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One major question in neuroscience is how to relate connectomes to neural activity,
circuit function, and learning. We offer an answer in the peripheral olfactory circuit
of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected
through feedback loops with interconnected inhibitory local neurons (LNs). We
combine structural and activity data and, using a holistic normative framework based
on similarity-matching, we formulate biologically plausible mechanistic models of the
circuit. In particular, we consider a linear circuit model, for which we derive an exact
theoretical solution, and a nonnegative circuit model, which we examine through
simulations. The latter largely predicts the ORN → LN synaptic weights found in the
connectome and demonstrates that they reflect correlations in ORN activity patterns.
Furthermore, this model accounts for the relationship between ORN → LN and
LN–LN synaptic counts and the emergence of different LN types. Functionally, we
propose that LNs encode soft cluster memberships of ORN activity, and partially
whiten and normalize the stimulus representations in ORNs through inhibitory
feedback. Such a synaptic organization could, in principle, autonomously arise through
Hebbian plasticity and would allow the circuit to adapt to different environments in
an unsupervised manner. We thus uncover a general and potent circuit motif that
can learn and extract significant input features and render stimulus representations
more efficient. Finally, our study provides a unified framework for relating structure,
activity, function, and learning in neural circuits and supports the conjecture that
similarity-matching shapes the transformation of neural representations.

olfaction | connectome | encoding | clustering | normative approach

Technological advances in connectomics (1, 2) and neural population activity imaging
(3) enable the anatomical and physiological characterization of neural circuits at
unprecedented scales and detail. However, it remains unclear how to combine these
datasets to advance our understanding of brain computation. To address this, we focus on
the peripheral olfactory system of the first instar Drosophila larva—a small and genetically
tractable circuit with available connectivity and activity imaging datasets (4, 5).

This circuit is an analogous but simpler version of the well-studied olfactory circuit
in adult flies and vertebrates (6). It contains 21 olfactory receptor neurons (ORNs), each
expressing a different receptor type (Fig. 1A). ORN axons are reciprocally connected to a
web of multiple interconnected inhibitory local neurons (LNs) through feedforward
excitation and feedback inhibition. The connectome dataset contains not only the
presence or absence of a connection between two neurons, but also the number of
synaptic contacts in parallel (4), which is an estimate of the connection strength (2, 7–9)
(nonetheless, other factors like release probability and active zone properties also affect
synaptic strength (10, 11)).

Previous studies examined the role of LNs in transforming the neural representation
of odors from ORN somas to downstream projection neurons (PNs). In adultDrosophila,
this circuit was suggested to perform gain control and divisive normalization (12, 13),
which equalizes different odor concentrations and decorrelates input channels. In the
zebrafish larva, an analogous circuit was suggested to whiten the input, leading to pattern
decorrelation, which helps odor discrimination downstream (14, 15).

However, the underlying mechanistic principles of computation remain elusive. For
example, while different types of LNs have different connectivity patterns with ORNs
in the Drosophila larva (4), the role of different LN types, their multiplicity, and their
specific connectivity is not yet understood. Furthermore, the peripheral olfactory circuit
of adult Drosophila exhibits synaptic plasticity in response to changes in the olfactory
environment (16–19), but the functional role of this plasticity is unclear.

To address these shortcomings, we use a combination of data analysis and modeling
and develop a holistic theoretical framework that links circuit structure, function,
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Fig. 1. Circuit connectivity and LN types. (A) ORN-LN circuit diagram. xi ,
yi , zi : activity each ORN soma (circle), axonal terminal (rectangle), and LN
(pentagon). Each ORN is depicted as a two-compartment unit with a soma
and an axon. Half-circles: different types of chemical receptors. Red lines
with arrowheads, blue lines with open circles: excitatory and inhibitory con-
nections. LNs reciprocally connect with ORN axons and between themselves.
ORN axons and LNs synapse onto neurons downstream (dashed lines). (B)
Feedforward ORNs → LN synaptic count vectors, wLN (colored lines), and
average feedforward ORNs→ LNtype synaptic count vectors, wLNtype (black
lines, mean ± SD) for each LN type (SI Appendix, Fig. S2A). (C) Correlation
coefficients r between all wLN. L, R: left and right side of the Drosophila
larva. The numerical indices of BT and BD are arbitrary, and there is no
correspondence between the left and right side indices. Although BT 1 R
is of the same type as other BT, its connection vector has a correlation of
0 with other BT in the connectome data. Inset: Mean rectified correlation
coefficient r+ (r+ := max[0, r], i.e., negative values are set to 0) between LN
types calculated by averaging the rectified values in each region delimited by
a white border, excluding the diagonal entries of the full matrix.

activity data, and learning. Our contribution is fivefold: 1) We
find that the vectors of the number of synapses between ORNs
and LNs reflect features of the independently acquired ORN
activity pattern dataset (Figs. 2 and 3). 2) Building upon the
normative similarity-matching framework (20, 21), we develop
an optimization problem solvable by a biologically realistic circuit
model with the same architecture as the ORN-LN circuit. 3) The
model, driven by the ORN activity dataset, largely predicts the
following observations in the structural dataset (Figs. 3 and 4): the
ORNs→ LN synaptic weights, the emergence of LN groups, and
the relationship between feedforward ORN → LN and lateral
LN–LN connections. 4) Using our model, we characterize the
circuit computation (Figs. 5 and 6), and propose that LNs play a
dual role in rendering the neural representation of odors in ORNs
more efficient and extracting useful features that are transmitted
downstream. 5) We show that the synaptic weights that enable
this computation can, in principle, be learned in an unsupervised
manner via Hebbian plasticity. Note that, given the connectome
(4) originates from a 6-h-old first instar Drosophila larva, new
synaptic contact formation can take longer than 6 h (11), and
no study has yet demonstrated activity-dependent plasticity in
the larval ORN-LN circuit, it is unknown whether the observed
synaptic counts in this connectome could result from activity-
dependent synaptic plasticity.

In this study, we further our understanding of LNs and
their computations. We highlight the importance of minutely
organized ORN–LN and LN–LN connection weights, which
allow LNs to encode different significant features of input activity
and dampen them in ORN axons. The transformation from the
representation in ORN somas to that in ORN axons consists of
a partial equalization of PCA variances, which enables a more
efficient stimulus encoding (22). In fact, this results in a decorre-
lation and equalization of ORNs and odor representations, which
correspond to two fundamental computations in the brain: partial
ZCA (zero-phase) whitening (23, 24) and divisive normalization
(25). In essence, we uncover an elegant neural circuit motif that
can extract features and perform two critical computations. If
endowed with Hebbian plasticity, the circuit can also adapt and
perform its functions in different stimulus environments. Thus,
we present a framework that allows us to quantitatively link
synaptic weights in the structural data with the circuit’s function
and with the circuit adaptation to input correlations, thus making
a crucial step toward a more integrated understanding of neural
circuits.

The results are organized as follows. First, we show that the
connectome is adapted to ORN activity patterns. Second, we
propose a normative approach leading to two circuit models:
a linear circuit (LC) model, and a nonnegative circuit (NNC)
model. Third, we show that the NNC reproduces key structural
observations. Finally, we describe the computations performed
by the LC and NNC in general and on the ORN activity dataset
in particular.

Results

ORN-LN Circuit. ORNs in the Drosophila larva carry odor
information from the antennas to the antennal lobe, where they
synapse onto LNs and PNs. There, olfactory information is
reformatted and transferred through ORN axons and LNs to
PNs. LNs, which synapse bidirectionally with ORN axons and
PN dendrites, strongly contribute to the reformatting in ORNs
and PNs through presynaptic and postsynaptic inhibition, as
shown mainly in the adult fly (12, 13, 26–30). LNs project to
several uni- and multiglomerular PNs, and PNs project to higher
brain areas such as the mushroom body and the lateral horn (4).

We study the circuit and computation presynaptic to PNs, i.e.,
occurring from ORN somas to ORN axons and LNs. Specifically,
we examine the subcircuit formed by all D = 21 ORNs and
those 4 LN types (on each side of the brain) that reciprocally
connect with ORNs (4) (Fig. 1A, SI Appendix, Fig. S1). The
4 LN types include 3 Broad Trio (BT) neurons, 2 Broad Duet
(BD) neurons, 1 Keystone (KS, bilateral connections) neuron,
and 1 Picky 0 (P0) neuron (SI Appendix, Figs. S1 and S2A). This
amounts to 8 ORNs–LN connections per side (3 BTs, 2 BDs, 2
KSs, and 1 P0s) and 16 on both sides. See SI Appendix, Tables
S1 and S2 for a list of all acronyms and mathematical variables
used in the paper.

We use the number of synaptic contacts in parallel between
two neurons as a proxy for the synaptic weight (2, 7–9) (but see
refs. 10 and 11). In the linear approximation, the change in the
postsynaptic neuron activity due to a change in the presynaptic
neuron activity is proportional to the synaptic weight connecting
them.

We focus our analysis on the synaptic counts of the feedforward
ORNs→LN connections. We callwLN theD = 21 dimensional
vector containing the synaptic counts of the connections from
the 21 ORNs to one LN. Because all the entries of this synaptic
count vector wLN share the same postsynaptic neuron, this
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vector is likely proportional to the corresponding synaptic weight
vector. Conversely, the synaptic count vector from one LN to
all 21 ORNs may not be proportional to the corresponding
synaptic weight vector, because each connection affects a different
postsynaptic ORN, which potentially has different electrical
properties. This makes the entries of a feedback synaptic count
vector not directly comparable. Yet, the feedforward and feedback
synaptic count vectors are somewhat correlated (SI Appendix,
Fig. S2).

While the study (4) divided LNs into the above types based on
their neuronal lineage, morphology, and qualitative connectivity,
we also find that these types are innervated differently by ORNs
(Fig. 1B). Indeed, the average correlation ofwLNs within each LN
type is higher than between LN types (Fig. 1C ). Thus, for a part of
our study (Figs. 2 and 3 A and B) we use the 4 average wLNtype =
1
n
∑

LN∈LNtype wLN, where n is the number of connection vectors
for that LN type.

ORNs → LN Synaptic Count Vectors Are Adapted to Odor
Representations in ORNs. Several studies proposed that LNs
could facilitate the decorrelation of the neural representation
of odors (14, 15, 32–35). To perform such decorrelation, the
circuit must be adapted to or “know about” the correlations in
the activity patterns (36). We investigate whether this is the case
in this olfactory circuit by testing whether the wLNtypes contain
signatures of ORN activity patterns.

An ensemble of ORN activity patterns {x(t)}data (t =
1, ..., 170) was obtained using Ca2+ fluorescence imaging of
ORN somas in response to a set of 34 odorants at 5 dilutions
(5) (Fig. 2A and SI Appendix). These odorants were chosen
from the components of fruits and plant leaves from the larva’s
natural environment to stimulate ORNs as broadly and evenly

as possible, with many odorants activating just a single ORN at
the lowest concentration (i.e., the highest dilution).

We examine the Pearson correlation coefficients between the
activity patterns {x(t)}data and the ORNs → LNtype synaptic
count vectors {wLNtype} (Fig. 2 C and D for wBT and two odors;
Fig. 2B for all four wLNtypes and all activity patterns {x(t)}data).
After controlling for multiple comparisons (31), we find that
the wLNtypes for the Broad Trio and Picky 0 maintain significant
correlations (P < 0.05) with a selection of ORN activity patterns,
BT being highly correlated with the largest set of x(t)s. This
suggests that the synaptic count vectors of at least these two LN
types are more adapted to these activity patterns than would be
expected by chance (see SI Appendix, Fig. S4 and SI Appendix
for additional evidence). This supports the hypothesis that the
circuit is at least partially adapted to ORN activity patterns and
that it could perform a computation like decorrelation of input
stimuli.

Each wLNtype exhibits a different “connectivity tuning curve”
shape (Fig. 2G), wBT being correlated with the largest set of
x(t)s, and wP0 the most highly correlated to a few x(t)s, and the
wBD and wKS the most weakly correlated. Biologically, this could
signify that the BT type is activated by the largest set of odors
and P0 only by a few odors. One possibility is that a different set
of odors activates each LN class.

A Normative and Mechanistic Model of the ORN-LN Circuit. We
aim to understand the circuit’s computation and organization
using a top-down, normative (also called principle-driven)
approach, which involves formulating an optimization problem.
Such an approach provides us with a theoretical understanding
of the computation and organizational principles of the circuit.
Although a bottom-up modeling approach requires unavailable

A C E G

H

G

B
D F

Fig. 2. Alignment of ORNs→ LN synaptic count vectors with odor representations in ORN activity. (A) Ca2+ 1F/F0 activity patterns {x(t)
}data in ORN somas in

response to 34 odors (separated by vertical gray lines) at 5 dilutions (10−8 , ...,10−4) from ref. 5. See SI Appendix, Fig. S3 for odor labels and scaled {x(t)
}data.

(B) Correlation between the four ORNs → LNtype synaptic count vectors (wLNtype for BT, BD, KS, and P0) with the odor representations {x(t)
}data from (A).

Slash: significant at 0.05 level; cross: significant at 0.05 FDR (false discovery rate) (31). P-values calculated by shuffling the entries of each wLNtype (50,000
permutations). (SI Appendix, Figs. S4A and S5). (C) ORNs → Broad Trio synaptic count vector wBT superimposed with ORN activity patterns x(A) and x(B) in
response to the ligands 2-heptanone (odor A) and 2-acetylpyridine (odor B) at dilution 10−4. y-axis: ORN, follows order of (A). (D) Scatter plot representation of
(C). wBT is more strongly tuned to x(A) (r = 0.6, P = 0.004) than to x(B) (r = 0.14, P = 0.3). P-values not adjusted for multiple comparisons. (E) wBT superimposed
on the 1st PCA direction of {x(t)

}data. y-axis: ORN, follows order of (A). (F ) Scatter plot representation of (E) (r = 0.65, P = 0.001). P-values are not adjusted
for multiple comparisons. (G) LN “connectivity tuning curves”: correlation coefficients sorted in decreasing order from (B) for each wLNtype. (H) Correlation
coefficient r between the top 5 PCA directions of {x(t)

}data and the four wLNtypes (SI Appendix, Fig. S6 A, B, and E). Two-sided P-values calculated by shuffling
the entries of each wLNtype (50,000 permutations). *: significance at 0.05 FDR.
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physiological circuit parameters, we verified our predictions with
a connectome-constrained model (Fig. 6).

Previous studies suggest that analogous circuits perform
stimulus whitening or decorrelation (14, 15, 32–35), and our
analysis above supports the possibility of such a computation. A
class of optimization problems based on the similarity-matching
principle and solvable by circuits similar to the ORN-LN one has
been shown to be capable of implementing whitening, principal
subspace extraction, and clustering (20, 21, 37). Note that the
circuit’s synaptic weights are adapted (optimized) to the ensemble
of inputs to perform such computation.

To understand the circuit, we first postulate an optimization
problem (Eq. 4) based on the similarity-matching principle
and solvable by a circuit with the ORN-LN architecture (see
Methods and SI Appendix). To match this architecture, similarity-
matching takes place between ORN axon and LN activities,
which seeks to maintain that distances (similarities) between
neural representations at the level of ORN axons and LNs.
Specifically, if the representations of two odors are similar
(dissimilar) in ORN axons, their representations will also tend
to be similar (dissimilar) in LNs. Second, we derive the circuit
models (Eqs. 5–7) that solve this optimization problem with the
recorded ORN soma activity described above (5) as input. Third,
we compare the synaptic weight organization of the circuit model
with the connectome (4) (Figs. 2, 3, and 4) and find that the
circuit model accounts for multiple experimental observations.
We thus conclude that the similarity-matching principle and
the optimization problem widely explain the biological circuit’s
organization. Lastly, we describe in detail the computation
performed by the circuit model (Figs. 5 and 6).

Mathematically, given a set of T activity patterns in D ORN
somas as input, {x(t)}t=1...T , the optimization provides us as
output the activity patterns in the D ORN axons {y(t)

}t=1...T
and K LNs {z(t)}t=1...T . The circuit model performing the
computation of the optimization has the following parameters:
W = [w1, ...,wK ] := E[y(t)z(t)T] and M = {mi,j}i,j=1...K :=
E[z(t)z(t)T], which are proportional to the connection weights
between ORNs and LNs, and between LNs, respectively. In
addition to K, the number of LNs, the model contains only
one effective parameter ρ2, corresponding to the ratio between
feedback inhibition and feedforward excitation strengths.

We consider two optimization problems leading to two circuit
models, differing in their domain of optimization: 1) a linear
circuit, LC-K with K LNs, Eq. 6, with no constraint on
the optimization domain; 2) a nonnegative circuit, NNC-K,
Eq. 7, with nonnegative constrains on ORN axon and LN
activity (y(t)

≥ 0, z(t) ≥ 0). This constraint renders the NNC
more biologically plausible than the LC, and the NNC indeed
predicts the structural data better than the LC (below). However,
only for the LC we can derive the analytical expressions for
W, M, {y(t)

}, and {z(t)}, whereas for the NNC we must
rely on numerical simulations (SI Appendix). Because both
models are closely related, we examine the analytical solution
of the LC to quantitatively understand the relationship between
input and output variables, describe the circuit’s function in a
mathematically tractable manner, and substantiate the numerical
results for the NNC.

Given an input {x(t)}, the optimal synaptic weights can be
found by solving the optimization problem offline (Eqs. 4 and 5),
or online with Hebbian plasticity (Eq. 8). The latter implies
that the circuit model’s synaptic weights can adapt to solve the

optimization problem on any ORN activity patterns ensemble,
in an unsupervised manner. This would correspond to activity-
dependent synaptic plasticity in the biological circuit, which was,
so far, only observed in the adult Drosophila (16–19). Given
the specific wiring of some LNs such as Keystone and Picky
0 in the biological circuit (4), it is very likely that the synaptic
weights of these (and potentially other) LNs are largely genetically
predetermined and were set over evolutionary time scales (similar
to an offline setting). It is unknown which mechanisms determine
the synaptic weights in the biological circuit, and it is beyond the
scope of this study to elucidate them.

Next, we characterize the computation performed by the LC
and the NNC as well as the connectivity (in terms of W and
M) that supports the computation. In short, in the LC, LNs
extract and encode the top K PCA subspace of the input in
ORN somas and the ORNs→ LN synaptic weight vectors {wk}
span that subspace. In the NNC, LNs encode soft cluster/feature
memberships of the odor representations in ORN somas and
{wk} are related to cluster locations. In both models, the ORN
axons encode a partially whitened and normalized version of the
ORN soma activity due to LN feedback inhibition.

Predictions of the ORN–LN Connection Weight Vectors. We
start by analyzing our models’ predictions in terms of circuit
connectivity. In the LC-K, the {wk}k=1...K (proportional to
the ORNs ↔ LN connection weight vectors) are linearly
independent and span the same K dimensional subspace as the
topK PCA directions {uX,i}i=1...K of the uncentered input {x(t)}
(SI Appendix):

wk =
K∑
i=1

ak,iuX,i. [1]

This ensures that LNs extract the top K PCA subspace of the
input (below). The {ai,j}i,j=1...K are coefficients with a degree
of freedom, arising from the nonuniqueness of the optimization
solution. Thus, the wks do not necessarily correspond to specific
PCA directions of the input and are not orthogonal. Because the
model predictions rely on “uncentered PCA,” i.e., PCA without
prior centering of the data, we use such PCA throughout the
paper.

We probe this structural prediction by testing the alignment
between the four ORNs→LN synaptic count vectors, {wLNtype}

and the first 5 PCA directions of the ORN activity data, {x(t)}data
(Fig. 2 E, F, and H ). We find that only wBT is significantly
correlated with the first PCA direction. Because this is uncentered
PCA, this direction closely resembles the mean activity direction.
We compare with the top 5 (instead of 4, as the number of
wLNtypes) PCA directions to account for the potential discrepancy
between this ORN activity dataset and the true ORN activity.

Next, to test Eq. 1 directly, we examine the alignment of the
subspaces spanned by the four wLNtypes and the top five PCA
directions of {x(t)}data (SI Appendix, Fig. S7). While ≈ 1 more
dimension is significantly aligned than is randomly expected,
supporting the results of Fig. 2H, there is no complete alignment.
In summary, although wBT aligns with the top PCA direction of
{x(t)}data, and the connectivity and activity subspaces are more
aligned than expected by chance, the LC does not account for
the connectivity of most LN types.

Next, we study the {wk}k=1...4 predicted by the NNC-4 (K =
4 as the number of LN types) optimized on {x(t)}data (Fig. 2A),
for 0.1 ≤ ρ ≤ 10. For ρ / 3.1, three of the four wks align
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significantly with a wLNtype (BT, BD, and P0, Fig. 3 A and
B). In a perfect fit between model and data, each wLNtype is
aligned one wk. wKS is not significantly correlated with any of
the wks, but NNC-5 has one wk significantly aligned with wKS
(SI Appendix, Fig. S6H). The significant alignment of w4 with
both wBT and wP0 could arise due to partial correlation between
wLNtypes (Fig. 1C ). Furthermore, we find a similarity between
the model and the data in terms of alignment of the ORNs→
LN connection weight vectors with the ORN activity vectors
{x(t)}data (SI Appendix, Fig. S8).

In summary, the ORN→ LN connection weights predicted
by the NNC model strongly resemble the synaptic counts in
{wLNtype}, but do not provide an exact one-to-one correspon-
dence. This analysis confirms that all the wLNtypes are adapted to
ORN activity patterns. It also corroborates the hypothesis that
the similarity-matching principle and the optimization problem
have explanatory power for the organization of the biological
circuit. Later we discuss the potential reasons for the nonexact
alignment between the model and the data.

Emergence of LN Groups in the NNC. In the connectome, LNs
are grouped by type and several wLNs are similar (Figs. 1 B and C
and 3C ). Do LN groups naturally emerge in our models? In the
LC, {wk}k=1...K spans the top K -dimensional principal subspace
of the input {x(t)}, resulting in distinct wks and thus no LN
group emerges.

In the NNC, however, we observe the formation of LN groups.
For example, in NNC-8 (8 LNs as on each side of the larva)
trained on {x(t)}data, several wks are similar, especially for smaller

A C

D

E

B

Fig. 3. Prediction of the connectivity with the NNC and emergence of LN
groups. (A) Correlation between the four ORNs → LN connection weight
vectors {wk } from NNC-4 (� = 1) and the four ORNs→ LNtype synaptic count
vectors {wLNtype} (SI Appendix, Fig. S6 C, D, F, G, and H). One-sided P-values
calculated by shuffling the entries of each wLNtype (50,000 permutations). *:
significant at 0.05 FDR. (B) Bottom: maximum correlation coefficient (mean ±
SD) of the four wks from NNC-4 with the four wLNtypes for different values
of � (50 simulations per �), encoding the feedback inhibition strength. Top:
number of wLNtypes significantly correlated with at last one wk from NNC-4
(FDR at 5%). For � ' 3.1, not all simulations converge to the same {y(t)

},
{z(t)}, and {wk }, potentially due to existence of multiple global optima or
simulations only finding local optima. (C) Correlation between the wLNs on
the left and right sides of the larva, portraying that several wLNs are similar. (D)
Same as (C) for the eight wks arising from NNC-8 and with � = 0.1,0.35,1,10.
Matrices ordered using hierarchical clustering and wks ordered accordingly
(SI Appendix). (E) Mean rectified correlation coefficient r+ (r+ := max[0, r])
from (C) (blue band delimited by the value for left and right circuit) and from
NNC-8 (black line, mean± SD, 50 simulations per �). r+ obtained by averaging
all the r+ from a correlation matrix, i.e., (C) or (D), excluding the diagonal.

ρ (Fig. 3D). Given that thewks point toward the cluster locations
in the ORN axon activity space, the grouping ofwks is influenced
by 1) ORN activity pattern statistics (closer clusters elicit more
aligned wks), 2) the number of LNs (having more LNs than
clusters lead to several similarwks), and 3) the value of ρ (higher ρ
leads to more separated clusters in ORN axons and thus dissimilar
wks) (SI Appendix, Figs. S9 and S10).

For the biological circuit, we lack exact measures of the factors
(e.g., {x(t)} and ρ) that influence {wk} grouping. Nevertheless,
we inquire whether NNC-8 can, in principle, generate a wk
grouping similar to the biological circuit for different values of ρ.
At ρ = 0.35, the mean rectified correlation coefficient r+ (r+ :=
max[0, r]) between all wks of the NNC-8 matched that of the
connectome (Fig. 3E). While this value of ρ, which corresponds
to a relatively low feedback inhibition in the model, should not
be interpreted as the “true” value in the actual biological circuit,
it falls within the range found above (ρ / 3.1).

In summary, within a reasonable parameter range, the NNC
reproduces another property of the biological circuit: the emer-
gence of LN groups.

Relation between LN–LN and Feedforward ORNs → LN Con-
nection Weights. The ORN-LN circuit contains reciprocal
inhibitory LN–LN connections (Fig. 4A) whose connectivity
patterns and roles are not fully understood. In our models,
these connections are symmetric: the synaptic weights LNi →
LNj and LNj → LNi are equal. This is largely verified in
the connectome, except for the P0, which inhibits the KSs,
but is not strongly inhibited by them. Theoretical predictions
of the LC-K model (with K LNs) state that the strength of
LN–LN connections (M = {mLNi, LNj}i,j=1...K ) and ORN–LN
connections (W = [w1, ...,wK ]) are related (SI Appendix):

M2 = M>M ∝W>W ⇔ M ∝ (W>W)1/2, [2]

where> is the matrix transpose. This relationship is exact for the
LC and approximate for the NNC. The ith column of M, mi, is
the LNs→ LNi (and LNi→ LNs) synaptic weight vector. The
ith column of W, wi, is proportional to the ORNs→ LNi (and
LNi→ORNs) synaptic weight vector. From Eq. 2 follows that:
1) ‖wi‖/‖mi‖ = const, i.e., the ratio between the magnitude of
the ORNs→ LN and LNs→ LN synaptic weight vectors is the
same at each LN. The magnitude is a proxy for the total synaptic
strength of a synaptic weight vector. 2) ](wi,wj) = ](mi,mj),
where ](a, b) is the angle between two vectors a and b. Thus
2 LNs with a similar (different) connectivity pattern with the
ORNs have a similar (different) connectivity pattern with LNs.

We test whether Eq. 2 holds in the connectome (Fig. 4), and
find a significant correlation (r = 0.73, P = 0.006) between the
off-diagonal entries of matrices M and (WTW)1/2, suggesting
a meticulous co-organization of the ORN–LN and LN–LN
connections. We lack the values of the LN neural leaks, which
correspond to the diagonal entries of M (Eqs. 6 and 7).

In summary, the synaptic weight organization in the NNC
model resembles that the connectome in several key ways: the
synaptic counts wLNtype, the emergence of LN groups, and the
relationship between ORNs→ LN and LN–LN. The LC model,
on the other hand, fails at explaining several of these structural
features.

Circuit Model Computation and Coding Efficiency. We next
explore the computations of the LC and NNC. In both models,
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A B C D

Fig. 4. Relationship between LN–LN (M) and ORNs→ LN (W) synaptic counts in the connectome reconstruction. (A) LN–LN connections synaptic counts M on
the left and right sides of the larva. (B) WTW with W = [wLN1 , ...,wLN8] on the left and right sides. Thus each entry is wT

LNiwLNj, the scalar product between
2 ORNs → LN synaptic count vectors wLN. (C) (WTW)1/2, i.e., the square root of the matrices in (B). (D) Entries of M vs entries of (WTW)1/2, excluding the
diagonal, for both sides. r: Pearson correlation coefficient. pv: one-sided P-value calculated by shuffling the entries of each wLN independently, which assures
that each LN keeps the same total number of synapses. Shuffling the entries of M in addition to shuffling each wLN leads to P-value < 10−4.

upon ORN soma activation, the computation is implemented
dynamically through the ORN–LN loop and converges expo-
nentially to a steady state (Eqs. 6 and 7). Given inputs {x(t)},
the circuit’s outputs are the converged representations in ORN
axons, {y(t)

}, and LNs, {z(t)}.
Efficient encoding of odor representations in ORN is crucial

for downstream processing. Odor representations can be visual-
ized as points in a neural space, where each axis is the activity
of an ORN. We consider a circuit with just D = 2 ORNs
and K = 2 LNs, and an artificial input dataset of two odors A
and B (Fig. 5 A and D). Given xA and xB the representations
of the two odors: the larger the angle ](xA, xB), the easier the
two odors can be discriminated, and the more efficiently the
space is utilized. We quantify the efficiency of the encoding
by the coefficient of variation of the PCA variances, {σ 2

i }, of
the representation: CVσ = SD[{σ 2

i }]/mean[{σ 2
i }]. If all the

variances are equal (CVσ = 0), the representation is white,
and the encoding space is efficiently used (38). A larger CVσ
indicates a less optimal space utilization. We study the PCA
variances and “whiteness” of uncentered data because we assume

downstream neurons experience uncentered activity. We further
describe the computation in terms of the modification of the
stimulus representations.

LC: Extraction of the Principal Subspace by LNs and Partial
Equalization of PCA Variances in ORN Axons. We first describe
the computation in the LC. Given activity patterns {x(t)} in the
D ORN somas, we call {uX,i} and {σ 2

X,i} (i = 1, ..., D) the PCA
directions and variances of the uncentered {x(t)} (Fig. 5D). The
activity of the K LNs, {z(t)}, encodes the top K PCA subspace
of {x(t)}, i.e., spanned by {uX,i}i≤K (Fig. 5B). How exactly LNs
encode the subspace is a degree of freedom of the optimization,
and thus the activity of individual LNs does not necessarily align
with the PCA directions of the input. When K < D, LNs
perform a dimensionality reduction of the ORN soma activity.

LNs inhibit ORN axons, altering their odor representation
{y(t)
} (Fig. 5D). However, the PCA directions {uY,i} of ORN

axon activity remain the same as in ORN somas, i.e., {uY,i} =
{uX,i}. Thus, this transformation from soma to axons only

A D E F G H

B

C

Fig. 5. Computation in the LC and NNC. (A) Artificial ORN soma activity patterns ({x(t)
}, D = 2 ORN somas), generated with two Gaussian clusters of 100 points

each centered at (1, 0.3) and (0.3, 1), SD = 0.17. This input is fed to the LC-2 (i.e., K = 2 LNs) (B, D, and F ) and the NNC-2 (C, E, and F ), � = 1. (B) LN activity, {z(t)},
in the LC-2. Because of a degree of freedom in LC, LN activity can be any rotation of the activity depicted here, i.e., Q · z, where Q is a rotation (orthogonal)
matrix. (C) LN activity, {z(t)}, in the NNC-2. LNs encode cluster memberships. (D) Scatter plot of the activity patterns in ORN somas ({x(t)

}, black, from (A) and
in ORN axons in the LC-2 ({y(t)

}, magenta). �X,iuX,i , �Y,iuY,i : vectors of the PCA directions of uncentered {x(t)
} and {y(t)

} scaled by the SD of that direction. wk
(green): direction of an ORNs→ LN synaptic weight vector in the LC-2 from (B). Rotating the LN output {z(t)} would alter the wks, but not the {y(t)

}. (E) Scatter
plot of the activity patterns in ORN somas ({x(t)

}, black, from (A) and in ORN axons in the NNC-2 ({y(t)
}, blue). All activities are nonnegative and the wks point

toward the cluster locations, enabling the clustering observed in (C). (F ) The PCA variances of the activity are less dispersed in ORN axons (output, {y(t)
}) than in

ORN somas (input, {x(t)
}) for the LC and NNC. The output representation is thus partially whitened. The LC and NNC are similar in terms of their PCA variances.

(G and H) Transformation of the SD (�X , �Y ) of PCA directions from ORN somas ({x(t)
}) to ORN axons ({y(t)

}) in the LC model on linear and logarithmic scales,
for different values of � (different line colors), encoding inhibition strength. When � = 0, the output equals the input. The higher the �, the smaller the PCA
variances in the ORN axon.
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stretches and does not rotate the cloud of representations in the
neural space. This absence of rotation (called “zero-phase”) makes
the axonal and somatic activity maximally similar (23). This is
advantageous for downstream processing because the evolving
representation in ORN axons, computed dynamically via LN ac-
tivation, is thus maximally close to the converged representation,
allowing meaningful downstream processing before the complete
representation convergence.

The PCA variances {σ 2
Y,i} and {σ 2

Z,i} of {y(t)
} and {z(t)} are

(Fig. 5 D and F ):
σY,i

(
1 + ρ2σ 2

Y,i
)

= σX,i 1 ≤ i ≤ K [3a]
σY,i = σX,i K + 1 ≤ i ≤ D [3b]
σZ,i = ρσY,i 1 ≤ i ≤ K . [3c]

Hence, the variances of the last D–K PCA directions in ORN
somas ({x(t)}) remain unaltered in ORN axons ({y(t)

}). The
variances of top K PCA directions in ORN somas are diminished
according to Eq. 3a (Fig. 5 G and H ): relatively large PCA
variances in ORN somas (σ 2

X,i � ρ2) are shrunken with a cubic
root in ORN axons (σY,i ≈ 3

√
σX,i/ρ2), relatively small PCA

variances (σ 2
X,i � ρ2) remain virtually unchanged (σY,i ≈ σX,i).

The PCA variances in LN activity ({z(t)}) are proportional to
those in ORN axon activity ({y(t)

}) (Eq. 3c). (Note the indices
i of the PCA directions and variances in ORN axons have been
set to match those in ORN somas, and do not follow the usual
decreasing order).

This transformation generally results in a smaller coefficient
of variation of PCA variances, CVσ , in the output {y(t)

} than
in the input {x(t)} (SI Appendix, see below, Fig. 6D). The PCA
variances are then less spread and the odor representations are
encoded more efficiently. Because the PCA variances are partially
equated and no rotation occurs, this transformation is a partial
(Zero-phase) ZCA-whitening.

NNC: Clustering by LNs and Partial Equalization of PCA Vari-
ances in ORN Axons. We next explore the computation of the
NNC, where LN ({z(t)}) and ORN axon ({y(t)

}) activities
are nonnegative. LNs implement symmetric nonnegative matrix
factorization (SNMF) on ORN axon activity, which consists
of clustering and feature discovery (SI Appendix) (37). SNMF

A

I J

C F G HD E

B

K L

Fig. 6. Computation in the LC, NNC, and NNC-conn models in response to {x(t)
}data (Fig. 2A): clustering, partial whitening, normalization, and decorrelation.

(A) LN activity, {z(t)}, for the NNC-4 and NNC-8 models (SI Appendix, Fig. S11). LNs are mostly active in response to the odors to which their connectivity is
the most aligned (SI Appendix, Fig. S8A). (B) ORN axon activity, {y(t)

}, in the NNC-8. (C) Variances of odor representations in ORN somas ({x(t)
}data) and axons

({y(t)
}) in the PCA directions of uncentered ({x(t)

}data). The variances decrease the strongest in the directions of the highest initial variance. (D) Uncentered
PCA variances {x(t)

}data and {y(t)
} scaled by their mean to portray the spread of variances. (E) Uncentered variances of activity at ORN axons ({y(t)

}, output)
vs. in ORN somas ({x(t)

}data, input). (F ) Box plot of the ORN activity variances from (E) scaled by their mean to show the spread of variances. (G) Magnitude of
the 170 activity patterns in ORN axons {y(t)

} vs in somas {x(t)
}data. (H) Box plot of the activity pattern magnitudes from (G) (only for top two dilutions 10−5

and 10−4) scaled by their mean to show the spread of magnitudes. (I) Correlations between the activity of ORN somas ({x(t)
}data, Lower Left triangle) and of

ORN axon activity in NNC-8 ({y(t)
}, Upper Right triangle). (J) Smoothed histogram of the channel correlation coefficients from (J), excluding the diagonal (based

on n=210 values). In all models, at the axonal level, there are more correlation coefficients around zero and fewer at higher values. (K ) Correlations between
activity patterns (i.e., odor representations) in ORN somas ({x(t)

}data, Lower Left triangle) and in ORN axons for NNC-8 ({y(t)
}, Upper Right triangle). (L) Smoothed

histogram of the activity pattern correlation coefficients from (K ) (only for top two dilutions 10−5 and 10−4, n = 2,278). Similar effect as for channels in (J).
The decorrelation in the LC is more effective than in the NNC. The decorrelation in NNC-conn is not as pronounced as for the other two models. � = 2 in this
figure. a.u.: arbitrary units, stands for appropriate unit of neural activity. See SI Appendix, Figs. S12–S16 for the alignment of PCA direction, the LC, the NNC, the
NNC-conn, and � = 10.
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is essentially “soft” K -means clustering, allowing inputs to
belong to multiple clusters. Clustering satisfies the optimization’s
objective of nonnegative LN activity and maximally conserved
distances between stimulus representations in ORN axons and
LNs. Thus LN activity, {z(t)}, encodes the cluster membership
of odor representations in ORN axons ({y(t)

}), and the ORN→
LN synaptic weight vectors, {wk}, point toward clusters (Fig. 5
C and E). Unlike the LC, there is no degree of freedom in LN
activity.

The activity in ORN axons in NNC resembles that in LC, only
without negative values, and the PCA variances are also similar
(Figs. 5 D–F ).

Circuit Model Computation on the ORN Activity Dataset. Next,
to better comprehend the potential computation of the ORN-
LN circuit, we study the computation of the NNC on the dataset
of odor representation in ORNs, {x(t)}data (Fig. 2A). We also
show the LC. We set the parameter that regulates the inhibition
strength ρ = 2 to clearly represent the effect of the odor
representation transformation in ORNs. K, the number of LNs,
is set to 1, 4 (as the number of LN types) or 8 (as the number of
LNs on one side of the larva). We also examine the computation
of a nonnegative circuit model (NNC-conn) with connectivity
weights proportional to the synaptic counts of the connectome
(SI Appendix). Because for NNC-conn multiple unknown model
parameters need to be guessed, and this circuit might not be
adapted to the specific statistics of {x(t)}data, its computation
might not accurately reflect that of the true circuit, and the
discrepancies with the normative models might be a consequence
of this. Nevertheless, we find many similarities between NNC-
conn and NNC-8, further supporting our predictions regarding
circuit computation. Fig. 6 exhibits the main results, SI Appendix,
Figs. S13, S14, and S15 display additional analysis of the LC,
NNC, and NNC-conn, respectively.

As above, LNs in the LC encode the top K -dimensional PCA
subspace of ORN soma activity (SI Appendix, Fig. S11B). LNs in
the NNC softly cluster odors, as observed by their sparser activity
and their correspondence with ORN activity patterns (Fig. 6A).
LN activity in NNC-conn is also rather sparse.

In all models, ORN axon activity ({y(t)
}) is weaker than in

somas (Fig. 6B). While it is also sparser and nonnegative in the
NNC models, in the LC, it contains negative values, which may
not be biologically plausible.

Next, we compare the PCA variances of the odor representa-
tions in ORN somas ({σ 2

X,i}) and axons ({σ 2
Y,i}) (Fig. 6C). In

the NNC models, variances decrease for all PCA directions.
In the LC, however, only the variances of the top K PCA
directions decrease. This difference results from the nonnegativity
constraint in the NNC models, which affects all stimulus
directions. The spread of PCA variances {σ 2

Y,i} decreases in all
models (smaller CVσ , Fig. 6D) indicating a whiter representation
in the ORN axons. This effect is the weakest in the NNC-conn.
Changing the number of LNs impacts the NNC less than the
LC. In the LC, only the order of the PCA directions of {x(t)} and
{y(t)
} changes, because K of them are shrunken (SI Appendix,

Fig. S12 A and B). For the NNC, the PCA directions are slightly
altered, but their order mostly remains (SI Appendix, Fig. S12
C and D). In the NNC-conn, the PCA directions are modified
more strongly (SI Appendix, Fig. S12E).

Considering the decreased spread of PCA variances, we inquire
whether activity becomes more evenly distributed among ORNs,
an important property of efficient coding. Both the LC and NNC

decrease the (uncentered) activity variance of “high-variance
ORNs” and leave “low-variance ORNs” virtually unaffected,
reducing the CV of ORN variance (Fig. 6 E and F). The NNC-
conn, however, exhibits an increase in CV due to several “high-
variance ORNs” being not strongly dampened.

Subsequently, we investigate changes in the magnitude of
ORN soma and axon activity patterns. The magnitude is the
length of an activity pattern vector in the D = 21 dimensional
ORN space and is a proxy for the total activity of all ORNs in
response to an odor. Similarly to ORN variances, the magnitude
of large-magnitude patterns decreases, whereas small-magnitude
patterns remain unchanged, decreasing the spread of pattern
magnitudes (Fig. 6 G and H). These effects resemble a divisive
normalization-type computation, also reported in Drosophila
(13, 25).

In line with the less dispersed PCA variances in ORN axons, in
all models ORNs and odor representations are more decorrelated
in the axons than in the somas (Fig. 6 I–L), consistent with partial
whitening.

Additionally, we investigate the effect of adjusting the model
parameter ρ, which regulates feedback inhibition strength. A
higher ρ (ρ = 10, SI Appendix, Fig. S16) leads to decreased
activity in ORN axons and smaller PCA variances, reduced
spread of PCA variances, channels and patterns norms, stronger
decorrelation of ORNs and patterns. When inhibition is elimi-
nated (ρ → 0), the axonal and somatic ORN activity become
identical. Although it is unknown if inhibition is modulated in
the real circuit, altering this parameter allows us to understand
this circuit’s potential.

In summary, NNC analysis predicts that the ORN-LN circuit
clusters odors with LNs and performs partial ZCA-whitening and
normalization of odor representations in ORN axons. This results
in a more efficiently encoded output with more decorrelated and
equalized ORNs and odor representations, ultimately enhancing
odor discrimination downstream.

Computation without LN–LN Connections. Lastly, we inves-
tigate the role of LN–LN connections by considering two
alternative circuit models. First, we consider an LC or NNC
circuit adapted to an input ensemble (i.e., Fig. 6) and remove
the LN–LN connections, which corresponds to setting the off-
diagonal elements in M to 0 (SI Appendix, Fig. S17). This
manipulation leads to less sparse LN activity in the NNC, altered
PCA directions in the axonal activity relatively to the soma,
increased inhibition, and more dissimilar odor representations in
ORN axons compared to somas. Thus, in an already “adapted”
circuit, LN–LN connections improve clustering in LNs for the
NNC, regulate inhibition, and maintain similar representation
in ORN axons and somas.

Second, we consider the slightly different optimization
problem that leads to an ORN-LN circuit without LN–LN
connections (SI Appendix) (39). In the linear case, the whitening is
complete (i.e., the firstK PCA variances that are larger than 1/ρ2

become equal) and the K LNs still encode the top K dimensional
subspace of the input. However, with nonnegativity constraints
on ORN axon and LN activity, all LNs display the same activity,
lacking differentiation (SI Appendix, Fig. S18). Thus, in this case,
LN–LN connections are imperative for clustering.

Discussion

Combining the Drosophila larva olfactory circuit connectome,
ORN activity data, and a normative model, we advance the
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understanding of sensory computation and adaptation, quanti-
tatively link ORN activity statistics, functional data, and con-
nectome, and make testable predictions. We reveal a canonical
circuit model capable of autonomously adapting to different
environments, while maintaining the critical computations of
partial whitening, normalization, and feature extraction. Such
a circuit architecture may arise in other brain areas and may be
applicable in machine learning and signal processing. Using ORN
activity patterns as input, our normative framework accounts for
the biological circuit structural organization and identifies in
the connectome signatures of circuit function and adaptation
to ORN activity. Such an approach offers a general framework
to understand circuit computation (40, 41) and could provide
valuable insights into more neural circuits, whose structural and
activity data become available (1, 2).

Model and Biological Circuit: Similarities and Differences. In
this paper, we compare the structural predictions of our nor-
mative approach to the connectome. The NNC model, when
adapted to the ORN activity dataset (5), accounts for key
structural characteristics (Figs. 3 and 4), for example, the ORNs
→ LN connection weight vectors. We ask two questions: 1) Why
does the strong resemblance between model and data arise, when
the available odor dataset most probably imperfectly matches
the true larva odor environment? 2) Why isn’t the resemblance
even greater, and could the imperfect fit suggest that the model
inadequately explains the biological circuit?

For 1), a possibility is that generic correlations between ORNs
arise in large enough ORN activity datasets, causing robust
features in the model connectivity. These correlations could result
from the intrinsic chemical properties of ORN receptors. Odor
statistics would also influence the connection weights, but to
a lesser degree. Thus, a more naturalist activity dataset could
further improve model predictions.

For 2), first, due to intrinsic noise and variability, no model
could be 100% accurate in predicting connectivity. In fact,
variability in synaptic count and innervation arises forDrosophilas
raised in similar environments (27, 42), indicating potential
“imprecision” of development and/or learning. We also observe
variability in the left vs. right side connectivity (Fig. 1B). Second,
incomplete ORN activity statistics may decrease prediction
accuracy. Third, synaptic count might not exactly reflect synaptic
strength (11). Finally, our model being a simplification of reality
misses additional factors shaping circuit connectivity.

Our analysis indicates that the matches between model and
data likely do not result from chance only, suggesting that
the similarity-matching principle influences circuit organization.
However, our unsupervised approach assumes that no odor is
“special” for the animal, and thus LNs in the circuit model cluster
odors solely based on their representations in the ORN activity
space. This contrasts with the biological ORN-LN circuit,
where LNs such as Keystone and Picky 0 have specific down-
stream connections likely related to survival needs and different
hardwired animal behaviors (4, 43), requiring them to detect
particular odors. Consequently, the connectivity of such LNs
might contribute to the imperfect one-to-one correspondence
between the model and the connectome (e.g., KS in NNC-4,
Fig. 3A).

The circuit model can learn the optimal connection weights
autonomously via Hebbian learning, offering the capacity to
adapt to different environments. Studies in adult Drosophila
reveal that glomeruli sizes (and thus ORN–LN or ORN–PN
synaptic weights) or activity depend on the environment in
which the Drosophila grew up (16–19). It is, however, unknown

if activity-dependent plasticity also occurs in the larval ORN-
LN circuit and whether the observed synaptic counts are a
result of such plasticity. If present, it is unclear whether the
short 6-h life of the larva from which the connectome was
reconstructed allows substantial learning to occur and whether
changes in synaptic weights would translate to different synaptic
counts (11).

Resolving connectomes of larvae raised in different odor
environments and at different times of their life, probing synaptic
plasticity, and recording ORN responses to the full odor ensemble
present in its environment would help clarify the influence of
noise, plasticity, and genetics in circuit shaping.

Roles of LNs. LNs form a significant part of the neural popula-
tions in the brain, perform diverse computational functions, and
exhibit extremely varied morphologies and excitabilities (27, 44).
We propose a dual role for LNs in this olfactory circuit: altering
the odor representation in ORNs and extracting ORN activity
features, available for downstream use (4). In the olfactory system
ofDrosophila and zebrafish, LNs perform multiple computations,
such as gain control, normalization of odor representations, and
pattern and channel decorrelation (12–15, 32, 45), which is
consistent with our results. Also, inDrosophila the LN population
expands the temporal bandwidth of synaptic transmission and
temporally tunes PN responses (28, 29, 46), which was not
addressed here.

In topographically organized circuits, such as in the visual
periphery or in the auditory cortex, distinct LN types uniformly
tile the topographic space, and each LN type extracts a specific
feature of the input, e.g., in the retina (47). In nontopographically
organized networks, however, the organization and role of LNs
remains a matter of research and controversy (27, 48). We study
a subcircuit with four LN types, and most types contain several
similarly connected LNs (Fig. 1). What is the function of multiple
similar LNs in the ORN-LN circuit, as also observed in the NNC
(Fig. 3 C–E)? First, LNs might differentiate further as the larva
grows. Second, several LNs might help expand the dynamic range
of a single LN. What are the features extracted by LNs in the
Drosophila larva? Our NNC model and the distinct connectivity
patterns of LN types in the connectome (4), suggest that different
LN types are activated in response to different sets of odors. The
extracted features might relate to clusters in ORN activity and
to prewired, animal-relevant odors. Since several ORNs→ LN
connection weight vectors {wk} in the NNC model resemble
those in the biological circuit, the odor clusters identified by
the model likely correspond to the set of odors that activate
LNs in the biological circuit. The feedforward synaptic count
vector from ORNs to the Broad Trio wBT, which aligns with the
first PCA direction of ORN activity and with an ORNs→ LN
connection weight vector wk in the NNC model (Figs. 2H, 3
A and B) could potentially encode the mean ORN activity and
thus be related to the global odor concentration (26). Other LNs
might encode features of odors, such as aromatic vs. long-chain
alcohols (5), or specific information influencing larva behavior
(4, 43), but more experiments are required to definitely resolve
the features. While our conclusions differ from a study that found
that LN activation is invariant to odor identity (48), that study
imaged several LNs simultaneously and might thus have missed
the selectivity of individual LNs.

The connectome reveals LN–LN connections, which we
propose play a key role in clustering and shaping the odor repre-
sentation, and are co-organized with the ORN–LN connections
(Fig. 4). To the best of our knowledge, the role of LN–LN

PNAS 2023 Vol. 120 No. 29 e2117484120 https://doi.org/10.1073/pnas.2117484120 9 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
5.

11
2.

8.
26

 o
n 

Ju
ly

 1
0,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
65

.1
12

.8
.2

6.



connections and their relationship to ORN–LN connections is
relatively unexplored.

In summary, our study emphasizes the importance of the
different ORN–LN and LN–LN connection strengths and argues
that LNs are minutely selective and organized to extract features
and render the representation of odors more efficient.

Circuit Computation, Partial ZCA-Whitening, and Divisive Nor-
malization. We propose that the circuit’s effect on the neu-
ral representation of odors in ORNs corresponds to partial
ZCA-whitening and divisive normalization (Figs. 5 and 6). Such
computations, which reduce correlations originating from the
sensory system and the environment, have appeared in efficient
coding and redundancy reduction theories (22, 25, 36, 38, 49,
50). Partial whitening is in fact a solution to mutual information
maximization in the presence of input noise (38). In this circuit
too, complete whitening might also not be desirable due to
potential noise amplification. Thus, keeping low-variance signal
directions of the input unchanged and dampening larger ones
is consistent with mutual information maximization. Our con-
clusions are in line with reports of pattern decorrelation and/or
whitening in the olfactory system in zebrafish (14, 15, 32, 33)
and mice (34, 35).

The computation in our model also resembles divisive normal-
ization, an ubiquitous computation in the brain (25), proposed
for the analogous circuit in the adult Drosophila (12, 13). In
its simplest form, divisive normalization is defined as Yj =
αX n

j /(σ
n +

∑
k X

n
k ), where Yj is the response of neuron j, Xi is

the driving input of neuron i, α is the maximum response of the
output neuron and σ and n determine the offset and slope of the
neuronal sigmoidal response curve, respectively (25). Divisive
normalization captures two effects of neuronal and circuit
computation: 1) neural response saturation with increasing input
up to a maximum spiking rate α, arising from the neuron’s
biophysical properties; 2) dampening of the response of a given
neuron when other neurons also receive input, often due to lateral
inhibition (but see ref. 51). Aspect (1) is absent in our model but
could be implemented with a saturating nonlinearity. Depending
on the biological value of the maximum output, our model might
not accurately capture responses for high-magnitude inputs.
However, signatures of (2) are evident in the saturation of
the activity pattern magnitudes in ORN axons for increasing
ORN soma activity pattern magnitudes (Fig. 6G). Activity
patterns of large magnitude correspond to activity at higher
odor concentrations and with a high number of active ORNs.
Because such input directions are more statistically significant
in our dataset, these stimuli are more strongly dampened by
LNs (which encode such directions) than those with few ORNs
active. Thus, our model presents a possible linear implementation
of a crucial aspect of divisive normalization, which in itself is a
nonlinear operation.

Although the basic form of divisive normalization performs
channel decorrelation, and not activity pattern decorrelation
(13, 14, 32), our models perform both channel and pattern
decorrelation. Nevertheless, a modified version of divisive nor-
malization, which includes different coefficients for the driving
inputs in the denominator (52), performs pattern decorrelation
too, as our circuit model. The proposed neural implementations
of divisive normalization usually require multiplication by the
feedback (52, 53), which might not be as biologically realistic as
our circuit implementation.

Several neural architectures similar to ours have been pro-
posed to learn to decorrelate channels, perform normalization,

or learn sparse representations in an unsupervised manner
(21, 37, 52, 54–59). However, these studies either lack a norma-
tive/optimization approach or have a different circuit architecture
or synaptic learning rules. Using a normative approach has
the advantage of directly investigating the underlying principles
of neural functioning and also potentially providing a mathe-
matically tractable understanding of the circuit structure and
function.

Our study complements machine learning approaches to un-
derstand neural circuit organization (60, 61). These approaches
use supervised learning and backpropagation to train an artificial
neural network to perform tasks such as odor or visual classifica-
tion. In the olfactory system, circuit configurations arising from
this optimization, which could mimic the evolutionary process,
display many connectivity features found in biology (61). Unlike
these approaches, we propose a general principle governing the
transformation of neural representations, similarity-matching,
and also a mechanism to learn autonomously during the animal’s
lifetime.

Materials and Methods
Optimization Problems Describing the ORN-LN Circuit. We use a norma-
tive approach to study the ORN-LN circuit. We formulate two optimization
problems that can be solved by a circuit model with the ORN-LN architecture.
Studying the circuit model computation is then equivalent to studying the
solution of an optimization problem. We derive analytical expressions describing
different aspects of the computation and the circuit synaptic organization
(SI Appendix).

We define the following variables: an input matrix X = [x(1), ..., x(T)] of T
samples, and outputs Y = [y(1), ..., y(T)], Z = [z(1), ..., z(T)]. x(t) and y(t)

are D-dimensional vectors, while z(t) are K-dimensional. x(t), y(t), and z(t)

represent the activity patterns of D ORN somas (i.e., the inputs), D ORN axons
and K LNs, respectively. We call b∗ an optimal value (solution) of a variable
b. In the results section, we drop the ∗. We postulate the following similarity-
matching-inspired optimization problem (e.g., ref. 20), which seeks the optimal
output activities Y∗ and Z∗ given an input X:

min
Y

max
Z

T
2
‖X− Y‖2

F −
ρ2

4

∥∥∥∥YTY−
1

ρ2
ZTZ
∥∥∥∥2

F
+
ρ2

4

∥∥∥YTY
∥∥∥2

F
, [4]

where ‖·‖2
F is the square of the matrix Frobenius (Euclidean) norm. The term

‖X− Y‖2
F drives the activity of the ORN axons Y toward the activity of ORN

somasX and ensures that Y∗ = Xwhen there is no activity in the LNs. The terms
‖YTY − 1/ρ2ZTZ‖2

F and ‖YTY‖2
F align the similarities between the activities

of ORN axons and LNs and puts a 4th order penalty on the norm of Y; they
correspond to the bidirectional all-to-all connectivity between ORN axons and
LNs, as well as between LNs, but no direct connectivity between ORN axons; such
similarity-matching terms permit a significant change of neural representation
and a change of dimensionality, which takes place between ORN axons and LNs.
ρ is a parameter related to the strength of the dampening in Y and affects both
the optima Y∗ and Z∗.

We consider this optimization in two search domains forY and Z. One without
any constraints on Y and Z, representing the linear circuit (LC) model, and one
with nonnegativity constraints (Y ≥ 0, Z ≥ 0), representing the nonnegative
circuit (NNC) model. Nonnegativity constraints account for the fact that neural
activity is usually nonnegative, or at least not symmetric in the negative and
positive directions. The optimal Y∗ and Z∗ can be found analytically for the LC,
and through numerical simulations for the NNC. Note that one cannot always
guarantee converging to a global optimum for the NNC (62).

We prove that a neural circuit with ORN-LN architecture can solve this
optimization problem (SI Appendix, Online algorithm). In brief, we introduce
into the optimization problem two auxiliary matrices W := YZT/T and
M := ZZT/T , which naturally map onto ORNs–LNs and LNs–LNs synaptic
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weights, respectively. By construction, M is symmetric, i.e., M = MT. The new
objective function is then optimized over the variables {y(t)

}, {z(t)
}, W, and

M. Writing the gradient descent/ascent over y(t) and z(t) provides the neural
dynamics equations, with W and M related to the synaptic weights (Eqs. 6 and
7). The optimal W∗ and M∗:

W∗ = Y∗Z∗
T
/T, M∗ = Z∗Z∗

T
/T, [5]

can be found “offline” by obtaining the optimal Y∗ and Z∗ in Eq. 4, or in the
“online setting,” through unsupervised, Hebbian learning, where W and M are
updated after each stimulus presentation (Eq. 8, see below).

Circuit Neural Dynamics. A solution to the optimization problem Eq.4without
the nonnegativity constraints can be implemented by the following differential
equations describing the LC, whose steady-state solutions correspond to the
optima for y(t) and z(t) for given M and W (SI Appendix, Online algorithm).
These equations naturally map onto the ORN-LN neural circuit dynamics
(dropping the sample index (t) for simplicity of notation):{

τydy(τ )/dτ = −y(τ )−Wz(τ ) + x

τzdz(τ )/dτ = −Mz(τ ) + ρ2WTy(τ ),
[6]

where x, y, and z are D, D, and K-dimensional vectors, and represent the activity
(e.g., spiking rate) of the ORN somas, ORN axons, and LNs, respectively. τy and
τz are neural time constants, τ is the local time evolution (not to be confused
with the (t) sample index). The elements of the D × K matrices ρ2W and W
contain the synaptic weights of the feedforward ORNs→ LN and feedback LN
→ ORNs connections, respectively. Thus, the feedforward connection vectors
are proportional to the feedback vectors, and the parameter ρ sets the ratio.
The assumption of proportionality is reasonable considering the connectivity
data (SI Appendix, Fig. S2 A, B, and D). Off-diagonal elements of the K × K
matrixM contain the weights of the LN - LN inhibitory connections, whereas the
diagonal entries encode the LN leaks. In the absence of LN activity and at steady
state, the equations satisfy y = x, i.e., somatic and axonal activities of ORNs are
identical. In the absence of input (x = 0) both y and z decay exponentially to 0,
because of the terms−y(τ ) and−Mi,izi(τ ), respectively. In summary, these
equations effectively model the ORN-LN circuit dynamics by implementing that
1) the ORN axonal activity is driven by the input in ORN somas x and inhibited
by the feedback from the LNs through the term −Wz(τ ) and 2) LN activity is
driven by the activity in ORN axonal terminals by ρ2WTy(τ ) and inhibited by
LNs through the term−Mz(τ ). Note that changing ρ in the objective function
leads to different optimal W∗ and M∗.

When optimized online, the optimization problem Eq. 4 with the nonnega-
tivity constraints gives rise to the following equations describing the NNC:

y(τ + 1) = [y(τ ) + ε(τ ) (−y(τ )−Wz(τ ) + x)]+

z(τ + 1) =
[
z(τ ) + ε(τ )

(
−Mz(τ ) + ρ2/WTy(τ )

)]
+

,
[7]

where ε(τ ) is the step size parameter and [x]+ := max[0, x] is a
component-wise rectification. Here, τ is a discrete-time variable. These
equations are analog to Eq. 6, but also satisfying constraints on the activity:

yi(τ ) ≥ 0, zi(τ ) ≥ 0,∀τ , i.Suchconstraintsare implementedbyformulating
circuit dynamics in discrete time and using a projected gradient descent.

We call LC-K the linear circuit model implemented by Eq. 6 and NNC-K the
nonnegative circuit model implemented by Eq. 7, with K LNs.

Note that there is a manifold of implementations of the same computation
by a circuit model. First, one can introduce a parameter γ (SI Appendix), that
scales the feedforward and feedback connections as well as the magnitude
of LN activity, in such a way that the ORN axon activity remains the same.
Second, multiplying the whole equation in Eq. 6 or Eq. 7 would not alter
the converged output, but would scale the circuit time constants and synaptic
weights.

Synaptic Plasticity. The circuit model is capable of reaching the optimal
synaptic weights W∗ and M∗, which solve the optimization problem Eq. 4,
in an unsupervised manner, with Hebbian plasticity. In practice, as the circuit
receives a stimulus x(t) (ORN soma activation), it performs a computation
that yields a steady state output activity in ORN axons y(t) and LNs z(t)

(with Eq. 6 or Eq. 7); the synaptic weights are then updated using Hebbian
rules:

W(t+1) = W(t) + ε1(t)
(
y(t)z(t)T

−W(t)
)

M(t+1) = M(t) + ε2(t)
(
z(t)z(t)T

−M(t)
)

,
[8]

where εi(t) are learning rates. These equations arise when optimizing Eq. 4
online. We assume that the ORN soma activation x(t) is present long enough so
that y(t)(τ ) and z(t)(τ ) reach steady state values. During this iterative process
of synaptic updating, where the circuit model “learns”/“adapts” to the stimulus
ensemble {x(t)

}, the synaptic weights converge toward “optimum” steady state
Eq. 5 (which might require multiple learning epochs over the {x(t)

}). Note that
the neural leaks of LNs (diagonal values ofM) are set (Eq. 5) and updated (Eq. 8)
similarly to the synaptic weights (W and off-diagonal of M).

Data, Materials, and Software Availability. The connectome and activity
datasets are available in refs. (4) and (5). Code for generating the analysis
and all the figures is available in GitHub (https://github.com/chapochn/ORN-
LN_circuit) (63).
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1. ORN-LN circuit connectome
We use the synaptic counts from the EM reconstruction obtained by (1). We note here several details regarding our
usage of the connectome data.

The indices of the Broad Trio (BT) and Broad Duet (BD) are arbitrary, and there is no correspondence between
the indices on the left and right sides. Although BT 1 R is of the same type as other BT, its connection vector has a
correlation of 0 with other BT in the connectome data.

There are 2 Keystones (KS) in the Drosophila larva. One has its soma positioned on the right of the larva, and the
other one on the left. We call them KS L and KS R, respectively. Each KS establishes bilateral connections, i.e, it
connects with neurons both on the left and right sides of the larva. Therefore, in terms of connectivity, there are
effectively 4 KS connections with other neurons. For example there are 4 ORNs → KS synaptic count vectors. In the
paper, when referring to a connectivity vector, call KS L R the connections of a Keystone with the soma positioned
on the left, connecting with the neurons of the right.

The Picky 0 predominately receives synaptic input on the dendrite (relatively to its axon), we thus only consider
the connections synapsing onto the dendrite.

2. ORN activity data (Fig. 2A)

We use the average maximal Ca2+ ∆F/F0 responses among trials for the activity data as in (2). For the ORN 85c in
response to 2-heptanone, and for the ORN 22c in response to methyl salicylate, we only have responses to dilutions
≤ 10−7. Because the ORN responses are very similar for dilutions 10−7 and 10−8 and are already saturated (for this
cell we have responses down to dilutions of 10−11), we set the missing response for dilutions 10−6, 10−5 and 10−4 as
the response for 10−7.

3. Relationship between ORN activity patterns and ORNs→ LN synaptic count vectors in the
data (Fig. 2)

A. Results. In this section, we provide further evidence that the ORNs→ LN synaptic count vectors contain signatures
of the ORN activity patterns. In the main text, we show that the ORNs → LN synaptic count vectors wLNtype for
the Broad Trio and the Picky 0 significantly correlate with a subset ORN activation patterns. Fig. S4A shows the
distribution of p-values for the correlation between each of the ORNs → LN synaptic count vectors wLNtype and
all the ORN activity patterns {x(t)}data. In the case when the null hypothesis is true (the activity patterns are
not more correlated with the connectivity vector than expected by chance) the distribution of p-values is expected
to be flat. Here, however, we observe that for the Broad Trio and for the Picky 0, the distribution of p-values is
skewed towards small values, confirming a significant alignment of these connection vectors with this ensemble of
ORN activity patterns

Our next approach to test whether the synaptic count vectors wLNtype contains signatures of the ORN activity
patterns is the following: we investigate how well the ensemble of activity patterns {x(t)}data reconstructs the
connectivity vector wLNtype in comparison to reconstructing randomly shuffled versions of wLNtype. As the number of
activity patterns

{
x(t)} (170) is larger than the dimension of the connectivity vector (21), we add an L1 regularization

term on the coefficients of the reconstructions and consider the following lasso linear regression minimization:

min
v

∥∥∥∥∥ŵLNtype −
T∑

t=0
vtx̂(t)

∥∥∥∥∥
2

2

+ λ ∥v∥1 [S1]

Where v = [v0, ..., vT ] is a vector of coefficients, λ encodes the strength of the regularization, â = a/ ∥a∥, ∥a∥2 is
the L2 (Euclidean) norm, and ∥a∥1 =

∑
i abs(ai) is the L1 norm. Note that we added the constant vector x(0) = 1

since the connectivity and activity vectors are not centered. We make the hypothesis that the connectivity vectors
wLNtype from the connectome are significantly more accurately reconstructed by the ORN activity vectors than
a shuffled version of wLNtype. We probe the accuracy of the reconstruction by plotting the reconstruction error
∥ŵLNtype −

∑T
t=0 vtx̂(t)∥2 as a function of the norm of the coefficient vector ∥v∥1. To get different values in this

relationship we optimize this objective function for different values of λ for the original wLNtype and for the shuffled
one. Figs. S4B to E shows that indeed, for the Broad Trio and for the Picky 0 the reconstruction is significantly
better than expected by random.

Finally, to test if the wLNtype are significantly aligned with the ensemble {x(t)}data, we compare the relative
cumulative frequency (RCF) of the correlation coefficients r between each wLNtype and all the {x(t)}data with the
RCFs of r obtained after randomly shuffling the entries of each wLNtype (Figs. S4F to I). We use the maximum
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deviation from the mean RCF from the shuffled connection vector to measure significance (Figs. S4J to M) and find
that wBT is significantly aligned to {x(t)}data, and that wP0 is at the edge of the 0.05 significance level (Fig. S4N).

All the above evidence corroborates the hypothesis that the ORNs → LN synaptic count vectors are adapted to
ORN activity patterns.

B. Methods: RCF distribution of correlation coefficient and significance testing. Given a vector a ∈ RD, we define
the mean ā := 1

D

∑D
i=1 ai, the centered vector ac := a − ā, and the centered normalized vector â := ac/||ac||: We call

ŵ ∈ RD the centered and normalized ORNs → LN synaptic count vector w. Similarly, we define X̂ ∈ RD×T the
centered and normalized ORN activity Xdata = [x(1), ..., x(T )], where each column vector is centered and normalized.

Each row of the matrix of correlation coefficients depicted in Fig. 2B is given by c := ŵ⊤
LNtypeX̂. c is used to calculate

the true relative cumulative frequency (RCF) of correlation coefficients in Figs. S4F to I: RCFc(x) := 1
T

∑T
i=1 1[−1,x](ci),

where 1A(y) is the indicator function of a given set A: 1A(y) = 1 if y ∈ A, and 1A(y) = 0 otherwise.
We define the random variables w′, c′ and RCF ′

c. w′ is generated by shuffling the entries of a connectivity vector
ŵ:

w′
i := wσ(i) [S2]

c′ := ŵ′⊤X̂ [S3]

RCF ′
c(x) := 1

T

T∑
i=1

1[−1,x](c′
i) [S4]

Where σ(i) is a random permutation operator. We define RCF
′
c(x) (Figs. S4F to I, black line) as the mean RCF ′

c(x)
arising from all RCFs that come from shuffled ŵ. Next, we define, the maximum negative deviation δ′ (Figs. S4J to
M) random variable as:

δ′ := max
x

[
RCF

′
c(x)−RCF ′

c(x)
]

[S5]

Finally, we define p-value = Pr(δ′ ≥ δtrue). The p-value is thus the proportion of RCFs generated with the random
shuffling of entries of ŵ that deviate from the mean RCF more than the true RCF.

Numerically, these calculations were done by binning the RCF function into 0.02 bins and generating 10000
instances of shuffled ŵ.

4. Number of aligned dimensions between the activity and connectivity subspaces (Fig. S7)

A. Results. To examine the alignment of the subspace spanned by the four wLNtype’s and the one spanned by the
top five PCA directions of {x(t)}data, we define a measure 0 ≤ Γ ≤ 4, which approximately represents the number of
aligned dimensions between these 2 subspaces and find Γ ≈ 2. This value significantly deviates from the expected Γ
from subspaces generated by 4 and 5 Gaussian random normal vectors in 21 dimensions (p < 10−4) and subspaces
generated from the 4 connectivity vectors with shuffled entries and the top 5 PCA directions (p < 0.01) (Fig. S7).
Approximately 1 more dimension is significantly aligned between the 2 subspaces than expected by random, supporting
the results of Fig. 2H, but there is no complete alignment between the connectivity {wLNtype} and the ORN activity
principal subspace. Below we describe the rationale behind the measure Γ.

B. Methods. Given a Hilbert space of dimension D, we define Ω - a measure of dissimilarity between 2 subspaces SA

and SB generated by the matrices of linearly independent KA and KB column vectors: A ∈ RD×KA and B ∈ RD×KB :

Ω := ∥PA −PB∥2
F [S6]

= Tr
[
P2

A

]
+ Tr

[
P2

B

]
− 2 Tr [PAPB ] [S7]

= Tr [PA] + Tr [PB ]− 2 Tr [PAPB ] [S8]
= dim [SA] + dim [SB ]− 2 Tr [PAPB ] [S9]
=KA + KB − 2 Tr [PAPB ] [S10]

Where PA, PB ∈ RD×D are the orthogonal projectors onto the subspaces SA and SB , respectively, F stands for the
Frobenius norm, Tr is the matrix trace, and KX = dim(SX) is the dimensionality of a subspace SX . In the above
equalities, we use the following properties of orthogonal projectors: P2

A = PA, meaning that they are idempotent.
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Any idempotent matrix has only eigenvalues 1 and 0 and has as many eigenvalues of value 1 as the number of
dimensions it projects on. Thus the trace of a projector is its rank, i.e., the dimensionality of the space it projects on.
We assume KA + KB ≤ D. We have that |KA −KB | ≤ Ω ≤ KA + KB . The projection matrix can be obtained thus
PA = A(A⊤A)−1A⊤, or via QR factorization: QR = A, PA = QQ⊤.

Intuitively, for two very similar subspaces, the projection PAv of an arbitrary vector v onto SA will be very similar
to the projection PBv vector v onto SB , thus PAv ≈ PBv and Ω will be small. Conversely, if the subspaces are very
different, the projections PAv and PBv will also be different and Ω will be large.

We now define the more intuitive measure Γ:

Γ := (KA + KB − Ω) /2 [S11]

which is a proxy of the number of aligned dimensions in the two subspaces. Indeed 0 ≤ Γ ≤ min(KA, KB). For 2
perpendicular subspaces, Γ = 0 and for 2 fully aligned subspaces Γ = min(KA, KB).

In the main text, we refer to the subspaces spanned by the following matrices: A = [wBT, wBD, wKS, wP0] and B
is the matrix with the top 5 PCA loading vectors of {x(t)} as columns, KA = dim[SA] = 4, KB = dim[SB ] = 5 and
D = 21.

5. Hierarchical clustering for plotting Fig. 3D
To plot Fig. 3D, we ordered the correlation matrix using hierarchical clustering. For that we used the Python function
scipy.cluster.hierarchy.linkage with the options method=‘average’, optimal_ordering=True (3).

6. Optimization problem (Eq. (4) in the main text)

A. Description. We postulate the following minimax optimization problem:

min
Y

max
Z

1
T 2

(
T

2 ∥X−Y∥2
F −

ρ2

4u2

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

+ ρ2

4u2

∥∥∥Y⊤Y
∥∥∥2

F

)
[S12]

Where ∥·∥2
F is the square of the matrix Frobenius (Euclidean) norm, X, Y ∈ RD×T , Z ∈ RK×T with D the number

of ORNs (21 for this olfactory circuit), K the number of LNs, T the number of data (sample) points, ρ and γ positive
unitless parameters, u a unit with the physical dimension as X, Y, and Z (e.g., spikes · s−1) (dropped for simplicity
in the main text). X, Y, and Z represent the activity of ORN somas, ORN axons, and LNs, respectively. We can
interpret X as all the discretized activity of ORNs up to a certain point in their lifetime. We set γ = 1 in the main
text, as this parameter does not alter the computation, and only linearly scales synaptic weights and Z. We have
kept it in all derivations here in the supplement.

The optimization problem Eq. (S12) leads to the Linear Circuit (LC) model. Adding the nonnegativity constraints
on Y and Z (Y ≥ 0 and Z ≥ 0) leads to the NonNegative Circuit (NNC) model.

We expand the optimization function in Eq. (S12). Using the property that ∥X∥2
F = Tr[X⊤X] and Tr[A + B] =

Tr[A] + Tr[B], where Tr[·] is the matrix trace (sum of the diagonal elements of the matrix) we get:

min
Y

max
Z

1
T 2 Tr

[
T

2 X⊤X− TX⊤Y + T

2 Y⊤Y− ρ2

4u2 Y⊤YY⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z + ρ2

4u2 Y⊤YY⊤Y
]

[S13]

⇐⇒min
Y

max
Z

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S14]

Where we dropped the X⊤X term because it does not influence the solution of the optimization problem.

B. Equivalence of scaling X and ρ. Here, we show that scaling X is equivalent to scaling ρ in the optimization. It is
easy to see that the transformation X→ aX, Y→ aY and ρ→ ρ/a (for a ̸= 0) only scales the objective function,
which does not affect the optima of the optimization, i.e., this transformation is a symmetry of the optimization.
Indeed:

min
Y

max
Z

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S15]

⇐⇒min
Y

max
Z

1
T 2 Tr

[
−Ta2X⊤Y + T

2 a2Y⊤Y + a2γ2

2u2 Y⊤YZ⊤Z− a2γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S16]
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Let us explore the consequence of this symmetry. The solution Y∗ of the optimization is a function of X and ρ, thus
we can define a function f such that: Y∗ = f(X, ρ):

Y∗ = f(X, ρ) := arg min
Y

max
Z

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S17]

The symmetry implies:

Y∗ = f(X, ρ)⇐⇒ aY∗ = f(aX, ρ/a) [S18]

As a consequence, first, we have that:

Y∗ = f(X, ρ) = 1
a

f(aX, ρ/a) [S19]

Second, let’s define b = a−1 and X′ = aX = X/b. Then, by substituting the variables we get:

f(X, ρ) = 1
a

f(aX, ρ/a) [S20]

⇐⇒ f(bX′, ρ) = bf(X′, bρ) [S21]
[S22]

In summary, we have the following properties:

f(X, ρ) = 1
a

f(aX, ρ/a) and f(aX, ρ) = af(X, aρ) [S23]

This means performing an optimization with an input aX, is equivalent to doing the optimization with input X and
parameter aρ, and finally multiplying the obtained Y∗ by a.

It is worth noting though, that for a circuit with fixed W and M, scaling an input x by a factor a, simply scales
the output y by the same factor a, since it is a linear transformation, at least for the circuit without the nonnegative
constraints.

C. Equivalence of scaling Z and γ. We can see that the transformation Z→ aZ and γ → γ/a does not change the
objective function, i.e., this transformation is a symmetry of the optimization. Indeed:

min
Y

max
Z

1
T 2

(
T

2 ∥X−Y∥2
F −

ρ2

4u2

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

+ ρ2

4u2

∥∥∥Y⊤Y
∥∥∥2

F

)
[S24]

⇐⇒ min
Y

max
Z

1
T 2

(
T

2 ∥X−Y∥2
F −

ρ2

4u2

∥∥∥∥Y⊤Y− γ2

a2ρ2 (aZ⊤)(aZ)
∥∥∥∥2

F

+ ρ2

4u2

∥∥∥Y⊤Y
∥∥∥2

F

)
[S25]

7. Offline solution/computation of the optimization problem

A. Solution for the LC (Eq. (3a), Eq. (3b), Eq. (3c) in the main text). Here we describe the solution of the optimization
problem Eq. (S14), without any constraints on Y and Z. As we show below, this solution can also be found by a
circuit model, with the same architecture as the olfactory circuit under study. The situation without constraints on
Y and Z corresponds to the Linear Circuit (LC) model. Understanding the solution of the optimization problem
allows us to understand the computation performed by such a circuit model.

We use the singular value decomposition (SVD) for X, Y, and Z: X = UX S̃XV⊤
X , Y = UY S̃Y V⊤

Y , Z = UZ S̃ZV⊤
Z ,

with the following convention: UX , UY ∈ RD×D, UZ ∈ RK×K , VX , VY , VZ ∈ RT ×T , S̃X , S̃Y ∈ RD×T , S̃Z ∈ RK×T ,
S̃X , S̃Y , S̃Z only have values on the diagonal. We call S ∈ RT ×T the diagonal square matrix corresponding to the
rectangular matrix S̃, with padded zeros. Only the first D columns in VX and VY and the first K in VZ contain
relevant information about X, Y, and Z, respectively. The left singular vectors UX , UY , and UZ are also the
principal directions of the uncentered PCA of X, Y, and Z, respectively. Whereas the values on the diagonal of S̃X ,
S̃Y , and S̃Z are the square root of the variances of the corresponding uncentered PCA directions. For b - a variable of
the optimization problem, we call b∗ an optimal value (solution). In the results section of the main text, we dropped
the star symbol ∗.
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In the following we prove that Y∗ and Z∗, the optima in Y and Z in the optimization problem Eq. (S14), are
given by:

Y∗ = UX S̃∗
Y V⊤

X = UX S̃∗
Y S̃+

XU⊤
XX [S26]

Z∗ = ρ/γU∗
Z S̃∗

Y |KV⊤
X = ρ/γU∗

Z S̃∗
Y |K S̃+

XU⊤
XX [S27]

with


s∗

Y,i

(
1 + ρ2

u2T
s∗2

Y,i

)
= sX,i 1 ≤ i ≤ K [S28a]

s∗
Y,i = sX,i K + 1 ≤ i ≤ D [S28b]

U∗
Z : a degree of freedom [S28c]

where A+ the Moore-Penrose pseudo-inverse of A and S̃∗
Y |K ∈ RK×T is the matrix with the first K row of S̃∗

Y . These
equations lead to relations Eq. (3a), Eq. (3b), Eq. (3c) in the main text, where the relations are written in terms of
PCA variances rather than singular values. The relationship between a singular value s and the corresponding PCA
variance σ2 is s2/T = σ2.

In other words, writing Y∗ = FX, we have that F = F⊤ = UX S̃∗
Y S̃+

XU⊤
X , S∗

Y S+
X being a diagonal matrix. This

signifies that the linear transformation F does not perform any rotation of the input.
In particular, we find that U∗

Y = UX , meaning that the ORN soma input X and the ORN axon output Y∗ have
the same left singular vectors (although the order can be different). The left singular vectors correspond to the
directions of uncentered PCA. Also, we find that V∗

Y = V∗
Z = VX , meaning that the right singular vectors of X, Y∗

and Z∗ are the same (although, again, their order can be different). The ith right singular vector corresponds to the
neural activity in the ith singular (or uncentered PCA) direction. The equality between the right singular directions
in X and Y∗ means that the neural activity in a singular direction uX,i at the level of the ORN somas and at the
level of the ORN axons is the same up to a multiplication factor. Similarly, the neural activity in the direction uZ,i

at the level of LNs is proportional to the activity in the direction uX,i at the level of ORN somas or axons. Thus,
when looking at the neural activity in the directions of a left singular vector i (PCA direction i) at the level of ORN
soma, axons, and LNs, the activity is the same up to a multiplication factor. The multiplication factor is set by the
ratios between the corresponding singular values (or PCA variances).

This explicit expressions for s∗
Y and s∗

Z are:

s∗
Y = 1

ρ

(√
12T 3u6 + 81T 2u4ρ2s2

X + 9Tu2ρsX

18

) 1
3

− 1
ρ

(
2
3 T 3u6√

12T 3u6 + 81T 2u4ρ2s2
X + 9Tu2ρsX

) 1
3

s∗
Z = ρ

γ
sY

[S29]

The behavior of s∗
Y is such:

s∗
Y ≈


sX sX ≪

√
T u
ρ [S30a]

3

√
Tu2

ρ2 sX sX ≫
√

T u
ρ [S30b]

Note that because Z only appears as Z⊤Z in the optimization problem Eq. (S14), U∗
Z is a degree of freedom of

the optimization. Thus, for {Y∗, Z∗, W∗, M∗} a solution of the optimization, {Y∗, QZ∗, W∗Q⊤, QM∗Q⊤} is a
solution as well, where Q ∈ RK×K is an orthogonal matrix. Consequently, there is a manifold of W∗, M∗, and Z∗

that satisfies the optimization for the LC.

B. Proof. For convenience, we copy here the optimization problem Eq. (S14):

min
Y

max
Z

OF(Y, Z) [S31]

Where the objective function OF(Y, Z) is:

OF(Y, Z) := 1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S32]
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We first find the optimum in Y of this objective function by taking the partial derivative of OF(Y, Z) with respect to
Y and equating it to 0. We thus obtain the expression for Y:

Y = X
(

IT + γ2

Tu2 Z⊤Z
)−1

[S33]

where IT is the identity matrix of dimension T . What is the meaning of this equality? Since this equality is obtained
by finding the optima in Y, this equation gives the expression for the axonal output Y for an arbitrary input X and
LN activity Z. To intuitively understand this expression, we imagine that Z is of dimension 1× T , which corresponds
to just 1 LN. We use the SVD expansion of Z:

Z = [z(1), ..., z(T )] [S34]
= UZ S̃ZV⊤

Z [S35]
= 1× [sZ,1, 0, ..., 0]×V⊤

Z [S36]

Where UZ = 1 because it is a orthogonal matrix of dimension 1, S̃Z is of dimension 1× T , VZ is of dimension T × T
and we have that the first column of VZ is [z(1), ..., z(T )]⊤/sZ,1, and sZ,1 is the norm of Z, i.e., sZ,1 = (

∑T
t=1(z(t))2)1/2.

We now put this expression of Z into Eq. (S33):

Y = X
(

IT + γ2

Tu2 Z⊤Z
)−1

[S37]

= X
(

IT + γ2

Tu2 VZS2
ZV⊤

Z

)−1

[S38]

= XVZ

(
IT + γ2

Tu2 S2
Z

)−1

V⊤
Z [S39]

where (IT + γ2/(Tu2)S2
Z)−1 is a T × T diagonal matrix, where all the diagonal elements are 1, apart from the first

one which is: (1 + γ2/(Tu2)s2
Z,1)−1. This implies that the activity in Y is the same as the activity in X, apart

from the directions of the K first right singular vectors of Z. In those directions it is diminished by the factors
(1 + γ2/(Tu2)s2

Z,k)−1. In other words, the directions of activity (in terms of right singular vectors) that are the most
dampened in Y in comparison to X, are those which are the most aligned/correlated with the activity in Z.

Next, we replace the solution Eq. (S33) for Y into the original optimization problem Eq. (S14), obtaining the
equivalent optimization problem:

min
Z

1
T 2 Tr

[
T

2 X⊤X
(

IT + γ2

Tu2 Z⊤Z
)−1

+ γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S40]

Next we replace X and Z by their SVD, use the property of the trace Tr(AB) = Tr(BA) and the property of
orthogonal matrices UU⊤ = U⊤U = I:

min
Z

1
T 2 Tr

[
T

2 VXS2
XV⊤

X

(
IT + γ2

Tu2 VZS2
ZV⊤

Z

)−1

+ γ4

4u2ρ2 S4
Z

]
[S41]

⇐⇒min
Z

Tr

 1
2T

VXS2
XV⊤

X

(
VZ(Tu2IT + γ2S2

Z)V⊤
Z

Tu2

)−1

+ γ4

4T 2u2ρ2 S4
Z

 [S42]

⇐⇒min
Z

Tr
[

u2

2 VXS2
XV⊤

XVZ(Tu2IT + γ2S2
Z)−1V⊤

Z + γ4

4T 2u2ρ2 S4
Z

]
[S43]

⇐⇒min
Z

Tr
[

1
2VXS2

XV⊤
XVZ(Tu2IT + γ2S2

Z)−1V⊤
Z + γ4

4T 2u4ρ2 S4
Z

]
[S44]

Where, for the last equivalence we used the fact that multiplying the objective function by a constant (here u−2) does
not alter the optimization problem. Since UZ does not appear in the minimization, it is a free parameter, i.e., it can
be any orthogonal matrix. For fixed SZ , only the first term in the trace needs to be minimized. One can show that
the optimal V∗

Z is V∗
Z = VX : based on von Neumann trace inequality, we know that Tr[AB] ≥

∑N
i aibN−i+1 where
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ai and bi are the ordered singular values of A and B, respectively. Thus, choosing VZ = VX will give us the lower
bound of that inequality. Indeed:

Tr
[
VXS2

XV⊤
XVZ(Tu2IT + γ2S2

Z)−1V⊤
Z

]
= Tr

[
S2

X(Tu2IT + γ2S2
Z)−1]

=
T∑
i

s2
X,i

1
Tu2 + γ2s2

Z,i

[S45]

Where sX,i and sZ,i are the values on the diagonal of SX and SZ , respectively. Thus, the highest singular values
of VXS2

XV⊤
X match the lowest singular values of VZ

(
Tu2IT + γ2S2

Z

)−1 V⊤
Z , giving us the lower bound of the von

Neumann inequality. The optimization problem Eq. (S40) can now be simplified to:

min
{sZ,i}

OF({sZ,i}) = min
{sZ,i}

T∑
i

(
1
2s2

X,i

1
Tu2 + γ2s2

Z,i

+ γ4

4T 2u4ρ2 s4
Z,i

)
[S46]

Each sZ,i can be minimized independently. By construction of SVD, we already have that sZ,i = 0 for i > K. We
thus consider 1 ≤ i ≤ K. To simplify notation, we drop the index i. We take the derivative of OF({sZ,i}) in Eq. (S46)
with respect to sZ,i and equate it to 0 (we drop the index i for convenience of notation):

∂ OF
∂sZ

= 0 [S47]

− γ2

(Tu2 + γ2s2
Z)2 s2

XsZ + γ4

T 2u4ρ2 s3
Z = 0 [S48]

s2
X = γ2

ρ2
(Tu2 + γ2s2

Z)2

T 2u4 s2
Z [S49]

This leads to, considering that singular values are positive:

sX = γ

ρ
s∗

Z

(
1 + γ2

Tu2 s∗2
Z

)
[S50]

We can now use the obtained solution for Z to find the solution for Y. We replace X and Z by their SVD in
relation Eq. (S33) and use that V∗

Z = VX :

Y∗ = U∗
Y S̃∗

Y V∗
Y

⊤ =X
(

IT + γ2

Tu2 Z∗⊤Z∗
)−1

[S51]

=UX S̃XV⊤
X

(
IT + γ2

Tu2 VXS∗2
Z V⊤

X

)−1

[S52]

=UX S̃XV⊤
XVX

(
IT + γ2

Tu2 S∗2
Z

)−1

V⊤
X [S53]

U∗
Y S̃∗

Y V∗
Y

⊤ =UX S̃X

(
IT + γ2

Tu2 S∗2
Z

)−1

V⊤
X [S54]

Although the right-hand side of Eq. (S54) has the form of [orthogonal matrix] × [diagonal matrix] × [orthogonal
matrix], it is not strictly the normal SVD expression, because the values on the diagonal of S̃X(IT + γ2/(Tu2)S∗2

Z )−1

are not necessarily in decreasing order. Equating the terms on the left and right sides we obtain U∗
Y = UX , V∗

Y = VX

and S̃∗
Y = S̃X(IT + γ2/(Tu2)S∗2

Z )−1. The last equality gives:

s∗
Y,i = sX,i

(
1 + γ2

Tu2 s∗2
Z,i

)−1

[S55]

Thus, for i > K, we have s∗
Y,i = sX,i (since sZ,i = 0), whereas for i ≤ K: s∗

Y,i = γ
ρ s∗

Z,i (using relation Eq. (S50) to
replace sX). The relation analogous to Eq. (S50) is:

sX = s∗
Y

(
1 + ρ2

Tu2 s∗2
Y

)
[S56]
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Note that the resulting decomposition of Y with Y = UX S̃Y VX is equal to the usual SVD decomposition of Y, up
to the order of the singular values and singular directions. In summary, for i ≤ K:

sX,i = γ

ρ
s∗

Z,i

(
1 + γ2

Tu2 s∗2
Z,i

)
[S57]

sX,i = s∗
Y,i

(
1 + ρ2

Tu2 s∗2
Y,i

)
[S58]

s∗
Y,i = γ

ρ
s∗

Z,i [S59]

and for i > K:

s∗
Y,i = sX,i [S60]

s∗
Z,i = 0 [S61]

This ends the derivation.

C. Computation in LNs and relationship between the NNC and SNMF. To understand the computation at the level of
LNs, we consider the optimization problem from the aspect of Z, which represents LN activity. We copy here the
original optimization problem Eq. (S12), while dropping the 1/T 2 factor in front:

min
Y

max
Z

(
T

2 ∥X−Y∥2
F −

ρ2

4u2

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

+ ρ2

4u2

∥∥∥Y⊤Y
∥∥∥2

F

)
[S62]

We can isolate the maximization over Z:

min
Y

(
T

2 ∥X−Y∥2
F + ρ2

4u2

∥∥∥Y⊤Y
∥∥∥2

F
+ max

Z

(
− ρ2

4u2

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

))
[S63]

This means, that for a given Y, the optimal Z can be found with the optimization problem:

min
Z

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

[S64]

Where we dropped the factor ρ2/(4u2), which does influence the optimization and also changes the maximization to a
minimization by changing the sign. This corresponds to the original, most simple similarity-matching optimization
problem, that has been extensively studied (4, 5).

If we now add the nonnegativity constraint on Z, the LN activity, one gets:

min
Z≥0

∥∥∥∥Y⊤Y− γ2

ρ2 Z⊤Z
∥∥∥∥2

F

[S65]

Which is the Symmetric Nonnegative Matrix Factorization (SNMF) optimization problem (6). It has been shown
that in this situation the activity in Z∗ corresponds to the soft clustering memberships of clusters found in Y, as seen
in Figs. 5A, C, E, and 6A. SNMF corresponds to soft K-means clustering (6).

8. Online algorithm and its implementation by a neural circuit with ORN-LN architecture

Here we show that a neuron circuit model with the ORN-LN architecture (Fig. 1A) can solve the optimization problem
Eq. (S14). We convey two messages. First, given an input X, specific synaptic weights will allow the circuit to output
the optimal Y∗ and Z∗. Second, the circuit is capable of finding on its own (i.e., in an unsupervised manner) the
optimal synaptic weights to perform the computation of the optimization problem. For that, it is sufficient that
synapses follow Hebbian synaptic plasticity rules. We derive Eq. (5), Eq. (6), Eq. (7), and Eq. (8) from the main text.
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A. Circuit equations for the LC (Eq. (6) in the main text). We first derive the circuit equations for the LC (Eq. (6) in
the main text). For convenience, we copy the optimization problem Eq. (S14) here:

min
Y

max
Z

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S66]

We then first introduce the unitless variables W ∈ RD×K and M ∈ RK×K :

W := 1
Tu2 YZ⊤, M := 1

Tu2 ZZ⊤ [S67]

and perform the Hubbard-Stratonovich transform on the optimization problem Eq. (S14) (5):

min
Y

max
Z

max
W

min
M

OF(Y, Z, W, M) [S68]

where the objective function is now:

OF(Y, Z, W, M) := 1
T

Tr
[
−X⊤Y + 1

2Y⊤Y + γ2Y⊤WZ− γ4

2ρ2 Z⊤MZ
]
− u2γ2

2 Tr
[
W⊤W

]
+ u2γ4

4ρ2 Tr
[
M⊤M

]
[S69]

It can indeed be verified that the solution of the optimization in W of Eq. (S68) is W = YZ⊤/(Tu2) (by solving
∂ OF(Y, Z, W, M)/∂W = 0) and that the solution of the optimization in M of Eq. (S68) is M = ZZ⊤/(Tu2) (by
solving ∂ OF(Y, Z, W, M)/∂M = 0). Then, putting W = YZ⊤/(Tu2) and M = ZZ⊤/(Tu2) into the optimization
problem in Eq. (S68)-Eq. (S69), we get the original optimization problem Eq. (S14).

We then rewrite the objective function Eq. (S69) in vector notation, with each sample point written out separately:

OF({y(t)}, {z(t)}, W, M) := 1
T

T∑
t=1

(
−x(t)⊤y(t) + 1

2y(t)⊤y(t) + γ2y(t)⊤Wz(t) − γ4

2ρ2 z(t)⊤Mz(t)
)

− u2γ2

2 Tr
[
W⊤W

]
+ u2γ4

4ρ2 Tr
[
M⊤M

]
[S70]

Giving us the optimization problem:

min
{y(t)}

max
{z(t)}

max
W

min
M

OF({y(t)}, {z(t)}, W, M) [S71]

Given the solution Y∗ and Z∗ to the optimization problem Eq. (S14), solutions for W and M are W∗ =
Y∗Z∗⊤/(Tu2) and M∗ = Z∗Z∗⊤/(Tu2), which can be put in the optimization problem Eq. (S71), giving us the
following new optimization problem:

min
{y(t)}

max
{z(t)}

OF({y(t)}, {z(t)}) [S72]

where:

OF({y(t)}, {z(t)}) := 1
T

T∑
t=1

(
−x(t)⊤y(t) + 1

2y(t)⊤y(t) + γ2y(t)⊤W∗z(t) − γ4

2ρ2 z(t)⊤M∗z(t)
)

− u2γ2

2 Tr
[
W∗⊤W∗]+ u2γ4

4ρ2 Tr
[
M∗⊤M∗] [S73]

We can then perform the optimization of each y(t), z(t). At a given sample index t, the minimum in y(t) and the
maximum in z(t) can be found by taking a derivative of the objective function Eq. (S73) with respect to y(t) and z(t),
respectively:

∂ OF
∂y(t) = 1

T

(
−x(t) + y(t) + γ2W∗z(t)

)
∂ OF
∂z(t) = 1

T

(
γ2W∗⊤y(t) − γ4

ρ2 M(t)z(t)
) [S74]
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The minimum in y(t) and the maximum in z(t) can be reached by gradient descent and ascent, respectively. We can
thus write a system of differential equations whose steady-state correspond to the optima in y(t) and z(t):

τy
dy(t)(τ)

dτ
= −y(t)(τ) − γ2W∗z(t)(τ) + x(t)

τz
dz(t)(τ)

dτ
= −M∗z(t)(τ) + ρ2/γ2W∗⊤y(t)(τ)

[S75]

Where τ is the local time evolution variable. We rearranged the parameters so that the equation form is the same
as in Eq. (6) in the main text, which does not change the final steady-state of the equations. Thus, we obtained
equations to find the optima ȳ(t) and z̄(t) of the objective function. As explained in the main text, these equations
can directly be mapped onto the dynamics of the ORN-LN neural circuit.

Note that for a given input X there are infinitely many solutions for Z (see Eq. (S26), Eq. (S28c)), i.e., for any
solution Z∗, QZ∗ is also a solution, where Q is an orthogonal matrix. Therefore changing W∗ to W∗Q⊤ and M∗ to
QM∗Q⊤ still gives a circuit that solves the original optimization problem. It is possible to construct more circuits
that implement the same computations, however, that would require having feedforward ORNs → LN connectivity
W not proportional to the feedback LN → ORNs, or LN-LN connections (i.e., M) not being symmetric. Here, we
focus our analysis on circuits with ORNs → LN connectivity proportional to LN → ORNs and to M symmetric. This
is reasonable given the data in the connectome (Fig. 4A, Fig. S2A).

B. Circuit equations for the NNC (Eq. (7) in the main text). Here we derive the circuit equations for the NNC (Eq. (7)
in the main text). In the case of the NNC, we start with the same optimization problem Eq. (S14), but adding the
nonnegative constraints on Y and Z:

min
Y≥0

max
Z≥0

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− γ4

4u2ρ2 Z⊤ZZ⊤Z
]

[S76]

Following the same steps as above we arrive at the optimization problem similar to Eq. (S72) but with nonnegative
constraints:

min
{y(t)≥0}

max
{z(t)≥0}

OF(
{

y(t)
}

,
{

z(t)
}

) [S77]

with the objective function OF as in Eq. (S73).
Here too, we perform the optimization for each y(t), z(t). However, because of the nonnegativity constraints, the

optima for y(t) and z(t) are not to be found where the derivatives Eq. (S74) are zeros. We can, however, reach the
optima by a projected gradient descent:

y(t)(τ + 1) = max
[
0, y(t)(τ) + ϵ(τ)

(
− y(t)(τ)− γ2W∗z(t)(τ) + x(t))]

z(t)(τ + 1) = max
[
0, z(t)(τ) + ϵ(τ)

(
−M∗z(t)(τ) + ρ2/γ2W∗⊤y(t)(τ)

)] [S78]

where the max is performed component-wise. Here too, W∗ and M∗ are found by finding Y∗ and Z∗ in the
optimization problem Eq. (S76), and setting W∗ = Y∗Z∗⊤/(Tu2) and M∗ = Z∗Z∗⊤/(Tu2).

Because of the nonnegativity constraint on Y and Z in the NNC, there is no more degree of freedom in Z as in the
LC.

C. Circuit model with Hebbian synaptic update rules (Eq. (8) in the main text). We now show that the circuit can
also reach the optimal synaptic weights (W∗ and M∗) via Hebbian plasticity. We derive the Eq. (8) in the main
text. The equations are the same for the LC and NNC, therefore we just show the LC here. We start the derivation
from Eq. (S71) and Eq. (S70). Next, we exchange the order of the minY maxZ with maxW minM (5), giving us the
optimization problem:

max
W

min
M

min
{y(t)}

max
{z(t)}

OF(W, M, {y(t)}, {z(t)}) [S79]

We now perform the optimization of the 4 variables separately: y(t), z(t), W, and M. We alternate the optimization
in {y(t), z(t)} and in {W, M}, which corresponds to the “online setting” for this optimization problem: as a new
sample (i.e., stimulus, input) x(t) arrives, we find the steady-state values of z(t) and y(t) with the current values
W(t) and M(t) and update W(t) and M(t) to W(t+1) and M(t+1) before the arrival of the next input sample x(t+1).
Biologically, this can be seen as first a convergence of neural spiking rates or neural electrical potential encoded
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through the variables y(t) and z(t), and second a synaptic weight update based on those steady-state activity values.
The steady-state y(t) and z(t) are found in the same way as above, and give us the same equations as Eq. (S75) for
the LC and Eq. (S78) for the NNC:

τy
dy(t)(τ)

dτ
= −y(t)(τ) − γ2W(t)z(t)(τ) + x(t)

τz
dz(t)(τ)

dτ
= −M(t)z(t)(τ) + ρ2/γ2W(t)⊤y(t)(τ)

[S80]

and 
y(t)(τ + 1) = max

[
0, y(t)(τ) + ϵ(τ)

(
− y(t)(τ)− γ2W(t)z(t)(τ) + x(t))]

z(t)(τ + 1) = max
[
0, z(t)(τ) + ϵ(τ)

(
−M(t)z(t)(τ) + ρ2/γ2W(t)⊤y(t)(τ)

)] [S81]

We only then need to derive the updates for the variables W and M. By construction, the offline solution for W
and M is given by Eq. (S67). Online - we compute a new W(t) and M(t) after each sample x(t) is presented and the
steady-state solutions of Eq. (S80) or Eq. (S81) ȳ(t) and z̄(t) are found. The gradient descent (respectively ascent)
steps on these variables give the following updates (e.g., (5)):

W(t+1) = W(t) + η(t)
(

z̄(t)ȳ(t)⊤

u2 −W(t)
)

M(t+1) = M(t) + η(t)

2ρ2ν

(
z̄(t)z̄(t)⊤

u2 −M(t)
) [S82]

where η(t) and ν are parameters of the gradient descent/ascent, and where ȳ(t) and z̄(t) are the steady-state solutions
of Eq. (S80) (or Eq. (S81)) for given W(t) and M(t). This indeed corresponds to local Hebbian synaptic update rules.
Choosing η(t) and ν appropriately will lead to Eq. (8) from the main text.

These synaptic update equations are the same for the LC and the NNC.

D. Steady-state solution of the circuit dynamical equations for the LC and stability. We can directly find the
steady-state solution of the circuit dynamics equations Eq. (S75) of the LC by setting the derivatives to 0. For M
invertible, the steady-state is (after dropping the index (t) and the ∗ for simplicity of notation):{

ȳ = (ID + ρ2WM−1W⊤)−1x
z̄ = ρ2/γ2M−1W⊤ȳ

[S83]

As mentioned above, the steady-state for y does not depend on γ, whereas z does depend on γ. Note that the
transformation from x to ȳ is symmetric: indeed, writing ȳ = Fx, we have that F = F⊤. This means that the
transformation is diagonalizable. We indeed showed in section 7 above that the basis in which the transformation is
the uncentered PCA basis of X.

Here we show that the fixed point of Eq. (S75) is stable if W is maximum rank and M positive definite. We first
rewrite the dynamical system:[

τydy(τ)/dτ
τydz(τ)/dτ

]
=
[
x
0

]
−
[

ID γ2W
−ρ2/γ2W⊤ M

] [
y(τ)
z(τ)

]
=
[
x
0

]
−A

[
y(τ)
z(τ)

]
[S84]

This system has a unique stable fixed point if and only if A has only positive eigenvalues. To investigate under which
conditions this is the case, we write the eigenvalue equations for A:[

ID γ2W
−ρ2/γ2W⊤ M

] [
y
z

]
= λ

[
y
z

]
[S85]{

y + γ2Wz
−ρ2/γ2W⊤y + Mz

= λy
= λz [S86]{

γ2Wz
ρ2/γ2W⊤y

= (λ− 1)y
= (M− λ)z [S87]
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We consider the case when λ ̸= 1, as we are interested to see if λ could potentially be negative.

y = (λ− 1)−1γ2Wz [S88]
=⇒ ρ2W⊤Wz = (λ− 1)(M− λ)z [S89]

W⊤W ∈ RK×K is a positive semi-definite matrix, it is positive definite if W is maximum rank (i.e., rank K).
Assuming that W is full rank, the matrix W⊤W on the left-hand side of the equation has only positive eigenvalues.
The above equation does not have any solution z ̸= 0 for λ < 0 if M is positive definite (which is true when constructed
as the autocorrelator of z). Thus, W full rank and M positive definite are sufficient conditions for the dynamical
system to always converge to a stable fixed point.

9. Effect of ρ and γ on the computation and the circuit
Having the expression for the optimal outputs Y∗ and Z∗ (section 7), we can describe the effect of ρ and γ on the
computation.

For ρ→ 0, based on Eq. (S57) we get that sZ,i → 0 and thus Z∗ → 0, leading to Y∗ = X, which means that the
output is equal to the input and no inhibition is taking place.

Conversely, for ρ→∞, according to Eq. (S58) the lowest D −K singular values of Y∗ remain the same, whereas
top K drop to 0, i.e., the top K singular values are totally suppressed.

According to Eq. (S58), changing γ has no effect on the output Y∗. This is because, as shown above in section 6C,
scaling γ only scales Z∗, but does not alter the optimization. There is a drastic difference between setting γ = 0 and
taking the limit γ → 0. In the case of the limit of γ towards 0, it will increase the elements of Z∗ towards infinity, but
will not change the value of Y∗. On the other hand, setting γ to 0 in the original optimization problem Eq. (S14)
removes all the terms in Z and we get Y∗ = X, because there is no inhibition.

Next, we inspect the scenario where γ → 0 and ρ→ 0 such that γ/ρ = C where C is a constant. To understand
this scenario we make the substitution γ = ρC in Eq. (S57)-Eq. (S61). For i ≤ K:

sX,i = Cs∗
Z,i

(
1 + C2ρ2

Tu2 s∗2
Z,i

)
[S90]

sX,i = s∗
Y,i

(
1 + ρ2

Tu2 s∗2
Y,i

)
[S91]

s∗
Y,i = Cs∗

Z,i [S92]

and for i > K nothing changes. Now taking the limit ρ→ 0 (which automatically takes the limit γ → 0 since they
are related in the constant C ), we get:

sX,i = s∗
Y,i = Cs∗

Z,i [S93]
This means that Y∗ = X, i.e., there is no inhibition, but there is still activity in the LNs (Z). Physiologically this
corresponds to the scenario where the is no feedback connections from LNs to ORNs, only feedforward connection
from ORNs to LNs - this is then a pure feedforward circuit. What is the consequence in terms of synaptic weights
matrices W∗ and M∗ for this situation? By definition, these matrices are given by relations Eq. (S67), repeated here:

W∗ = 1
Tu2 Y∗Z∗⊤, M∗ = 1

Tu2 Z∗Z∗⊤ [S94]

For the LC, we show below that synaptic weight vectors of W∗ span the same subspace as the first K singular vectors
(uncentered PCA directions) as X. This is still the case here. Similarly, there is no difference in terms of LN-LN
connection weights M∗ in this particular scenario in comparison to the general one. Similarly, for the NNC case,
there is no difference from the general case.

10. Circuit dynamics equations contains two effective parameters (ρ and γ)
Here we show that, in its general form, the system of differential equations describing the olfactory circuit has just
two effective parameters and can be reduced to Eq. (6) (or Eq. (7)) from the main text. Without a lack of generality
the system of differential equations yields:

τ1
dy(τ)

dτ
= −ay(τ) − bW1z(τ) + ax

τ2
dz(τ)

dτ
= −cMz(τ) + dW⊤

2 y(τ)
[S95]
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Where we imposed that x = y in the case of no LN activity (i.e., z = 0), that a > 0, b > 0, c > 0, d > 0, and that all
ORNs have similar response properties (i.e., the same coefficient in front of each xi and yi). To extract the effective
parameters, we compute the steady-state solution of Eq. (S95) by setting the derivatives to zero. We find the following
steady-states for y and z, for invertible M:

ȳ =
(

ID + bd

ac
W1M−1W⊤

2

)−1
x

z̄ = d

c
M−1W⊤

2 ȳ
[S96]

This shows that we only have two degrees of freedom: bd
ac and d

c . We define ρ2 := bd
ac and γ2 := c

d ρ2 = b
a . This gives

us: ȳ =
(

ID + ρ2W1M−1W⊤
2

)−1
x

z̄ = ρ2/γ2M−1W⊤
2 ȳ

[S97]

Now replacing these definitions into the original Eq. (S95) we get:
τ1/a

dy(τ)
dτ

= −y(τ) − γ2W1z(τ) + x

τ2/c
dz(τ)

dτ
= −Mz(τ) + ρ2/γ2W⊤

2 y(τ)
[S98]

By setting τy := τ1/a, τz := τ2/c we obtain Eq. (6) from the main text (when W1 = W2):
τy

dy(τ)
dτ

= −y(τ) − γ2W1z(τ) + x

τz
dz(τ)

dτ
= −Mz(τ) + ρ2/γ2W⊤

2 y(τ)
[S99]

Thus, scaling x, W1, W2 and M is equivalent to controlling just two effective parameter γ and ρ. Scaling τy and
τz does not influence the steady-state solutions.

Increasing ρ increases the weight of feedforward connections, making the LN activity and the feedback inhibition
stronger. Increasing γ simultaneously increases the feedback connection strength and decreases the feedforward
connection strength. Changing γ influences the steady-state solution z̄ but not ȳ. Thus, a manifold of circuits leads
to the same steady-state output ȳ. In addition, the same differential equations can be implemented by different
circuits. For example, multiplying a differential equation by a parameter does not alter the final steady-state, but
gives yet another implementation to the circuit as a scaling of the synaptic weights and of the time constant.

11. Relationship between W and M (Eq. (2) in the main text)

Here we prove the relationship ρ2/γ2W⊤W = M2 = M⊤M for the LC. In this section, for simplicity we dropped the
∗ from M∗, W∗, Y∗, Z∗, and the related variables.

One way to obtain this relationship is to start from the circuit dynamics (Eq. (S75)). The steady-state for z̄(t) is:

ρ2/γ2W⊤ȳ(t) = Mz̄(t) [S100]
Multiplying by z̄(t)⊤ on both sides, taking the average over all samples t, and using the definition of W and M
(Eq. (S67)):

ρ2/γ2W⊤E
[
ȳ(t)z̄(t)⊤

]
/u2 = ME

[
z̄(t)z̄(t)⊤

]
/u2 [S101]

ρ2/γ2W⊤W = M2 [S102]

An alternative approach to derive the above relationship is to use the definition of W and M (Eq. (S67)) and the
SVD decomposition of X, Y, and Z. We write out W and M:

W = 1
Tu2 YZ⊤ = 1

Tu2 UY S̃Y V⊤
Y VZ S̃⊤

Z U⊤
Z = 1

Tu2 UX S̃Y S̃⊤
Z U⊤

Z = γ

Tu2ρ
UX|K Ŝ

2
ZU⊤

Z [S103]

M = 1
Tu2 ZZ⊤ = 1

Tu2 UZ S̃ZV⊤
Z VZ S̃⊤

Z U⊤
Z = 1

Tu2 UZ Ŝ
2
ZU⊤

Z [S104]
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Where we used that VX = VY = VZ and UX = UY are orthogonal matrices and that sY,i = γ
ρ sZ,i for i ≤ K and

sZ,i = 0 for i > K. We call ŜZ ∈ RK×K the square submatrix of the rectangular matrix SZ ∈ RK×N . UX|K ∈ RD×K

is the submatrix with the first K columns of UX . Thus:

W⊤W = γ2

T 2u4ρ2 UZ Ŝ
2
ZU⊤

X|KUX|K Ŝ
2
ZU⊤

Z [S105]

= γ2

T 2u4ρ2 UZ Ŝ
4
ZU⊤

Z = γ2

ρ2 M2 [S106]

Since M is a symmetric matrix, i.e., M = M⊤, this relationship can also be written as:

W⊤W = γ2

ρ2 M⊤M [S107]

This ends the derivation.
Taking the unique square root on both sides gives the relationship Eq. (2) in the results section of the main text.

A. Consequence of the matrix relationship. We can inspect the consequence of this relation on an element-per-element
basis. We call mi the ith column of M, which corresponds to the vector of synaptic weight from LNi onto all the
other LNs. We get that:

w⊤
i wj = γ2/ρ2m⊤

i mj [S108]
∥wi∥∥wj∥ cos(θw

ij) = γ2/ρ2∥mi∥∥mj∥ cos(θm
ij ) [S109]

Where θw
ij is the angle between the vectors wi and wj , θm

ij is the angle between mi and mj ; and where we used the
scalar product property.

For the elements on the diagonal (i = j), we get: ∥wi∥ = γ/ρ∥mi∥. This implies that ∥wi∥/∥mi∥ = const, meaning
that the ratio between the magnitude of the ORNs → LN and LNs → LN synaptic weight vectors is the same at each
LN. We call magnitude the square root of the sum of the squared connection weights, corresponding to the length of
the synaptic weight vector and a proxy for the total synaptic strength of a synaptic weight vector.

Feeding ∥wi∥ = γ/ρ∥mi∥ into Eq. (S109), we get that θw
ij = θm

ij , meaning that the angle between wi and wj

is the same as the angle between mi and mj . In other words ∡(wi, wj) = ∡(mi, mj), where ∡(a, b) is the angle
between two vectors a and b. Thus 2 LNs with a similar (different) connectivity pattern with the ORNs have a
similar (different) connectivity pattern with LNs.

12. Relationship between ORN activity and ORN-LN connectivity (Eq. (1) in the main text)
In this section, for simplicity we dropped the ∗ from M∗, W∗, Y∗, Z∗, and the related variables. Based on the
expressions for W and M (Eq. (S103) and Eq. (S104)) we can write W as:

W = γ

Tu2ρ
UX|K Ŝ

2
ZU⊤

Z = γ

Tu2ρ
UX|KU⊤

Z UZ Ŝ
2
ZU⊤

Z = γ

ρ
UX|KU⊤

Z M [S110]

Where we used that U⊤
Z UZ = IK . Where UX|K ∈ RD×K is the submatrix with the first K columns of UX . As

stated above, UZ is a free parameter and could be any orthogonal matrix.
In the case of a single LN, W is a column vector and corresponds to the first left eigenvector of X. For multiple

LNs, the column vectors of W span the same subspace as the top K loading vectors of X, UX|K . However, because
of the multiplication on the right by U⊤

Z M, the connections vectors do not necessarily correspond to specific PCA
directions and are not orthogonal, but only span the top K-dimensional PCA subspace. Thus, this relation above
gives us the relationship between the left eigenvectors of X, W, and M.

13. Decrease of the spread of PCA variances in ORN axons vs soma in the LC

Here we show that the coefficient of variation (CVσ, i.e., the spread) of PCA variances ({σ2
i }) is smaller at the ORN

output (axons) than at the input (somas) in the LC model when the number of ORNs (D) equal to the number of
LN (K), i.e., D = K. In that case, we have σX = σY (1 + ρ2σ2

Y ). As we have shown, for small σX , we have σY ≈ σX
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and for large σX , we have σY ≈ 3
√

σX/ρ2. We call X a positive random variable, representing the variances. We will
show that for a 0 < α < 1, CV(X) ≥ CV(Xα), which mimics the case we have.

CV(X) ≥ CV(Xα) [S111]

⇐⇒ σX

E [X] ≥
σXα

E [Xα] [S112]

⇐⇒ σ2
X

E [X]2
≥ σ2

Xα

E [Xα]2
[S113]

⇐⇒
E
[
X2]−E [X]2

E [X]2
≥

E
[
X2α

]
−E [Xα]2

E [Xα]2
[S114]

⇐⇒
E
[
X2]

E [X]2
≥

E
[
X2α

]
E [Xα]2

[S115]

The last inequality can be proven by using Hölder’s inequality twice. First:

(
E
[
X2] ) 1−α

2−α
(

E [Xα]
) 1

2−α ≥ E [X] [S116]

which leads to:

E
[
X2]

E [X]2
≥

(
E
[
X2] ) α

2−α

(
E [Xα]

) 2
2−α

[S117]

and second: (
E
[
X2] ) α

2−α
(

E [Xα]
) 2−2α

2−α ≥ E
[
X2α

]
[S118]

which leads to: (
E
[
X2] ) α

2−α

(
E [Xα]

) 2
2−α

≥
E
[
X2α

]
E [Xα]2

[S119]

Combining inequalities Eq. (S117) and Eq. (S119) proves inequality Eq. (S115) and ends the proof.
Thus, for an LC with the same number of LNs as ORNs (i.e., K = D), the computation in the LC decreases

the spread of {σ2
Y,i} relatively to the spread of {σ2

X,i}. Although for K < D, the variance of only the top K PCA
direction is decreased, in most cases the computation in the LC also leads to a decrease of CVσ (Fig. 6D).

14. Numerical simulations of the LC and NNC

A. Numerical simulation of the LC offline. For the LC, we have the theoretical solution, so numerical simulations are
not necessary to obtain the optima Y∗ and Z∗. Also, there is a manifold of solutions of Z∗, W∗, and M∗. However,
to confirm the theoretical results, we simulate the LC too. For that, we use the optimization problem that depends
on Z only (Eq. (S40), with γ = 1 and u dropped):

min
Z

1
T 2 Tr

[
T

2 X⊤X
(

IT + 1
T

Z⊤Z
)−1

+ 1
4ρ2 Z⊤ZZ⊤Z

]
[S120]

We use an algorithm similar to (7).
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Algorithm 1 Finding the minimum of

f(Z) := Tr
[

T
2 X⊤X

(
Z⊤Z

T + IT

)−1
+ 1

4ρ2 Z⊤ZZ⊤Z
]

1: Objective: find Z∗ ∈ RK×T that minimizes f(Z).
2: Inputs:
3: X ∈ RD×T

4: K > 0: the number of dimensions of Z
5: ρ > 0: a constant encoding the strength of the inhibition by the LNs
6: 0 < σ < 1: acceptance parameter (usually 0.1)
7: α0 > 0: initial gradient step coefficient (usually 1 or 10)
8: 0 < β < 1: reduction factor (usually 0.1 or 0.5)
9: 0 < µ≪ 1: tolerance parameter (usually ≈ 10−6)

10: ncycle ≈ 500: number of steps after which one decreases the value of α0
11: Initialize:
12: Znew ∈ RK×N ∼ N (0, SD(X)/100)
13: i← 1
14: Iterate:
15: repeat
16: Z← Znew

17: α = α0
18: repeat
19: Znew = Z− α∇f(Z) ▷ Find a potential new Z through a gradient descent step
20: ∆̂f = σ · sum[∇f(Z)⊙ (Znew − Z)] ▷ Acceptable decrease in f (negative number)
21: ∆f = f(Znew)− f(Z) ▷ True decrease in f (negative number)
22: α← βα ▷ Decrease the gradient descent step size for the next iteration, if it occurs
23: until ∆f < ∆̂f ▷ Exit loop if the true decrease in f is larger than the acceptable one
24: if i mod ncycle = 0 then ▷ Every ncycle, decrease the initial step size α0 by β
25: α0 ← βα0

26: i← i + 1
27: until |f(Z)− f(Znew)|/|f(Z)| < µ
28: Output: Znew

Where ⊙ is an element-wise multiplication and the “sum” adds all the elements of the matrix. In the inner repeat
loop of the algorithm, it can happen that because of limited numerical precision, no α is small enough to make a
decrease in f (i.e., satisfy the condition ∆f < ∆̂f), in that case, the inner and outer repeat loops stop and the current
Z (not Znew) is outputted.
∇f(Z) is given by:

B :=
(

Z⊤Z/T + I
)−1

[S121]

∇f(Z) = −ZBXX⊤B + ZZ⊤Z/ρ2 [S122]

Finally, the expression for Y is (Eq. (S33)):

Y = X
(

IT + 1
T

Z⊤Z
)−1

[S123]

B. Numerical simulation of the NNC offline. For the NNC, we do not have the analytical expressions of Y and Z. To
optimize the objective function, we perform alternating gradient descent/ascent steps on Y and Z, respectively. We
start from the expanded expression of the optimization problem Eq. (S14) with nonnegativity constraints (with γ = 1
and u dropped):

min
Y≥0

max
Z≥0

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + 1
2Y⊤YZ⊤Z− 1

4ρ2 Z⊤ZZ⊤Z
]

[S124]
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Algorithm 2 Finding the minimum in Y and maximum in Z of
f(Y, Z) := Tr

[
−TX⊤Y + T

2 Y⊤Y + 1
2 Y⊤YZ⊤Z− 1

4ρ2 Z⊤ZZ⊤Z
]

1: Objective: find Y∗ ∈ RD×T
+ and Z∗ ∈ RK×T

+ that optimize minY maxZ f(Y, Z).
2: Inputs:
3: X ∈ RD×T

4: K > 0: the number of dimensions of Z
5: ρ > 0: a constant encoding the strength of the inhibition by the LNs
6: 0 < σ < 1: acceptance parameter (usually 0.1)
7: α0 > 0: initial gradient step coefficient (usually 1 or 10)
8: 0 < β < 1: reduction factor (usually 0.1 or 0.5)
9: 0 < µ≪ 1: tolerance parameter (usually ≈ 10−6)

10: ncycle ≈ 500: number of steps after which one decreases the value of α0
11: Initialize:
12: Ynew ∈ RD×N

+ ∼ abs[N (0, SD(X)/100)]
13: Znew ∈ RK×N

+ ∼ abs[N (0, SD(X)/100)]
14: i← 1
15: Iterate:
16: repeat
17: (Y, Z)← (Ynew, Znew)
18: α = α0
19: repeat
20: Ynew = [Y− α∇Yf(Y, Z)]+ ▷ Find a potential new Y through a gradient descent step
21: ∆̂f = σ · sum[∇Yf(Y, Z)⊙ (Ynew −Y)] ▷ Acceptable decrease in f (negative number)
22: ∆f = f(Ynew, Z)− f(Y, Z) ▷ True decrease in f (negative number)
23: α← βα ▷ Decrease the gradient descent step size for the next iteration, if it occurs
24: until ∆f < ∆̂f ▷ Exit loop if the true decrease in f is larger than the acceptable one
25: α = α0
26: repeat
27: Znew = [Z + α∇Zf(Ynew, Z)]+ ▷ find a potential new Z through a gradient ascend step
28: ∆̂f = σ · sum[∇Zf(Ynew, Z)⊙ (Znew − Z)] ▷ Acceptable increase in f (positive number)
29: ∆f = f(Ynew, Znew)− f(Ynew, Z) ▷ True increase in f (positive number)
30: α← βα ▷ Decrease the ascent descent step size for the next iteration, if it occurs
31: until ∆f > ∆̂f ▷ Exit loop if the true increase in f is larger than the acceptable one
32: if i mod ncycle = 0 then ▷ Every ncycle, decrease the initial step size α0 by β
33: α0 ← βα0

34: i← i + 1
35: until |f(Y, Z)− f(Ynew, Z)|/|f(Y, Z)| < µ and |f(Ynew, Z)− f(Ynew, Znew)|/|f(Ynew, Z)| < µ
36: Output: Ynew, Znew

Where [a]+ = max[0, A], is an element-wise rectification. In the case of the LC, this algorithm holds as well, with
all the rectifications [.]+ removed and the “abs” removed from the initiation. If in either of the inner repeat loops, no
α is small enough to make a decrease/increase in f (i.e., satisfy the condition ∆f < ∆̂f or ∆f > ∆̂f), the iterations
stop and the current Y and Z are the output of the algorithm.

The gradients of f(Y, Z) are:

∇Yf(Y, Z) = −T (X−Y) + YZ⊤Z [S125]
∇Zf(Y, Z) = ZY⊤Y− ZZ⊤Z/ρ2 [S126]

C. Numerical simulation of the circuits online. For Fig. S17, we simulated the circuit dynamics for a given W, M,
and X. For that purpose, to find y∗ and z∗, we performed gradient descent steps based on the discretized Eq. (S75)
for the LC or Eq. (S78) for the NNC (correspondingly Eq. (6) and Eq. (7) in the main text).
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15. Simulation of the circuit with synaptic weights from the connectome (Fig. S15)
We investigate the computation performed by a nonnegative ORN-LN circuit where the synaptic weights are set
proportionally to the synaptic counts from the connectome (1) (Section 15). Given that we have a connectome for
the left and right sides of the larva, there are two such circuit models. We call this model NNC-conn. It has 8 LNs.

Several aspects are worth mentioning regarding this model. Two main reasons might make the results of these
simulations not entirely trustworthy and the computation performed by this circuit might not necessarily represent
the true computation in the real biological circuit. First, because several physiological parameters are not available
and are guessed: neuronal leaks, the ratios of the synaptic strengths of ORNs → LNs vs LNs → ORNs vs LNs →
LNs. Second, the observed computation of a circuit strongly depends on the input it receives. Since we do not know
the true input statistics to which this circuit model is adapted to, the observed computation might be misleading.
This simulation is rather a control of whether the predictions of the NNC model are somewhat compatible with the
potential computation done using the synaptic counts.

To simulate this circuit, we thus first need to choose a scaling for the synaptic counts found in the connectome, in
order to convert them to synaptic weights (note that the circuit contains both excitatory and inhibitory synapses, and
their relative strength is unknown). To perform that transformation, we divide the ORN → LN counts by 80, divide
the LN → ORN counts by 30, and divide the LN →LN counts by 60. These numbers are roughly the average of the
norms of the columns of the matrices Wff, Wfb, and M, respectively. We choose these scaling factors to ensure that
the synaptic strengths are somewhat comparable between different directions of activity flow (i.e., ORNs to LN, LNs
to ORN, LNs to LN). Next, we need to choose values for the diagonal of M, which correspond to the neural leaks of
LNs and which are not known. We set those values to the maximum of each column of M, which makes the neural
leak (i.e., self-inhibition) comparable to the inhibition coming from other LNs. We then simulate this circuit for the
left and right sides of the larva. In Fig. S15, we show the average between the left and right side for ORN activity,
and we show the LN activity separately for the left and right. We use the same equations as for the NNC to simulate
the circuit (Eq. (S78), Eq. (7) in the main text), having adapted the formulas to incorporate different feedforward
and feedback connectivity.

Finally, given the multidimensional space of unknown parameters, different modes of computation could arise in
different regions of the parameter space. These modes of computation might not correspond to the true computation
of the actual biological circuit. To be more accurate, this bottom-up approach would require an in-depth investigation
of a large parameter space to see what different modes of operation this circuit could have and then evaluate their
plausibility. More physiological recordings of this circuit would allow making such bottom-up models more reliable.

16. Optimization problem for circuit without LN-LN connections (Fig. S18)
The following optimization problem provides a circuit without LN-LN connections (8):

min
Y

max
Z

1
T 2 Tr

[
−TX⊤Y + T

2 Y⊤Y + γ2

2u2 Y⊤YZ⊤Z− Tγ2

2ρ2 Z⊤Z
]

[S127]

Where the variables and parameters are the same as for the optimization problem Eq. (S14). Z⊤ZZ⊤Z has been
replaced with Z⊤Z and parameters arranged accordingly. It can help to see that this objective function implements
whitening by rewriting it as follow:

min
Y

max
Z

1
2T
∥X−Y∥2

F + 1
T 2 Tr

[
γ2

2 Z⊤Z
(

1
u2 Y⊤Y− T

ρ2 IT

)]
[S128]

Where Z⊤Z acts like a Lagrange multiplier.

A. Online solution. Following a similar approach as with the optimization problem Eq. (S14), we find, analogously to
Eq. (S80) that the online algorithm that can be implemented by a circuit model is:

τy
dy(t)(τ)

dτ
= −y(t)(τ) − γ2W(t)z(t)(τ) + x(t)

τz
dz(t)(τ)

dτ
= −z(t)(τ) + ρ2W(t)⊤y(t)(τ)

[S129]

As one can see, there is no interactions between LNs. The synaptic updates are (see Eq. (S82)):

W(t+1) = W(t) + η(t)
(

z̄(t)ȳ(t)⊤

u2 −W(t)
)

[S130]
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Similar to Eq. (S81), in the nonnegative version of the optimization problem Eq. (S127), the circuit equations become
y(t)(τ + 1) = max

[
0, y(t)(τ) + ϵ(τ)

(
− y(t)(τ)− γ2W(t)z(t)(τ) + x(t))]

z(t)(τ + 1) = max
[
0, z(t)(τ) + ϵ(τ)

(
− z(t)(τ) + ρ2W(t)⊤y(t)(τ)

)] [S131]

B. Circuit computation. Using similar methods as above, we find that the solution of the optimization problem
Eq. (S127) is:

Y∗ = UX S̃∗
Y V⊤

X [S132]

Z∗ = ρ/γU∗
Z S̃∗

ZV⊤
X [S133]

with



s∗
Y,i = min

(
sX,i,

u
√

T

ρ

)
1 ≤ i ≤ K [S134a]

s∗
Y,i = sX,i K + 1 ≤ i ≤ D [S134b]

s∗
Z,i =

√
Tu2

γ2

(
ρsX,i

u
√

T
− 1
)

sX,i ≥ u
√

T/ρ [S134c]

s∗
Z,i = 0 sX,i < u

√
T/ρ [S134d]

U∗
Z : a degree of freedom [S134e]

This means that in the output Y∗, all the top K (as the number of LNs) PCA variances become equal to u2

ρ2 or stay
the same as in the input X if the original variance is smaller than u2

ρ2 . If K ≥ D (i.e., the number of LNs is equal or
more than the number of input neurons) and all original variances are larger than u2

ρ2 , then the output Y∗ will be
white: all variance will be u2

ρ2 . We have used the relationship between the PCA variance σ2 and the singular value s:
s2/T = σ2.

C. Numerical simulations. Numerical simulations for these objective functions are performed using the same method-
ology as for the original optimization problem.
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Supplementary figures and tables
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Fig. S1. Full ORN connectivity and circuit selection.
(A) Heat map of the ORNs feedforward and feedback connections on the left side of the Drosophila larva. We focus on the neurons, that
synapse bidirectionally with ORNs (inside the red dashed rectangle): Broad Trios, Broad Duets, Keystones, and Picky 0. These neurons
are all LNs.
(B) Same as (A) for the right side.
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Fig. S2. ORN-LN connectivity, comparison feedforward with feedback.
(A) ORNs → LNs feedforward synaptic counts on both left and right sides of the antennal lobe with the chosen LNs, ordered by LN class.
The synaptic count vectors wff

LN correspond to the columns of the depicted matrix.
(B) LN → ORNs feedback synaptic counts wfb

LN on both left and right sides of the antennal lobe with the chosen LNs, ordered by LN
class. The synaptic count vectors wfb

LN correspond to the columns of the depicted matrix.
(C) Correlation coefficients between feedback LN → ORNs synaptic count vectors wfb

LN. Inset: Average rectified correlation coefficient
⟨r+⟩ (r+ := max[0, r]) between LN types calculated by averaging the rectified values from the full matrix in each region with a white
border, excluding the diagonal entries of the full matrix. The average correlation coefficient within a class is larger than the correlation
coefficient across classes.
(D) Correlation coefficients between feedforward ORNs → LN wff

LN and feedback LN → ORNs wfb
LN synaptic count vectors. The Picky 0

LN is the only LN that has a separation between axonal and dendritic terminals. For the feedforward ORNs → LN connections, we only
include in the synaptic count vector the synapses onto the Picky 0 dendrite, and for the LN → ORNs connection, we only count the
synapses from the Picky 0 axon. Because all the components of the synaptic count vector ORNs → LN share the same post-synaptic
neuron, their effect on the post-synaptic activity is directly comparable and thus the ORNs → LN synaptic count vector is expected to
be largely proportional to the ORNs → LN synaptic weight vector. However, the synaptic counts from one LN onto all 21 ORNs are
not directly comparable to each other, because each connection affects a different postsynaptic ORN, which potentially has different
electrical properties. Yet, we see here that the feedforward and feedback connection vectors are somewhat correlated. This justifies the
model’s property that excitatory feedforward and inhibitory feedback connection weights differ only by a proportionality constant related
to ρ2.
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Fig. S3. ORN soma activity from Si et al., 2019(2).
(A) ORN soma activity patterns {x(t)}data in response to 34 odors at 5 dilutions acquired through Ca2+ imaging. Different odors are
separated by vertical gray lines. For each odor, there are 5 columns corresponding to 5 dilutions: 10−8, ..., 10−4. The odors and ORNs
are ordered by the value of the second singular vectors of the left and right SVD matrices of this activity data, after centering and
normalizing. This data is obtained by averaging the maximum responses of several trials to the same odor and dilution (as in Si et al.,
2019(2)).
(B) Same as (A), with each x(t) scaled between 0 and 1 to better portray the patterns.
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Fig. S4. Alignment of activity patterns x(t) in ORNs and ORNs → LN synaptic count vectors wLNtype.
(A) Distribution of p-values arising from the significance testing in Fig. 2B. We observe that for the Broad Trio and Picky 0, the distribution
of p-values is skewed towards small values, confirming that the significant correlations found are not solely a result of randomness and
multiple comparisons.
(B-E) Black line: Reconstruction error ∥ŵLNtype −

∑T

t=0 vtx̂(t)∥2 as a function of the L1 norm of the coefficient vector v (see text for
details), gray lines: same as black but for a shuffled ŵLNtype. Red line: proportion of randomly shuffled ŵLNtype that have a smaller
reconstruction error for the same norm of v. Broad Trio and Picky 0 have significantly better reconstructions as shown by the small
p-values for an extended range of ∥v∥1.
(F-I) Red line: relative cumulative frequency (RCF) of the correlation coefficients r (from each row of Fig. 2B) between each wLNtype and
all the {x(t)}data. In other words, the RCF in a normalized cumulative histogram of all the correlation coefficients in one row of Fig. 2B.
Black line and gray band: mean ± SD from the RCFs generated by 50,000 instances of shuffling the entries of wBT. Blue line: normal
fit to the shuffled distribution. Apart from the LN type P0, the distribution arising from shuffling is quite close to normal. This can be
explained by the fact that P0 has sparse connectivity. Bin size: 0.004.
(J-M) Same as (F-I) with the mean RCF subtracted. We define the maximum deviation as the maximum negative difference between the
true and the mean RCF of correlation coefficients.
(N) RCF maximum deviation and log10 of the multi-comparison adjusted p-values (9) for each of the four ORNs → LNtype synaptic count
vectors wLNtype. *: significance at 5% FDR (false discovery rate).
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Fig. S5. Alignment of activity patterns x(t) in ORNs and ORNs → LN synaptic count vectors wLN.
(A) Same as Fig. 2B, for all the wLN and wLNtype and with all the odors labeled. The label “Broad T” corresponds to the average ORNs →
LN synaptic count vector for all Broad Trio LNs; same for “Broad D”, “Keystone”, and “Picky 0 [dend]”. These correspond to the ones
shown in Fig. 2B. The individual LNs have similar correlation patterns as the average ones. Same odor order.
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Fig. S6. PCA of ORN activity and NNC connectivity vs data connectivity.
(A) Percentage of the variance of the ORN activity patters {x(t)}data explained by the uncentered PCA. The top 4 and 5 PCA directions
explain 71% and 76% of the variance, respectively.
(B) First 5 PCA loading vectors of {x(t)}data.
(C-D) wk from NNC with K = 4, 5 and ρ = 1.
(E) Same as Fig. 2H with all wLN.
(F) Same as (E), with wk from NNC-4 instead of PCA directions.
(G) Same as (F), for NNC-5. The small number of significant points in (E-G) results from the higher number of hypothesis tests, which
decreases the adjusted p-values in the FDR multi-hypothesis testing framework.
(H) Same as Fig. 3A, for NNC-5.
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Fig. S7. Activity and connectivity subspace alignment.
(A) Schematic representing the comparison of the 4-dimensional connectivity (SW ) and 5-dimensional activity (SX ) subspaces in 21
dimensions (D = 21, dimensionality of the ORN space).
(B) Number of aligned dimensions Γ between the 2 subspaces of (A) in the data (true, Γ = 1.9), from randomly shuffling the connectivity
vector entries (shuffled, mean Γ = 1.3) and from random normal vectors (Gaussian, mean Γ = 1). About one dimension is more aligned
in the data than expected by random. pv: one-sided p-value.
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Fig. S8. Alignment of activity patterns {x(t)}data in ORNs and connectivity weight vectors {wk} from NNC-4.
(A) Same as Fig. 2B, for the four ORNs → LN connection weight vectors wk arising from NNC-4 simulations (ρ = 1). We see that the
LNs of the NNC model, which is specifically adapted to this set of odors, have high and significant correlations with different sets of
odors. w1 most resemble wBT, w2 - wBD, and w4 - wP0.
(B-I) Same as Figs. S4F to M, for the four wk arising from NNC-4 simulations and with an overlaid normal fit to the shuffled distribution.
These plots are quite similar to the ones based on the connectome, showing an additional match between the model and experimental
data. In particular, we find two connectivity vectors (w1 and w4) that have, just as BT and P0, rather large deviations from the shuffled
distribution, and the other two, just as BD and KS, are closer to the shuffled distribution.
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Fig. S9. Clustering by the NNC and correlation between the wk for two separated clusters.
In this and the next figures, we investigate the effect of varying the input statistics {x(t)}, ρ (encoding the ratio between the feedforward
and feedback connectivity strength), and K (the number of LNs) on the alignment between the {wk} arising in the NNC model. In both
figures, the input dataset {x(t)} is in D = 10 dimensions and contains 250 sample points spread between 2 clusters (one of 100 points
and the other of 150 points). Points were generated using a normal distribution of SD = 0.15. The absolute value was taken in each
coordinate. In this figure, the 2 clusters are further apart than in the next figure, which probes the effect of changing the statistics of
{x(t)}. In both figures we consider the case with K = 2 and K = 3, and ρ taking values 0.1, 1, 10.
(A) Representation of {x(t)}. For the first 100 points, the normal distribution was centered at [1, 0, ...,0]; for the last 150 points, the
normal distribution was centered at [0, 1, 0, ..., 0].
(B) Scatter plot of the first 2 dimensions of the dataset of (A).
(C-T) Output of the NNC model trained on the dataset in (A) for K = 2, 3 and for ρ = 0.1, 1, 10.
(caption continues on next page)
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Fig. S9. Clustering by the NNC and correlation between the wk for two separated clusters, continued.
(C, F, I, L, O, R) LN activity. As ρ increases, the activity of LNs increases in amplitude, leading to a stronger inhibition. In most cases, LN
activity clearly encodes the membership of an input sample to a cluster. For K = 3, 2 LNs encode the membership of the cluster with
more points. With stronger ρ, the 2 LNs encoding the same cluster become more similar.
(D, G, J, M, P, S) Scatter plot of the input {x(t)} (black), output {y(t)} (red), and direction of the wk (green) in the first two dimensions.
As ρ increases, the output becomes smaller due to a stronger inhibition, and the {wk} become more separated, especially for K = 2.
For K = 3, two wk point towards the cluster with more points.
(E, H, K, N, Q, T) Correlation coefficients between wk and mean rectified correlation coefficient r+. As ρ increases, the wk describing
different clusters become more decorrelated and r+ decreases. For the case when K = 3 and there are only 2 clusters in the dataset,
two wk stay correlated for even large values of ρ.
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Fig. S10. Clustering by the NNC and correlation between the wk for two nearby clusters.
Same as Fig. S9 but when the two clusters are closer together. For the first 100 points, the normal distribution was centered at [1, 0.4, 0,
..., 0]; for the last 150 points, the normal distribution was centered at [0.4, 1, 0, ..., 0]. One finds that for small ρ, even though the wk are
very correlated, at least two LNs successfully encode the cluster membership. However, increasing ρ improves the cluster separation:
the angle between the black clusters is smaller than the angle between the red clusters. Finally, when K = 3, we observe that one of the
LNs does not always take the side of one cluster. Because of the difference in the dataset with Fig. S9, the mean rectified correlation
coefficient r+ between the wk is always larger for this dataset, thus demonstrating how the dataset influences the wk.
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Fig. S11. Activity of LNs {z(t)} in the NNC and LC.
(A) ORN soma activity patterns {x(t)}data as in Fig. S3A, replicated for convenience.
(B) Activity in the LNs {z(t)} for the LC-8. Stimuli are aligned to the panel above. As mentioned in the text, {z(t)} is undetermined up to
an orthogonal matrix UZ . Here we set UZ = IK , i.e., the identity matrix. This special case corresponds to the situation where each
LN encodes a PCA direction of ORN activity. For LC-K with K ≤ 8, the response in LNs corresponds to the first K row of this matrix,
multiplied by any K × K orthogonal matrix on the left. Thus, the matrix depicted in this plot shows the potential activity in LNs for any
LC-K with K ≤ 8.
(C) {zt} for the NNC-1. The activity of the LN approximately follows the total activity.
(D) {z(t)} for the NNC-2. One can see that the 2 LNs roughly cluster the sets of odors into those activating the top ORNs and those
activating the lower ORNs.
(E-G) {z(t)} for the NNC with K = 3, 4, 8. One observes a more sophisticated clustering of the data. As more LNs are added, LN
activity increases in sparsity. LNs are mostly active in response to the odors to which their connectivity is the most aligned (NNC-4,
Fig. S8A). The activity in the LNs for the NNC is more sparse than for the LC.
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Fig. S12. PCA directions of odor representations at ORN somas vs ORN axons in LC and NNC.
This figure complements Fig. 6 to characterize the difference in PCA directions of the odor representations at ORN somas ({x(t)}data) vs.
at ORN axons ({y(t)}) in the LC, NNC, and NNC-conn models. We consider models LC-1, LC-8, NNC-1, NNC-8, NNC-conn, i.e., LC
and NNC models with K = 1 and K = 8 LNs, as well as the NNC model constructed based on the synaptic counts in the connectome.
{uX,i} and {uY,i} are the PCA directions of the uncentered activity at the somas ({x(t)}data) and axons ({y(t)}), respectively. There are
D = 21 PCA directions (as the number of ORNs). To quantify the change of PCA directions, we calculate the scalar products between
{uX,i} and {uY,i}. A scalar product of 1 (or -1), means that the direction is exactly the same; 0: means that they are perpendicular.
Because PCA direction vectors are determined up to the sign, we show the absolute value of the scalar product.
Change of PCA directions has implications on the stimuli representations. If the PCA directions are strongly altered, it could mean the
cloud of representation in the neural space is not only stretched but also rotated. Having a minimal rotation of the representations is
potentially advantageous for downstream processing, because, since the ORN axon representation is computed dynamically through
LN activation, the original representation appearing in ORN axons before the effect of LNs kick in will be maximally close to the final,
converged representation. Thus downstream processing can be meaningful even before representation convergence. A lack of rotation
is called a “zero-phase”. If the rotation of the stimulus was substantial between the original representation at the ORN soma and the
converged representation at ORN axons, the downstream computation could potentially be wasted at stimulus presentation and give
incorrect information to the brain about stimulus identity.
(A-B) LC-1 and LC-8. For the LC, the identity of the PCA directions is conserved, only their order changes, as can be deduced from the
fact that all scalar products between {uX,i} and {uY,i} are either 1 or 0. Because the variance of the first or first 8 PCA directions
decreases, their global order change.
(C-D) NNC-1, NNC-8. For the NNC, the PCA directions at the soma and at the axon are not exactly the same, but they conserve their
approximate ordering.
(E) NNC-conn model. Here, the PCA directions are even more intermixed than in the NNC-8 model, similar to NNC’-8 model (Fig. S17),
where the LN-LN connection have been removed.
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Fig. S13. Input transformation by LC-1 and LC-8 with ρ = 2.
This figure complements Fig. 6 to comprehensively show the computation of the LC-1 (K = 1 LN) and LC-8 (K = 8 LNs) models. Some
of the plots are repeated here for convenience.
(A-B) ORN axon activity for the LC-1 and LC-8. Corresponds to Fig. 6B. The LC produce negative values and the LC-1 has much more
negative deviations.
(C) LN activity in the LC-8. Repetition of Fig. S11B, shown here for convenience.
(D-E) Corresponds to Figs. 6C and D. For the LC-1, only the first PCA direction is dampened, thus the decrease is CVσ is not as large
as for the LC-8.
(F-I) Corresponds to Figs. 6E to H. Again here, the LC-1 does not exhibit much decrease in the CV of ORN variance, and no decrease in
the CV of the pattern magnitude. Thus, for this dataset, multiple LNs are necessary in the LC model to have the effect of normalization.
(J-O) Corresponds to Figs. 6I to L. Although present, the decorrelation in the LC-1 is not as strong as in LC-8. LC-1 produces more
negatively correlated ORNs and activity patterns.
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Fig. S14. Input transformation by NNC-1 and NNC-8 with ρ = 2.
This figure complements Fig. 6 to comprehensively show the computation of the NNC-1 (K = 1 LN) and NNC-8 (K = 8 LNs) models.
The structure of the figure is the same as in Fig. S13. Some of the plots are repeated here for convenience.
(A-B) ORN axon activity for the NNC-1 and NNC-8. Corresponds to Fig. 6B. The ORN axon activity in the NNC-1 is comparable, but a bit
stronger than in NNC-8. This is due to a weaker overall inhibition in LC-1. But note that the parameter ρ also contributes to the inhibition
strength.
(C) LN activity in the NNC model with K = 1, 4 and 8. Repetition of Fig. S11B, shown here for convenience.
(D-O) Corresponds to Figs. 6C to L and Figs. S13D to O. Contrary to LC-1 and LC-8 that are quite different, generally NNC-1 and NNC-8
are quite similar. As for K = 8, in K = 1 the variances of all PCA directions are decreased. This contrasts to the LC, where only the
variances of the top K PCA directions are affected. The NNC-1 exhibits a weaker normalization of ORN variance and pattern magnitude,
but almost no different in terms of decorrelation. This differs from the LC, where there the decorrelation in the LC-8 is perceptibly stronger
than in the LC-1.
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Fig. S15. Input transformation by a nonnegative circuit with synaptic weight vectors from the connectome.
This figure complements Fig. 6 and repeats some plots for convenience. See SI Appendix , Section 15 for implementation details. In this
circuit, synaptic weights are set proportionally to the synaptic counts from the connectome (1) and we call this model NNC-conn. As a
whole, apart from the increase in the CV of ORN variance, this model performs a qualitatively comparable computation to the one by
NNC and LC models.
(A) ORN axon activity in the NNC-conn. Corresponds to Fig. 6B. This is the average activity between left and right sides. The activity in
ORN axons is nonnegative and weaker than in ORN soma, as seen in the NNC model.
(B) LN activity in the NNC-conn. Corresponds to Fig. 6A. Showing the activity on both left and right sides. The activity in LNs is rather
sparse and distributed, as in the NNC. The first three rows are the activities in the Broad Trio 1, 2, and 3 (BT); rows 4 and 5: Broad Duet
1 and 2 (BD); rows 6 and 7: Keystone L and Keystone R (KS); row 8: Picky 0 (P0). The horizontal black lines separate the 4 LN types.
One observes a stronger activity in the Broad Duets. Given the uncertainty of the parameters of the model, we do not know if it is true in
reality, or just a consequence of incorrect synaptic weights or leak parameters.
(C-D) Repeated Figs. 6C and D. In the NNC-conn the first 2 PCA directions are not as strongly dampened as in the NNC and LC, leading
to a lesser decrease in the spread of the PCA variances.
(E-H) Repeated Figs. 6E to H. In the NNC-conn the first 2 PCA directions are not as strongly dampened as in the NNC and LC.
(I-J) Corresponds to Figs. 6I and J. The channels are more decorrelated at the ORN axons than at the somas as seen in the NNC and
LC models.
(K-L) Corresponds to Figs. 6K and L. The odor representations are slightly more decorrelated at the ORN axons than at the somas in the
histograms. This effect is weaker here than in the NNC model.
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Fig. S16. Input transformation by LC and NNC with ρ = 10.
This figure complements the findings of Fig. 6. To better understand the effect of a stronger inhibition in the LC and NNC models we
perform the same analysis as in Fig. 6 with ρ = 10. This setting gives a perceptively strong effect on the output and allows us to
understand the effect of changing ρ. In general, we observe an even stronger dampening, flattening, and decorrelation than for ρ = 2.
(A-C) Corresponds to Figs. 6A and B. The activity for the LC and NNC at the axonal level is even weaker than for ρ = 2. For the LC the
negative values are more perceptible and there are more values around 0. The activity in LNs is stronger.
(D) Corresponds to Fig. 6C. For the LC models, the PCA directions that are affected by LN inhibitions have an even smaller variance. For
the NNC models, all directions are even smaller.
(E) Corresponds to Fig. 6D. The spread of variances (quantified by the CVσ) is slightly bigger for the LC at ρ = 10 than at ρ = 2, because
only the K first variances are even smaller, which increases the overall spread of variances in this situation. For the NNC however,
because all directions are dampened, the CV is smaller here than for ρ = 2. (caption continues on next page)

40 of 46 Nikolai M. Chapochnikov, Cengiz Pehlevan, Dmitri B. Chklovskii



Fig. S16. Input transformation by LC and NNC with ρ = 10, continued.
(F-I) Corresponds to Figs. 6E to H. Because LC-1 only affects a single PCA direction, the results for ρ = 2 and ρ = 10 are quite similar
in terms of channel variance and pattern magnitudes for this model. For LC-8, although we observe a decrease in channel variances
and pattern magnitudes, there is virtually no difference between ρ = 2 and ρ = 10 in terms of the CV of channel variances or pattern
magnitudes. For the NNC models, we observe both a decrease in channel variances and pattern magnitudes, and a decrease in their
CV in comparison to when ρ = 2. As for (E), the difference between LC and NNC can be attributed to the fact that LC only affects certain
stimulus directions, whereas the NNC as a global effect.
(J-L) Corresponds to Figs. 6I and J, Figs. S13K and L, and Figs. S14K and L. At ρ = 10, the channels are even more decorrelated than
at ρ = 10 as seen in the correlation matrices and the histograms. For the LC, some channels become anti-correlated.
(M-O) Corresponds to Figs. 6K and L, Figs. S13N and O, and Figs. S14N and O. At ρ = 10, the odor representations are even more
decorrelated than at ρ = 2 as seen in the correlation matrices and the histograms. This can particularly be observed for correlation
coefficients above 0.5, whose proportion is less than at ρ = 2.
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Fig. S17. Effect of removing LN-LN connections on the LC and NNC model.
We call LC’ and NNC’ the circuit models LC and NNC, which we trained on odor representations {x(t)}data, and which had subsequently
their LN-LN connections removed. This corresponds to setting off-diagonal values of M to 0. As mentioned in the text, for the LC, {z(t)}
is undetermined up to an orthogonal matrix UZ . Here we set UZ ̸= IK . If UZ = IK , the off-diagonal values of M are already 0
(Eq. (S104)), and thus this manipulation has no effect.
(A) Corresponds to Fig. 6A for the NNC’-4 and NNC’-8 (circuits with K = 4 and K = 8 LNs). Although the activity in LNs is rather similar,
it is less sparse. One can see activity in certain LNs when there was no activity in the NNC. This is because the LNs do not inhibit each
other anymore.
(B-C) Corresponds to Figs. 6C and D for the LC’-8 and NNC’-8 (circuits with K = 8 LNs). The first 8 PCA variances in LC’ in (A) do not
monotonically decrease as in LC. The variances of the PCA directions are smaller, demonstrating a stronger inhibition. The spread of
PCA variances is decreased in a similar way as for LC and NNC, showing that LC’ and NNC’ also perform a partial whitening.
(D-E) Corresponds to Fig. S12 for LC’-8 and NNC’-8. There is an increased mixture between the PCA directions of ORN somas
({x(t)}data) and axons ({y(t)}), in comparison with the LC and NNC models. This means that the cloud of representations is not anymore
compressed along the PCA directions of the input but along other linear combinations of PCA directions, which mixes the PCA directions.
(F) Correlation between the ORN soma {x(t)}data and ORN axon {y(t)} for LC-8 and LC’-8. In LC-8, the axons of each ORN is more
strongly correlated to its own soma for the LC-8 than for the LC’-8. This means that the neural representation at ORN axons is closer to
one in ORN somas for the LC than in NNC.
(G) Same as (E) for NNC-8 and NNC’-8. Similar observations as for NNC’ as for the LC’.
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Fig. S18. LNs in circuit models without LN-LN connections.
We call LC* and NNC* the circuit models with similar architecture as the LC and NNC models, but missing the LN-LN connections from
the start. This circuit corresponds to a different optimization problem (SI Appendix). This figure displays a similar analysis to Fig. 5.
(A) Transformation of the SD (σX , σY ) of PCA directions from ORN somas ({x(t)}) to ORN axons ({y(t)}) in the LC* model on a
logarithmic axis, for different values of ρ, which is related to the strength of inhibition. Different line colors represent different values of ρ.
For input SD smaller than 1/ρ, the output SD remain the same. For input SD larger than 1/ρ, the output SD becomes 1/ρ. When ρ = 0,
the output equals the input.
(B) Artificial dataset of odor representations in D = 2 ORN somas. The dataset was generated with two Gaussian clusters of 100 points
each centered at (2, 0.) and (0., 2) with SD = 0.3, taking the absolute value of each coordinate. Each row is the activity in one ORN
soma, each column is the representation by ORNs of one odor. This dataset is fed to the LC*-2 model (i.e., K = 2 LNs) (C, E) and the
NNC*-2 model (D, F), ρ = 1.
(C) Each row is the activity of one LN in the LC*-2. The LNs encode the activity of the ORNs. Because there is a manifold of solutions for
the LC*, LN activity can be any rotation of the activity depicted here, i.e., Q · z, where Q is a rotation (orthogonal) matrix.
(D) Each row is the activity of one LN in the NNC*-2. As one can see, the activity of the LN is virtually the same, meaning in this circuit,
the LNs do not perform clustering, and all are encoding the same signal.
(E) Scatter plot of the odor representation of dataset from (B) ({x(t)}, black) and the output at the level of ORN axons for the LC*-2
(magenta). Depicted the directions of the ORNs → LN synaptic weight vectors (wk) that correspond to the output in (C). A rotation of the
LN output {z(t)} would change the wk, but not the ORN axons output {y(t)}.
(F) Scatter plot of the odor representation of dataset from (B) ({x(t)}, black) and the output at the level of ORN axons for the NNC*-2
(blue). Note that the difference with LC* case is that all activities are nonnegative and the directions of both ORNs → LN synaptic weight
vectors (wk) overlap, thus not resulting in any clustering (as observed in (D)).
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Table S1. Abbreviations.

Abbreviation Meaning

ORN Olfactory Receptor Neuron
LN inhibitory Local Neuron
PN Projection Neuron, post-synaptic to ORNs
PCA Principal Component Analysis
ZCA Zero-phase PCA
SVD Singular Value Decomposition
BT Broad Trio, a type of LN
BD Broad Duet, a type of LN
KS Keystone, a type of LN
P0 Picky 0, a type of LN
LC Linear Circuit, a circuit model arising from the optimiza-

tion problem Eq. (4)
LC-K LC with K LNs
NNC NonNegative Circuit, a circuit model arising from the

optimization problem Eq. (4) with the activity in ORN
axons and LNs constrained to be nonnegative

NNC-K NNC with K LNs
SNMF Symmetric Nonnegative Matrix Factorization; e.g., (6, 7)
RCF Relative Cumulative Frequency function
FDR False Discovery Rate (9)
CV Coefficient of Variation: SD/mean
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Table S2. Mathematical symbols and variables.

Symbol /
Variable

Meaning Values

⊤ matrix transpose
Tr[·] matrix Trace: sum of the diagonal elements
E[·] Expectation value
RCFc(x) = 1

T

∑T

i=1
1[−1,x](ci): relative cumulative frequency function of a set

of correlation coefficients
0 ≤ RF Cc(x) ≤ 1

1A(y) indicator function of a given set A: 1A(y) = 1 if y ∈ A, and 1A(y) = 0
otherwise

0 or 1

r Pearson’s correlation coefficient −1 ≤ r ≤ 1
r+ = max[0, r] - rectified correlation coefficient 0 ≤ r ≤ 1
r+ average r+ - mean rectified correlation coefficient 0 ≤ r ≤ 1
D number of ORNs 21
K number of LNs in different circuit models from 1 to 8
wLN D dimensional column vector, containing the number of synapses in

parallel (synaptic counts) between each of the D ORNs and a specific
single LN

as in Berck et al., 2016 (1), see Fig. 1B

wLNtype = 1
n

∑
LN∈LNtype

wLN, D dimensional column vector, each entry is the
average synaptic count from an ORN onto a given LN type LNtype (which
contains n members); for Broad Trio - n = 6, Broad Duel - n = 4,
Keystone - n = 4, Picky 0 - n = 2.

calculated from Berck et al., 2016 (1), see
Fig. 1B

x(t) D dimensional column vector, representing the activity of ORN soma arbitrary
{x(t)} a set of T x(t), can refer to any (abstract) dataset arbitrary
{x(t)}data set of the 170 x(t) taken from the measurements (2), as the maximum

Ca2+fluorescence activation (2)
Si et al., 2019 (2)

y(t) D dimensional column vector, representing the activity of ORN axons
{y(t)} a set of T y(t)

z(t) K dimensional column vector, representing the activity of LNs
{z(t)} a set of T z(t)

Γ measure of alignment between 2 subspaces A and B 0 ≤ Γ ≤ min[dim(A), dim(B)]
p or pv p-value 0 ≤ p ≤ 1
T number of inputs/samples x(t) 170 for the Si et al., 2019 dataset (2), other-

wise arbitrary
wk D dimensional column vector, containing the synaptic weights between

each of the D ORNs and a specific single LN. Note that in the model,
the feedforward connection weight vectors are ρ2wk and the feedback
connection weight vectors are wk

usually arising from the model

W = [w1, ..., wK ], D × K matrix containing the (feedforward) synaptic
counts or synaptic weights between ORNs and LNs

either from Berck et al., 2016 (1) or from model
simulations

M = {mi,j}i,j=1...K , K × K matrix containing the synaptic counts or
synaptic weights between LNs; mi,i relates to the leak term of LN i

either from Berck et al., 2016 (1) or from model
simulations

ρ parameter of the circuit model, that encodes the strength of the feedback
inhibition relative to the feedforward excitation

in the simulations 0.1 ≤ ρ ≤ 10

γ parameter of the circuit model, that only scales the activity in LNs and the
synaptic weights, without affecting the nature of the computation

γ = 1 in the paper

u unit with the physical dimension as X, Y, and Z e.g., spikes · s−1

X = [x(1), ..., x(T )], D × T matrix of x(t) depends on the {x(t)} considered
Y = [y(1), ..., y(T )], D × T matrix of y(t)

Z = [z(1), ..., z(T )], D × T matrix of z(t)

A∗ the optimal A for the optimization problem, A can stand for Y, Z, W,
M, etc. The ∗ is often dropped in the text to simplify the notation when it
is clear that one is talking about the optimal solution and not the variable.
It is dropped in the results of the main text.

{ui}i=1...D D PCA directions of the uncentered dataset {x(t)}, corresponds to the
left singular vectors of the matrix X

depends on the {x(t)} considered

{σ2
X,i}i=1...D D PCA variances of the uncentered dataset {x(t)}, {σX,i}i=1...D

correspond to the square of the singular values of the matrix X
depends on the {x(t)} considered

{σ2
Y,i}i=1...D D PCA variances of the uncentered dataset {y(t)}, {σY,i}i=1...D cor-

respond to the square of the singular values of the matrix Y
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