed as

f̄(x) =
∑
ρ

ā(ℓ)ρ ϕ(ℓ)
ρ (x), (2)

where we assumed that each target class f̄i(x) is an L2
µ

function for i = 1, . . . , C.
Previous works [8], [9] showed that generalization in
kernel regression arises from two factors: 1) spectral bias
which states hierarchical learning of a target function’s
projections to kernel eigenfunctions starting with the
ones with the largest eigenvalues, and 2) task-model
alignment which measures if the task can be learned
sample-efficiently given the spectral bias. The task-model
alignment can be characterized by our first metric, the
cumulative power [8], [9], defined as

C(ρ) =

∑
γ<ρ a

(ℓ)
γ · a(ℓ)γ∑

γ a
(ℓ)
γ · a(ℓ)γ

. (3)

Cumulative power measures the amount of power placed
in the first ρ eigenmodes. Earlier the mode ρ for which
the C(ρ) reaches near unity, the better the task aligns with
the model [8], [9]. This is later demonstrated in Figure 4.
The definition of cumulative power is not arbitrary; it
can be shown that it enters directly in the expression for
generalization error for kernel regression obtained in [9].
To demonstrate how, consider a particular kernel whose
spectrum for a given mode ρ∗ satisfies ηρ∗+1 ≪ ηρ∗ ≪
ηρ∗−1. Then, for a training set of size P ≈ η−1

ρ∗ , the
analysis of [9] suggests that the target modes up to ηρ∗

are completely learned, and target modes after ηρ∗ remain
to be learned. It can be shown that the contributions from
these modes to the generalization error can be written as
Eg ≈ 1− C(ρ∗) [46].
Finally, we note on a subtle point about the rank of the
feature layer kernels. The rank of these kernels can be at
most Nℓ since it is composed of Nℓ rank-1 components.
This, in turn, restricts the class of functions expressible
through this kernel; components of target functions along

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

the zero-eigenmodes can not be learned [9]. For perfect
generalization, the target function should lie in the low-
dimensional space spanned by the eigenfunctions with
non-zero eigenvalues. From this point of view, Eq. (2)
quantifies the representational power of the features for the
particular task; for fewer modes the expansion coefficients
ā
(ℓ)
ρ are non-zero for top eigenfunctions, the more aligned

representation is.
2) Kernel-Target Alignment (KTA): Our metric is defined

by [29]:

A(K1,K2) =
∥K1K2∥2HS

∥K1K1∥HS∥K2K2∥HS
, (4)

where ∥K1K2∥2HS denotes the Hilbert-Schmidt norm of
the integral operators associated to two kernels and given
by ∫

dµ(x)dµ(x′)K1(x,x
′)K2(x,x

′)

for the continuous case, and

Tr(K1K2)√
Tr(K1K1) Tr(K2K2)

for the finite case where K1,K2 are P×P Gram matrices
on a set of P inputs.
It has been shown that the optimal kernel for sample-
efficient learning in kernel regression [29] for a scalar tar-
get function is rank-1 and given by f̄(x) is Kopt

f̄
(x,x′) =

f̄(x)f̄(x′). This makes sense from the task-model align-
ment point of view; there is a single non-zero eigenvalue
and eigenfunction which can be learned, and the target
is proportional to this eigenfunction. Similarly, for multi-
class targets, the optimal kernel is again rank-1 and given
by Kopt

f̄
(x,x′) = f̄(x)f̄(x)⊤. In this case, the optimal

kernel is operator valued as it lies in the space of bounded
operators in L(Y) [47]. Note that for the multi-class
targets, no layer kernel can approach the optimal kernel
Kopt

f̄
since they are all scalar valued. Instead, we consider

Kf̄ (x,x
′) = TrKopt

f̄
(x,x′) as our target kernel, which is

rank-C since it is built out of C rank-1 components.
One caveat with KTA is that when one or both kernels
have constant components in their eigendecomposition
(zero-mode), it may obscure the alignment between finite
variance components and yield inaccurate results (see
[38]). Therefore, here we consider CKA, the centered
version of KTA by transforming both kernels as K1 →
HK1H and K2 → HK2H, where H = I − 1

P 11⊤ is
the centering matrix.

IV. EXPERIMENTAL SETTING

Given the connection between internal layer kernels and
generalizability, we perform a series of experiments on ResNet
architectures [48] with the CIFAR-10 dataset [49]. We study
a custom ResNet architecture with 11 convolutional layers
with max pooling after each residual block based on the
methods and the architecture introduced in [50]. We vary the

architectural hyperparameters (with/without residual connec-
tions), dataset properties (augmented/not-augmented), optimizer
choices (SGD/SGD with momentum) and the batch size (512,
2048, 4096). We train each model with all combinations of
different hyperparameters for 5000 epochs on mean squared
error (MSE) loss with a linearly decaying learning schedule
and batch normalization. Out of 48 experiments obtained
this way, we consider only 36 experiments whose training
accuracy reached above %95. We probe the feature outputs
of 10-layers and their induced kernels. We track the spectral
properties of these kernels throughout training and study how
the representations change based on the metrics described in
Section III.

V. RESULTS

In Figure 1, we present the CKA between individual layer
kernels and input/target kernels across 36 models which are
trained under MSE loss. The models are ordered from left
to right according to increasing test accuracy (Figure 6a). To
quantify the trends we saw in data, we calculated Pearson
correlations between the hyperparameters and training loss,
test accuracy, CKA on test data and CKA on training data.
These results are presented in Table I.

In Figure 1a,b, we plot the CKA between K(ℓ) and the
target kernel Kf̄ when evaluated both on the training and test
sets. We immediately observe that the CKA on the training set
is well correlated with CKA on the test set (Figure 2a), and
that alignment increases as one goes deeper in the network.

We also observe that higher CKA between the layer kernels
and the target, whether evaluated on the training or the test
sets, does not necessarily imply better test accuracy, however
CKA on the test set is better correlated with generalization
(Table I). This may seem counterintuitive, since performing
regression with a kernel that aligns well with the target should
imply better generalization [29]. However, we note that these
networks do not end up effectively performing regression with
last layer features.

Some other trends we observe are the following. We find that
SGD with momentum significantly improves the CKA between
deeper layer kernels and the target compared to vanilla SGD.
We see that data augmentation strongly correlates with test
accuracy, while its correlation with CKA is not as strong.
Finally, we find that the effect of batch size and the presence
of residual connections are less significant for generalization.

Furthermore, we study the layer alignments with input
features in Figure 1c. We observe that better performing models
generally have less alignment with the input across all layers.
In Figure 2b, we plot the CKA between layer feature kernels,
and targets and inputs. We find that earlier/later layers align
better with input/output features, respectively. This implies that
the representations hierarchically evolve based on the output
correlations from input to output layers (see Figure 1). This
evolution is consistent with the theoretical predictions obtained
with perturbative corrections to infinite width layer kernels
[17], [20], [22], [23].

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

0.2

0.4

0.6

0.8

1.0
CKA (Target on Train Set)

0.2

0.4

0.6

0.8

CKA (Target on Test Set)
Layer 1
Layer 2

Layer 3
Layer 4

Layer 5
Layer 6

Layer 7
Layer 8

Layer 9
Layer 10

No
-S

ki
p

| B
N

| N
o-

Au
g

| 4
09

6
| S

GD
_0

.1

No
-S

ki
p

| B
N

| N
o-

Au
g

| 2
04

8
| S

GD
_0

.1

Sk

ip
 |

BN
 |

No
-A

ug
 |

40
96

 |
SG

D_
0.

1

Sk

ip
 |

BN
 |

No
-A

ug
 |

20
48

 |
SG

D_
0.

1

Sk

ip
 |

BN
 |

No
-A

ug
 |

40
96

 |
SG

D_
0.

5

No
-S

ki
p

| B
N

| N
o-

Au
g

| 4
09

6
| S

GD
_0

.5

Sk

ip
 |

BN
 |

No
-A

ug
 |

20
48

 |
SG

D_
0.

5

No
-S

ki
p

| B
N

| N
o-

Au
g

| 2
04

8
| S

GD
_0

.5

Sk

ip
 |

BN
 |

No
-A

ug
 |

 5
12

 |
SG

D_
0.

5

No
-S

ki
p

| B
N

| N
o-

Au
g

|
51

2
| S

GD
_0

.5

Sk

ip
 |

BN
 |

No
-A

ug
 |

40
96

 |
M

om
_0

.1

Sk

ip
 |

BN
 |

No
-A

ug
 |

20
48

 |
M

om
_0

.5

Sk

ip
 |

BN
 |

No
-A

ug
 |

20
48

 |
M

om
_0

.1

No
-S

ki
p

| B
N

| N
o-

Au
g

| 4
09

6
| M

om
_0

.1

No
-S

ki
p

| B
N

| N
o-

Au
g

| 2
04

8
| M

om
_0

.1

No
-S

ki
p

| B
N

| N
o-

Au
g

| 2
04

8
| M

om
_0

.5

No
-S

ki
p

| B
N

|
 A

ug
 |

40
96

 |
SG

D_
0.

1

Sk

ip
 |

BN
 |

Au

g
| 2

04
8

| S
GD

_0
.1

Sk

ip
 |

BN
 |

Au

g
| 4

09
6

| S
GD

_0
.1

Sk

ip
 |

BN
 |

No
-A

ug
 |

 5
12

 |
M

om
_0

.5

No
-S

ki
p

| B
N

|
 A

ug
 |

20
48

 |
SG

D_
0.

1

No
-S

ki
p

| B
N

| N
o-

Au
g

|
51

2
| M

om
_0

.5

Sk

ip
 |

BN
 |

Au

g
| 4

09
6

| S
GD

_0
.5

No
-S

ki
p

| B
N

|
 A

ug
 |

40
96

 |
SG

D_
0.

5

Sk

ip
 |

BN
 |

Au

g
| 2

04
8

| S
GD

_0
.5

No
-S

ki
p

| B
N

|
 A

ug
 |

20
48

 |
SG

D_
0.

5

Sk

ip
 |

BN
 |

Au

g
|

51
2

| S
GD

_0
.5

No
-S

ki
p

| B
N

|
 A

ug
 |

 5
12

 |
SG

D_
0.

5

Sk

ip
 |

BN
 |

Au

g
| 4

09
6

| M
om

_0
.1

No
-S

ki
p

| B
N

|
 A

ug
 |

40
96

 |
M

om
_0

.1

Sk

ip
 |

BN
 |

Au

g
| 2

04
8

| M
om

_0
.1

No
-S

ki
p

| B
N

|
 A

ug
 |

20
48

 |
M

om
_0

.1

Sk

ip
 |

BN
 |

Au

g
|

51
2

| M
om

_0
.5

No
-S

ki
p

| B
N

|
 A

ug
 |

20
48

 |
M

om
_0

.5

Sk

ip
 |

BN
 |

Au

g
| 2

04
8

| M
om

_0
.5

No
-S

ki
p

| B
N

|
 A

ug
 |

 5
12

 |
M

om
_0

.5

0.2

0.4

0.6

0.8
CKA (Input on Train Set)

Fig. 1. CKA for the internal layer kernels and labels and inputs at the end of the training. Models are ordered from smallest (%58.2) to highest (%94.7) test
accuracy. Labels indicate in order whether there was skip connection and augmentation, the batch size and the optimization method with the learning rate. The
target alignment is highest for the last layer and lowest for the first layer, while the opposite holds for the input alignment. The hierarchy of layer alignments
from earlier to deeper layers is robust across different experiments. Finally, the target alignment is largest for the last layer when momentum used as the
optimizer and the input alignment is largest for the first layer when SGD is used as the optimizer. The vertical dashed lines correspond to three models studied
in Figure 3, Figure 5 and Figure 4 from left to right, respectively.

TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN DIFFERENT

HYPERPARAMETERS AND MODEL PERFORMANCE METRICS

Loss Test Acc. CKA (Test) CKA (Train)

Skip 0.097 -0.024 -0.026 -0.024
Aug. 0.335 0.806 0.529 0.162
Batch Size -0.039 -0.247 -0.181 -0.045
LR -0.078 0.163 -0.035 -0.263
Momentum 0.099 0.448 0.823 0.936
Loss 1.000 0.384 0.366 0.253
Acc. 0.384 1.000 0.850 0.528
CKA (Test) 0.366 0.850 1.000 0.870
CKA (Train) 0.253 0.528 0.870 1.000
Avg. CKA (Test) 0.279 0.920 0.944 0.747
Avg. CKA (Train) 0.221 0.828 0.930 0.837

Next, we investigate the spectral properties of the internal
layers of the following three trained models on the training set;
the worst (%58.2) and the best performing model (%94.7), and
a model with very high alignment in the last two layers (nearly
1) but low test accuracy (%75.2) (tenth point from left in
Figure 1a denoted with a vertical dashed line). For each model,
we plot the eigenvalues and the cumulative power for Layer-10
(penultimate layer) and Layer-9 at the beginning, middle and
end of the training (epochs 0, 25, 5000, respectively). We chose
these models because they all perform perfectly on the training
set but one has both low CKA and test accuracy, another has
excellent CKA but moderate test accuracy and the last one
has both good CKA and test accuracy. We wondered what
is intrinsically different between the representations of these
models from a spectral point of view.

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

a) b)

Fig. 2. a) CKA between internal layer kernels and target on both training
and test set at the end of training. For each layer kernel, errorbars show the
standard deviation across 36 experiments. CKA correlates well on training
and test sets, and monotonically improves for deeper layers. b) CKA between
internal layer kernels and target/input on training set. Earlier layers are aligned
more with inputs than outputs. Similarly, errorbars show the standard deviation
over 36 experiments with different hyperparameters.

In Figure 3a, we present the spectral properties of the worst
performing model (left-most dashed line in Figure 1). As we
discussed before, initially the layer kernels have the ranks
given by Nℓ which are N9 = 512 and N10 = 256 for our
architecture (black dashed lines in the eigenvalue panels).
Throughout training, the magnitude of the eigenvalues increase
significantly but their high-rank structure stays intact, implying
there was barely an improvement over their initial spectral
bias. At the same time, we track the cumulative power of
the target on the eigenbasis of each layer kernel in Figure 3b.
The initial total power is distributed over the entire feature
space, implying poor task-model alignment. Training, on the
other hand, improves the alignment of the target with the
penultimate layer kernel significantly on the training dataset,
causing a target uniformly distributed over the first C = 10
modes (dashed lines in Figure 3b), which is precisely the rank
of the target kernel. On the other hand, we do not observe
the same with Layer 9, where task-model alignment barely
improves.

In Figure 4a for the best performing model (right most
dashed line in Figure 1), we see that both layer kernels acquire
a low rank structure compared to their initializations. Again, the
layer kernels have rank Nℓ with are N9 = 512 and N10 = 256
initially. However, throughout training, they adapt to a lower
rank structure where the new ranks for both kernels are close
to the number of classes C = 10, that is, the rank of the
target kernel. Hence, the layer kernels get closer to the target
kernel, explaining large CKA. At the same time, we track
the cumulative power of the target on the eigenbasis of each
layer kernel in Figure 4b. Initially, the target alignment is poor,
and the total power is distributed over the entire feature space.
However, training also improves the alignment of the target on
the low-dimensional space spanned by the layer kernel; there
are only C = 10 (dashed lines in Figure 4b) approximately
equally important components of the target when projected on
the layer kernels. Hence, training improves both spectral bias
and the task-model alignment on the training set.

Having reviewed the spectral outlook of the worst and best
models throughout training, we now look at a model which has

a)

b)

Fig. 3. Eigenspectrum and cumulative power for the last two layers of the
worst performing model at three different time points during training. In the
top figure, the orange curve mostly coincides with the green curve.

a)

b)

Fig. 4. Eigenspectrum and cumulative power for the last two layers of the
best performing model at three different time points during training.

large CKA between the target and the last layers on the training
set, but nevertheless have poor generalization performance
(middle dashed line in Figure 1). In Figure 5a, we see a
mixture of the best and worst models; the eigenspectrum of
the penultimate layer kernel looks very much like it was for
the former, the spectrum for the previous layer (Layer 9) looks
similar to the one for the latter model. On the other hand,
the task-model alignments for both layer look very similar to
the case with best model. So what is different? Upon close
inspection, we see that Layer 9 kernel still picks up a low-rank
structure which is not as pronounced as before, but it is enough

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

to obtain a large CKA. That CKA can be insensitive to smaller
but yet important eigenvalues has been pointed out in [41].

a)

b)

Fig. 5. Eigenspectrum and cumulative power for the last two layers of a
poorly generalizing model with high CKA at three different time points during
training.

We make the following observations from these figures.
First, target-model alignment increases during training. Second,
motivated by the observation that the target-model alignment
in layer 9 in the worst model is worse than the other models
while the target-model alignment in layer 10 is similar, we
conjectured that the average CKA across all layers may better
correlate with the overall model performance than CKA of
the last layer. We test this idea in Figure 6, where we plot
the ordered training and test accuracy across models in the
first panel and the averaged CKA for each model across its
layers. As shown in Table. I, the correlations between layer
averaged CKAs for both training and test sets indeed correlate
better with the test accuracy. This hints at the fact that a well
generalizing model should not only have good alignment with
the penultimate layer, but it should also learn important features
of the target throughout the entire network.

VI. NTK AND TARGET ALIGNMENT

As mentioned previously, study of layer kernels and their
CKA with the target function helps to understand the structure
of representation learning from a spectral point of view,
however it is not enough to understand generalization because
1) the final output of a neural network is not given by the kernel
regressor on the layer kernels, and 2) even if we considered
kernel regression on the layer kernels, their generalization
performance cannot be reduced to a single scalar like CKA
and one needs to consider the effect of the spectral bias and
task-model alignment, which are implied by the analytical
formulas for generalization error studied in [9] and others.

Recently, however, there were developments on describing
a trained neural network’s output in terms of kernel regression

a)

b)

Fig. 6. a) Training and test accuracy of the models considered. b) Average
CKA for each model across layers. Generalization correlates well with overall
target alignment with all layers.

with the empirical NTK towards the end of training (e.g. [28],
[27], [51]). The findings roughly show that after a certain
amount of epochs T during training, the loss landscape becomes
flatter and the neural network output can be represented as its
Taylor expansion around the parameters θT at time T , after
which the training resembles performing a kernel regression
on the static tangent features (defined below) evaluated at θT .
Motivated by these observations, we now empirically study the
alignment properties of NTK at all times during training.

The continuous time limit of gradient descent training
(gradient flow) gives rise to the following training dynamics
on a multi-class network function f ∈ RC :

∂tfi(x) = −
P∑

µ=1

C∑
j=1

KNTK
ij (x,xµ)

(
fj(x

µ)− f̄j(x
µ)
)
, (5)

where {xµ}Pµ=1 are training inputs, f̄ ∈ RC is the target
function and KNTK(x,x′) : X × X → RC×C is the
operator-valued NTK given in terms of the tangent features
ψi(x) = ∇θfi(x) as:

KNTK
ij (x,x′) = ψi(x)

⊤ψj(x
′) = ∇θfi(x)

⊤∇θfj(x
′). (6)

Note that throughout training, NTK evolves differently for
different class pairs and mixes them in a non-trivial way. This
is in contrast to the scalar layer kernels K(ℓ) which are class
agnostic, as discussed above. Again considering networks of
the form f(x) = Wψ(L)(x), where ψ(L) is the outputs of the
penultimate layer, NTK can be reduced to the form:

KNTK
ij (x,x′) = K(L)(x,x′)Iij +K∇

ij(x,x
′), (7)

where K∇
ij(x,x

′) =
∑

kl WikWjl∇θψ
(L)
k (x)⊤∇θψ

(L)
l (x′)

is the gradient kernel. Notice that the first term of NTK is

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

the penultimate layer kernel on the block diagonals of NTK
that does not mix different labels and the second term includes
the tangent features coming from gradients with respect to
the parameters of earlier layers and is the source of classwise
mixing.

While a proper treatment of NTK requires the study of
its alignment with the rank-1 target kernel Kopt

f̄
(x,x′) =

f̄(x)f̄(x′)⊤ introduced in Sec. III, for simplicity we will
consider the trace of NTK over the class indices:

KNTK(x,x′) = K(L)(x,x′) +
1

C
TrK∇(x,x′) (8)

and study its alignment with the target kernel Kf̄ = f̄(x)⊤f̄(x′).
Recall that K(L)(x,x′) becomes low rank with near-perfect
alignment to Kf̄ whose rank is C. Hence, in the following
experiments, we study if the KNTK(x,x′) inherits this low-
rank representation throughout training. This analysis also
gives us a chance to characterize the spectral properties of the
gradient kernel K∇.

Since the numerical computation of NTK is both compu-
tationally and memory expensive [52], [53], we consider a 4
hidden layer feedforward neural network with N = 200 units
at each layer whose weights are initialized according to the
distribution Wij ∼ N (0, 1

N) and biases set to zero. We train
this neural network with 10000 samples from MNIST dataset
[54] with batch size 500, and test it on another 10000 samples
from the same dataset. The network was trained with ADAM
optimizer with learning rate 0.1 for 3000 epochs. A similar
experiment has been conducted in [55] where the alignments
were measured with respect to the full operator valued NTK,
and it was observed that the alignment increases throughout
training. Instead, here we consider the total alignment of NTK
by summing it over the class indices and consider the overall
alignment with target.

In Figure 7, we show that this network reaches almost %95
test accuracy on MNIST (first panel). We also show NTK’s
alignment with the target kernel, as well as its alignment
with the network kernel Kf (x,x

′) = f(x)⊤f(x′) throughout
training (second panel). NTK seems to approach to the target
kernel asymptotically, which implies that it inherits the low-
rank structure of the penultimate layer kernel K(L) as described
below Eq. (8).

In Figure 8, we supplement this observation further with the
evolution of the spectrum of NTK and the cumulative power
of the target when projected on the tangent features throughout
training. Indeed, NTK acquires the low-rank structure coming
from the alignment of its first term (K(L)), and furthermore the
effect of this term seems to be the dominating one. In future
works, it would be interesting to derive this effect theoretically.

VII. CONCLUSION

In this paper, inspired by the recent theoretical developments
in generalization in kernel regression [8], [9], [13], we
performed empirical analysis of representation learning in
deep neural networks by inspecting their spectral properties.
We found that the target alignment with individual layer

100 101 102 103

Epochs

0.2

0.4

0.6

0.8

1.0
Training and Test Acc.

Tr. Acc.
Test Acc.

100 101 102 103

Epochs

NTK-Target Alignment on Train Set

NTK - Target Alignmet
NTK - Network Alignmet
Network - Target Alignmet

Fig. 7. (Left Panel) Training and test accuracy throughout training for the
4-layer feedforward neural network. (Right Panel) Alignments between the
pairs KNTK - Kf̄ (NTK - Target Alignment), KNTK - Kf (NTK - Network
Alignment) and Kf̄ - Kf (Network - Target Alignment).

10 10

10 8

10 6

10 4

10 2

NTK on Training Set NTK on Test Set

100 101 102 103

10 1

100

C(
)

100 101 102 103

0 1000 2000 3000
Epochs

Fig. 8. Eigenspectrum of NTK on both training and test sets as well as the
cumulative power of the target when projected on the tangent features of NTK
during training. NTK acquires the low-rank structure of the target kernel.

kernels on the training set does not always correlate well
with generalization, but rather there needs to be a notion of
overall network alignment with the target including all layers.
Here, we simply introduced average CKA across all layers and
found that this quantity correlates well with generalization.

Furthermore, we studied the representations learned by the
tangent features of deep neural networks by studying the
spectral properties of NTK. We found that NTK, a rather
complicated object compared to layer kernels, also acquires
a low-rank structure during training and aligns well with the
target. This is in sharp contrast to the perturbative treatments of
NTK in the infinite width limit where the low rank corrections
stay small [17], [20], [22].

REFERENCES

[1] D. Mumford and A. Desolneux, Pattern theory: the stochastic analysis
of real-world signals. CRC Press, 2010.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” in Advances in neural information
processing systems, 2018, pp. 8571–8580.

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

[4] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang,
“On exact computation with an infinitely wide neural net,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[5] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein,
and J. Pennington, “Wide neural networks of any depth evolve as
linear models under gradient descent,” Advances in neural information
processing systems, vol. 32, 2019.

[6] L. Chizat, E. Oyallon, and F. Bach, “On lazy training in differentiable
programming,” 2018.

[7] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu, “Towards understanding
the spectral bias of deep learning,” 2019.

[8] B. Bordelon, A. Canatar, and C. Pehlevan, “Spectrum dependent learning
curves in kernel regression and wide neural networks,” in Proceedings
of the 37th International Conference on Machine Learning, 2020.

[9] A. Canatar, B. Bordelon, and C. Pehlevan, “Spectral bias and task-model
alignment explain generalization in kernel regression and infinitely wide
neural networks,” Nature Communications, vol. 12, no. 1, pp. 1–12,
2021.

[10] A. Jacot, B. Simsek, F. Spadaro, C. Hongler, and F. Gabriel, “Kernel
alignment risk estimator: Risk prediction from training data,” 2020.

[11] K. Xu, M. Zhang, J. Li, S. S. Du, K. ichi Kawarabayashi, and S. Jegelka,
“How neural networks extrapolate: From feedforward to graph neural
networks,” 2020.

[12] Y. Dandi and A. Jacot, “Understanding layer-wise contributions in deep
neural networks through spectral analysis,” 2021.

[13] J. B. Simon, M. Dickens, and M. R. DeWeese, “A theory of the inductive
bias and generalization of kernel regression and wide neural networks,”
2021.

[14] G. Yang and E. J. Hu, “Tensor programs iv: Feature learning in infinite-
width neural networks,” in International Conference on Machine Learning.
PMLR, 2021, pp. 11 727–11 737.

[15] A. Christmann and I. Steinwart, “Self-consistent dynamical field theory
of kernel evolution in wide neural networks,” in Advances in Neural
Information Processing Systems, 2022.

[16] E. Dyer and G. Gur-Ari, “Asymptotics of wide networks from feynman
diagrams,” in International Conference on Learning Representations,
2019.

[17] S. Yaida, “Non-gaussian processes and neural networks at finite widths,”
in Mathematical and Scientific Machine Learning. PMLR, 2020, pp.
165–192.

[18] J. Huang and H.-T. Yau, “Dynamics of deep neural networks and neural
tangent hierarchy,” in International conference on machine learning.
PMLR, 2020, pp. 4542–4551.

[19] B. Hanin and M. Nica, “Finite depth and width corrections to the neural
tangent kernel,” in International Conference on Learning Representations,
2019.

[20] J. Zavatone-Veth, A. Canatar, B. Ruben, and C. Pehlevan, “Asymptotics
of representation learning in finite bayesian neural networks,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

[21] G. Naveh, O. B. David, H. Sompolinsky, and Z. Ringel, “Predicting
the outputs of finite deep neural networks trained with noisy gradients,”
Physical Review E, vol. 104, no. 6, p. 064301, 2021.

[22] Q. Li and H. Sompolinsky, “Statistical mechanics of deep linear neural
networks: The backpropagating kernel renormalization,” Physical Review
X, vol. 11, no. 3, p. 031059, 2021.

[23] D. A. Roberts, S. Yaida, and B. Hanin, The principles of deep learning
theory. Cambridge University Press, 2022.

[24] J. Zavatone-Veth and C. Pehlevan, “Exact marginal prior distributions
of finite bayesian neural networks,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[25] A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari,
“The large learning rate phase of deep learning: the catapult mechanism,”
arXiv preprint arXiv:2003.02218, 2020.

[26] V. Papyan, X. Han, and D. L. Donoho, “Prevalence of neural collapse
during the terminal phase of deep learning training,” Proceedings of
the National Academy of Sciences, vol. 117, no. 40, pp. 24 652–24 663,
2020.

[27] A. Atanasov, B. Bordelon, and C. Pehlevan, “Neural networks
as kernel learners: The silent alignment effect,” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=1NvflqAdoom

[28] S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and
S. Ganguli, “Deep learning versus kernel learning: an empirical study

of loss landscape geometry and the time evolution of the neural tangent
kernel,” 2020.

[29] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, “On
kernel-target alignment,” in Advances in Neural Information Processing
Systems, T. Dietterich, S. Becker, and Z. Ghahramani, Eds., vol. 14.
MIT Press, 2001. [Online]. Available: https://proceedings.neurips.cc/
paper/2001/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf

[30] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes,” 2016.

[31] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[32] H. Hotelling, “Relations between two sets of variates,” Biometrika, vol. 28,
no. 3/4, pp. 321–377, 1936.

[33] J. Ramsay, J. ten Berge, and G. Styan, “Matrix correlation,” Psychome-
trika, vol. 49, no. 3, pp. 403–423, 1984.

[34] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural
computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[35] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,”
Analytica chimica acta, vol. 185, pp. 1–17, 1986.

[36] F. R. Bach and M. I. Jordan, “Kernel independent component analysis,”
Journal of machine learning research, vol. 3, no. Jul, pp. 1–48, 2002.

[37] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in International
conference on algorithmic learning theory. Springer, 2005, pp. 63–77.

[38] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for learning
kernels based on centered alignment,” The Journal of Machine Learning
Research, vol. 13, pp. 795–828, 2012.

[39] L. Sun, S. Ji, S. Yu, and J. Ye, “On the equivalence between canonical
correlation analysis and orthonormalized partial least squares,” in Twenty-
First International Joint Conference on Artificial Intelligence, 2009.

[40] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural
network representations revisited,” 2019.

[41] F. Ding, J.-S. Denain, and J. Steinhardt, “Grounding representation
similarity with statistical testing,” 2021.

[42] A. S. Morcos, M. Raghu, and S. Bengio, “Insights on representational
similarity in neural networks with canonical correlation,” 2018.

[43] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
“Fitnets: Hints for thin deep nets,” 2014.

[44] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and
interpretability,” 2017.

[45] J. Mercer, “Functions of positive and negative type, and their connection
the theory of integral equations,” Philosophical transactions of the royal
society of London. Series A, containing papers of a mathematical or
physical character, vol. 209, no. 441-458, pp. 415–446, 1909.

[46] A. Canatar, E. Peters, C. Pehlevan, S. M. Wild, and R. Shaydulin,
“Bandwidth enables generalization in quantum kernel models,” 2022.

[47] C. Carmeli, E. De Vito, and A. Toigo, “Vector valued reproducing kernel
hilbert spaces of integrable functions and mercer theorem,” Analysis and
Applications, vol. 4, no. 04, pp. 377–408, 2006.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[49] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[50] G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and A. Madry,
“ffcv,” https://github.com/libffcv/ffcv/, 2022, commit xxxxxxx.

[51] N. Vyas, Y. Bansal, and P. Nakkiran, “Limitations of the ntk for
understanding generalization in deep learning,” 2022.

[52] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and
S. S. Schoenholz, “Neural tangents: Fast and easy infinite neural networks
in python,” 2019. [Online]. Available: https://arxiv.org/abs/1912.02803

[53] R. Novak, J. Sohl-Dickstein, and S. S. Schoenholz, “Fast finite width
neural tangent kernel,” 2022.

[54] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[55] A. Baratin, T. George, C. Laurent, R. D. Hjelm, G. Lajoie, P. Vincent, and
S. Lacoste-Julien, “Implicit regularization via neural feature alignment,”
2020.

Authorized licensed use limited to: Harvard Library. Downloaded on November 28,2022 at 22:46:00 UTC from IEEE Xplore. Restrictions apply.

