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Abstract

Sequence memory is an essential attribute of natural and artificial intelligence that
enables agents to encode, store, and retrieve complex sequences of stimuli and
actions. Computational models of sequence memory have been proposed where
recurrent Hopfield-like neural networks are trained with temporally asymmetric
Hebbian rules. However, these networks suffer from limited sequence capacity
(maximal length of the stored sequence) due to interference between the memories.
Inspired by recent work on Dense Associative Memories, we expand the sequence
capacity of these models by introducing a nonlinear interaction term, enhancing
separation between the patterns. We derive novel scaling laws for sequence capacity
with respect to network size, significantly outperforming existing scaling laws for
models based on traditional Hopfield networks, verify these theoretical results with
numerical simulation, and demonstrate their usefulness in overlapping patterns.
Finally, we describe a biologically-plausible implementation, with connections to
motor neuroscience.

1 Introduction

The ability to recall sequences of memories is necessary for a large number of cognitive tasks with
temporal or causal structure, including navigation, reasoning, and motor control [1–9]. Computational
models have been proposed for how neural networks can encode sequence memory, ranging across a
wide range of biological plausibility [10, 1, 3, 11–20, 2, 21]. Many of these are based on the concept
of associative memory, where the Hopfield Network (HN) is the canonical model [22–24].

Unfortunately, a major limitation of the traditional Hopfield Network and related associative memory
models is its capacity: the number of memories it can store and reliably retrieve scales linearly
with the number of neurons in the network. This limitation is due to interference between different
memories during recall, also known as crosstalk, which decreases the signal-to-noise ratio and thus
the recall of incorrect local minima, which are undesired attractor states of the network commonly
referred to as spin glass states [25–28]. Recent modifications of the Hopfield Network, known
as Dense Associative Memories (DAMs) or Modern Hopfield Networks (MHNs), overcome this
limitation by introducing a strong nonlinearity when computing the overlap between the network
state and memories stored in the network [29, 30], leading to greater separation between partially
overlapping memories and thereby reducing crosstalk [31].
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Figure 1: SeqNet and Polynomial DenseNet (d = 2) are simulated with N = 300 neurons and
P = 100 patterns. One hundred curves are plotted as a function of time, each representing the
overlap of the network state at time t with one of the patterns, mµ = (1/N)

∑N
i=1 ξ

µ
i Si. Patterns

in the beginning and end of the sequence are shaded in yellow and red respectively). (A) SeqNet
quickly loses the correct sequence, indicated by the lack of alignment of the network state with the
correct pattern in the sequence (mµ ≪ 1). (B) The Polynomial DenseNet faithfully recalls the entire
sequence and maintains alignment with the correct pattern at any moment in time, mµ ≈ 1.

In order to adapt the HN to store sequences, one must utilize asymmetric weights to drive the network
from one memory to the next. Many models use temporally asymmetric Hebbian learning rules to
strengthen synaptic connections between neural activity at times t1 and t2, thereby learning temporal
association between patterns in a sequence [10, 1, 3, 11, 16, 17]. In this paper, we extend DAMs to
the setting of asymmetric weights to store and recall long sequences of memories. We find a close
match between theory and simulation, establish the ability of this model to store and recall sequences
of correlated patterns, and demonstrate the ability to robustly recall highly correlated patterns. Finally,
we describe applications of our network as a model of biological motor control.

2 DenseNets for Sequence Storage

We provide a high-level overview of the theory. Details, extensions, and comparisons with related
models provided in the full conference submission [32]. Assume that we want to store a sequence
of P patterns, {ξ1, . . . , ξµ}, where ξµj ∈ {±1} is the jth neuron of the µth pattern and the network
transitions from pattern ξµ to ξµ+1. Let N be the size of the network and S(t) ∈ {−1,+1}N be
the state of the network at time t. We want to design a network with dynamics such that when
initialized in pattern ξ1, it traverses the entire sequence. We define a network, SeqNet, which follows
a discrete-time synchronous update rule:

TSN (S)i := sgn

∑
j ̸=i

JijSj

 = sgn

[
P∑

µ=1

ξµ+1
i mµ

i

]
, mµ

i :=
1

(N − 1)

∑
j ̸=i

ξµj Sj , (1)

where S(t+ 1) = TSN (S) and Jij =
1
N

∑P
µ=1 ξ

µ+1
i ξµj is an asymmetric matrix connecting pattern

ξµ to ξµ+1. Note that we are excluding self-interaction terms i = j. We rewrite the dynamics
in terms of mµ

i , the overlap of the network state S with pattern ξµ. When the network is aligned
most closely with pattern ξµ, the overlap mµ

i is the largest contribution in the sum and pushes the
network to pattern ξµ+1. Overlap between patterns reduces the signal-to-noise ratio and thus limits
the capacity of the network, resulting in the SeqNet’s capacity to scale linearly relative to network
size. To overcome the capacity limitations of the SeqNet, we define the DenseNet update rule:

TDN (S)i := sgn

[
P∑

µ=1

ξµ+1
i f (mµ

i )

]
(2)

where f is a nonlinear, monotonically increasing interaction function.

To derive analytical results for the capacity, we must choose a distribution to generate the patterns.
As in studies of the capacity of the classic HN [33–36, 25, 27, 26, 28], we choose this to be the
Rademacher distribution, where ξµj ∈ {−1,+1}with equal probability for all neurons j in all patterns
µ, and calculate the capacity for different update rules. We consider both the robustness of a single
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Figure 2: The transition and sequence capacities are tested for DenseNets with polynomial and
exponential nonlinearities. 100 Sequences of P Rademacher-distributed patterns are generated,
the update rule is applied, and the amount of errors is calculated. Smaller sequences are tested
until there are no errors. Error bars are calculated by repeating this entire process for 20 different
initializations. As network size increases, cross-talk variance decreases and the theory become more
accurate, resulting in a tight match between theory (solid lines) and simulation (points with error
bars). Transition capacity, log10(PT ), is plotted on the left. Sequence capacity, log10(PS), is plotted
on the right. The theory curves are given by Equations 4 and 5.

transition, and the robustness of propagation through the full sequence. Letting P = P (N) such that
limN→∞ P (N) =∞, these capacities are defined by the conditions

lim
N→∞

P
[
TDN (ξµ) = ξµ+1

]
≥ 1− c, lim

N→∞
P

[
P⋂

µ=1

{TDN (ξµ) = ξµ+1}

]
≥ 1− c, (3)

for a fixed constant c ≥ 0. Note that the full sequence capacity is defined by demanding that all
transitions are correct. For perfect recall, we want the threshold c = 0. We define the single-transition
and full-sequence capacities, respectively, by the asymptotic threshold such that the left and right
limit conditions hold for values of P (N) that are asymptotically less than that threshold, and fail for
values of P (N) that are greater than the threshold.

2.1 Polynomial DenseNet

Consider the DenseNet with polynomial interaction function, f(x) = xd, which we will call the
Polynomial DenseNet. In Appendix A.1, we argue that this network’s single-transition capacity
scales as PT while its full-sequence capacity scales as PS :

PT ∼
Nd

2(2d− 1)!! log(N)
, PS ∼

Nd

2(d+ 1)(2d− 1)!! log(N)
. (4)

Note that the single-transition capacity scaling coincides with that of the symmetric MHN [29].

2.2 Exponential DenseNet

Consider the DenseNet with exponential interaction function, f(x) = e(N−1)(x−1), which we call
the Exponential DenseNet. In Appendix A.2, we argue that this network’s single-transition capacity
scales as PT while its full-sequence capacity scales as PS :

PT ∼
βN−1

2 logN
, PS ∼

βN−1

2 log(β)N
; β =

exp(2)

cosh(2)
≃ 1.964 . . . (5)

For smaller N , the cross-talk has non-negligible kurtosis in finite size networks leading to deviation
from Gaussian approximation.

Note that these scaling laws were derived under the assumption of i.i.d. Rademacher random patterns.
While theoretically convenient, this is unrealistic for real-world data. We test these models in a more
realistic setting by storing correlated sequences of patterns. To do so, we concatenate the entire
Moving MNIST dataset into a single sequence and simulate its recall with DenseNet with varying
nonlinearities [37]. The results are shown in Figure 3.
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Figure 3: Simulation of correlated patterns using
a 200000 image sequence from MovingMNIST.

Since biological neural networks must store se-
quence memories [5, 2, 6–8], one naturally asks
if these results can be generalized to biologically-
plausible neural networks. A straightforward bi-
ological interpretation of the DenseNet is prob-
lematic, as a network with polynomial interaction
function of degree d is equivalent to having a neu-
ral network with many-body synapses between
d+ 1 neurons. This is biologically unrealistic as
synaptic connections usually occur between two
neurons [38].

We take inspiration from earlier work by Krotov
and Hopfield [39] who reformulated a symmetric
MHN using two-body synapses by partitioning the
network into a bipartite graph with visible and hid-
den neurons [39]. Visible neurons corresponding
to the neurons in our network dynamics, Sj , are connected via weight matrix to hidden neurons
corresponding to overlap with individual memories stored within the network. Since we asymmetric
connections, we must instead define two sets of synaptic weights: Wjµ connects visible neuron vj to
hidden neuron hµ, Mµj connects hidden neuron hµ to visible neuron vj . This results in the same
dynamics as in Equation (2), with the nonlinearity absorbed into the hidden neurons’ dynamics.

Figure 4: Biologically-plausible implementation
of DenseNet as a bipartite network.

Finally, we note that this network is reminiscent
of recent computational models for motor action
selection and control via the cortico-basal ganglia-
thalamo-cortical loop, in which the basal ganglia
inhibits thalamic neurons that are bidirectionally
connected to a recurrent cortical network [40, 5].
This relates to our model as follows: the motor cor-
tex (visible neurons) executes an action, each tha-
lamic unit (hidden neurons) encodes a motor motif,
and the basal ganglia silences thalamic neurons
(external network modulating context). Thalamo-
cortical loops have also been found to be important
to song generation in zebra finches [41]. Thus, the
biological implementation of the DenseNet can
provide insight into how biological agents reliably
store and generate complex sequences.

4 Discussion and Future Directions

We introduced the DenseNet for the reliable storage and recall of long sequences of patterns, derived
the scaling of its single-transition and full-sequence capacity, and verified these results in numerical
simulation. We found that depending on the choice of nonlinear interaction function, the DenseNet
could scale polynomially or exponentially. For small Exponential DenseNets, we see that a large
amount kurtosis in the cross-talk distribution, leading to significant deviation between simulation and
theoretical results derived in the thermodynamic limit. We also tested the these models’ ability to
recall sequences of correlated patterns, by comparing the recall of a sequence of Moving MNIST
images using DenseNets with different nonlinearities. As expected, the networks’ reconstruction
capabilities increased with degree d and best results were achieved with the exponential nonlinearity.

In this work, we limited ourselves to theoretical analysis of discrete-time networks storing binary
patterns. An important direction for future research would be to go beyond the Gaussian theory in
order to develop accurate predictions of the Exponential DenseNet capacity. There are also many
potential avenues for extending these models and methods, including to continuous-time networks,
continuous-valued patterns, computing capacity for correlated patterns, testing different weight
functions, and examining different network topologies.

4



Acknowledgments and Disclosure of Funding

We thank Matthew Farrell, Shanshan Qin, and Sabarish Sainathan for useful discussions and com-
ments on earlier versions of our manuscript. HC was supported by the GFSD Fellowship, Harvard
GSAS Prize Fellowship, and Harvard James Mills Peirce Fellowship. JAZ-V and CP were supported
by NSF Award DMS-2134157 and NSF CAREER Award IIS-2239780. CP received additional
support from a Sloan Research Fellowship. This work has been made possible in part by a gift from
the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the Study of Natural
and Artificial Intelligence. The computations in this paper were run on the FASRC Cannon cluster
supported by the FAS Division of Science Research Computing Group at Harvard University.

References
[1] D Kleinfeld and H Sompolinsky. Associative neural network model for the generation of

temporal patterns. theory and application to central pattern generators. Biophysical Journal, 54
(6):1039–1051, 1988.

[2] Michael A. Long, Dezhe Z. Jin, and Michale S. Fee. Support for a synaptic chain model
of neuronal sequence generation. Nature, 468(7322):394–399, Nov 2010. ISSN 1476-4687.
doi:10.1038/nature09514. URL https://doi.org/10.1038/nature09514.

[3] Maxwell Gillett, Ulises Pereira, and Nicolas Brunel. Characteristics of sequential activity in
networks with temporally asymmetric Hebbian learning. Proceedings of the National Academy
of Sciences, 117(47):29948–29958, November 2020. doi:10.1073/pnas.1918674117.

[4] Stefano Recanatesi, Ulises Pereira-Obilinovic, Masayoshi Murakami, Zachary Mainen, and
Luca Mazzucato. Metastable attractors explain the variable timing of stable behavioral action
sequences. Neuron, 110(1):139–153, 2022.

[5] Luca Mazzucato. Neural mechanisms underlying the temporal organization of naturalistic
animal behavior. eLife, 11:e76577, 2022.

[6] Edmund T Rolls and Patrick Mills. The generation of time in the hippocampal memory system.
Cell Reports, 28(7):1649–1658, 2019.

[7] Alexander B. Wiltschko, Matthew J. Johnson, Giuliano Iurilli, Ralph E. Peterson, Jesse M.
Katon, Stan L. Pashkovski, Victoria E. Abraira, Ryan P. Adams, and Sandeep Robert Datta.
Mapping sub-second structure in mouse behavior. Neuron, 88(6):1121–1135, 2015. ISSN 0896-
6273. doi:https://doi.org/10.1016/j.neuron.2015.11.031. URL https://www.sciencedirect.
com/science/article/pii/S0896627315010375.

[8] Jeffrey E. Markowitz, Winthrop F. Gillis, Maya Jay, Jeffrey Wood, Ryley W. Harris, Robert
Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, Caleb Weinreb,
Mohammed Abdal Monium Osman, Sandra Romero Pinto, Naoshige Uchida, Scott W. Lin-
derman, Bernardo L. Sabatini, and Sandeep Robert Datta. Spontaneous behaviour is struc-
tured by reinforcement without explicit reward. Nature, 614(7946):108–117, Feb 2023.
ISSN 1476-4687. doi:10.1038/s41586-022-05611-2. URL https://doi.org/10.1038/
s41586-022-05611-2.

[9] Cengiz Pehlevan, Farhan Ali, and Bence P Ölveczky. Flexibility in motor timing constrains the
topology and dynamics of pattern generator circuits. Nature communications, 9(1):977, 2018.
doi:https://doi.org/10.1038/s41467-018-03261-5.

[10] H. Sompolinsky and I. Kanter. Temporal Association in Asymmetric Neural Networks. Physical
Review Letters, 57(22):2861–2864, December 1986. doi:10.1103/PhysRevLett.57.2861.

[11] Zijian Jiang, Ziming Chen, Tianqi Hou, and Haiping Huang. Spectrum of non-
Hermitian deep-Hebbian neural networks. Physical Review Research, 5:013090, Feb 2023.
doi:10.1103/PhysRevResearch.5.013090. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.5.013090.

[12] Ulises Pereira and Nicolas Brunel. Unsupervised learning of persistent and sequential activity.
Frontiers in Computational Neuroscience, 13:97, 2020.

5

https://doi.org/10.1038/nature09514
https://doi.org/10.1038/nature09514
https://doi.org/10.1073/pnas.1918674117
https://doi.org/https://doi.org/10.1016/j.neuron.2015.11.031
https://www.sciencedirect.com/science/article/pii/S0896627315010375
https://www.sciencedirect.com/science/article/pii/S0896627315010375
https://doi.org/10.1038/s41586-022-05611-2
https://doi.org/10.1038/s41586-022-05611-2
https://doi.org/10.1038/s41586-022-05611-2
https://doi.org/https://doi.org/10.1038/s41467-018-03261-5
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevResearch.5.013090
https://link.aps.org/doi/10.1103/PhysRevResearch.5.013090
https://link.aps.org/doi/10.1103/PhysRevResearch.5.013090


[13] Christian Leibold and Richard Kempter. Memory capacity for sequences in a recurrent network
with biological constraints. Neural Computation, 18(4):904–941, 2006.

[14] Jeff Hawkins, Dileep George, and Jamie Niemasik. Sequence memory for prediction, inference
and behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 364
(1521):1203–1209, 2009.

[15] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of
sequence memory in neocortex. Frontiers in Neural Circuits, page 23, 2016.

[16] Daniel J Amit. Neural networks counting chimes. Proceedings of the National Academy of
Sciences, 85(7):2141–2145, 1988.

[17] H. Gutfreund and M. Mezard. Processing of temporal sequences in neural networks. Phys.
Rev. Lett., 61:235–238, Jul 1988. doi:10.1103/PhysRevLett.61.235. URL https://link.aps.
org/doi/10.1103/PhysRevLett.61.235.

[18] Kanaka Rajan, Christopher D. Harvey, and David W. Tank. Recurrent network models
of sequence generation and memory. Neuron, 90(1):128–142, 2016. ISSN 0896-6273.
doi:https://doi.org/10.1016/j.neuron.2016.02.009. URL https://www.sciencedirect.com/
science/article/pii/S0896627316001021.

[19] Markus Diesmann, Marc-Oliver Gewaltig, and Ad Aertsen. Stable propagation of synchronous
spiking in cortical neural networks. Nature, 402(6761):529–533, Dec 1999. ISSN 1476-4687.
doi:10.1038/990101. URL https://doi.org/10.1038/990101.

[20] Nicholas F Hardy and Dean V Buonomano. Neurocomputational models of interval and
pattern timing. Current Opinion in Behavioral Sciences, 8:250–257, 2016. ISSN 2352-1546.
doi:https://doi.org/10.1016/j.cobeha.2016.01.012. URL https://www.sciencedirect.com/
science/article/pii/S2352154616300195. Time in perception and action.

[21] Dina Obeid, Jacob A. Zavatone-Veth, and Cengiz Pehlevan. Statistical structure of
the trial-to-trial timing variability in synfire chains. Phys. Rev. E, 102:052406, Nov
2020. doi:10.1103/PhysRevE.102.052406. URL https://link.aps.org/doi/10.1103/
PhysRevE.102.052406.

[22] S-I Amari. Learning patterns and pattern sequences by self-organizing nets of threshold elements.
IEEE Transactions on computers, 100(11):1197–1206, 1972.

[23] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

[24] John J Hopfield. Neurons with graded response have collective computational properties like
those of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092,
1984.

[25] John Hertz, Anders Krogh, and Richard G Palmer. Introduction to the theory of neural
computation. CRC Press, 2018.

[26] Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Spin-glass models of neural
networks. Physical Review A, 32(2):1007, 1985.

[27] Daniel J. Amit, Hanoch Gutfreund, and H. Sompolinsky. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Phys. Rev. Lett., 55:1530–1533, Sep
1985. doi:10.1103/PhysRevLett.55.1530. URL https://link.aps.org/doi/10.1103/
PhysRevLett.55.1530.

[28] Daniel J Amit, Hanoch Gutfreund, and H Sompolinsky. Statistical mechanics of neu-
ral networks near saturation. Annals of Physics, 173(1):30–67, 1987. ISSN 0003-4916.
doi:https://doi.org/10.1016/0003-4916(87)90092-3. URL https://www.sciencedirect.
com/science/article/pii/0003491687900923.

[29] Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recognition.
Advances in Neural Information Processing Systems, 29, 2016.

6

https://doi.org/10.1103/PhysRevLett.61.235
https://link.aps.org/doi/10.1103/PhysRevLett.61.235
https://link.aps.org/doi/10.1103/PhysRevLett.61.235
https://doi.org/https://doi.org/10.1016/j.neuron.2016.02.009
https://www.sciencedirect.com/science/article/pii/S0896627316001021
https://www.sciencedirect.com/science/article/pii/S0896627316001021
https://doi.org/10.1038/990101
https://doi.org/10.1038/990101
https://doi.org/https://doi.org/10.1016/j.cobeha.2016.01.012
https://www.sciencedirect.com/science/article/pii/S2352154616300195
https://www.sciencedirect.com/science/article/pii/S2352154616300195
https://doi.org/10.1103/PhysRevE.102.052406
https://link.aps.org/doi/10.1103/PhysRevE.102.052406
https://link.aps.org/doi/10.1103/PhysRevE.102.052406
https://doi.org/10.1103/PhysRevLett.55.1530
https://link.aps.org/doi/10.1103/PhysRevLett.55.1530
https://link.aps.org/doi/10.1103/PhysRevLett.55.1530
https://doi.org/https://doi.org/10.1016/0003-4916(87)90092-3
https://www.sciencedirect.com/science/article/pii/0003491687900923
https://www.sciencedirect.com/science/article/pii/0003491687900923


[30] Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a
model of associative memory with huge storage capacity. Journal of Statistical Physics, 168(2):
288–299, July 2017. ISSN 0022-4715, 1572-9613. doi:10.1007/s10955-017-1806-y.

[31] Dmitry Krotov. A new frontier for hopfield networks. Nature Reviews Physics, pages 1–2, 2023.

[32] Hamza Tahir Chaudhry, Jacob A Zavatone-Veth, Dmitry Krotov, and Cengiz Pehlevan. Long
sequence hopfield memory. arXiv preprint arXiv:2306.04532, 2023.

[33] Dimitri Petritis. Thermodynamic formalism of neural computing. In Eric Goles and Servet
Martínez, editors, Dynamics of Complex Interacting Systems, pages 81–146. Springer Nether-
lands, Dordrecht, 1996. doi:10.1007/978-94-017-1323-8_3. URL https://doi.org/10.
1007/978-94-017-1323-8_3.

[34] Anton Bovier. Sharp upper bounds on perfect retrieval in the Hopfield model. Journal of
Applied Probability, 36(3):941–950, 1999. doi:10.1239/jap/1032374647.

[35] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the Hopfield associative
memory. IEEE Transactions on Information Theory, 33(4):461–482, July 1987. ISSN 0018-
9448. doi:10.1109/TIT.1987.1057328.

[36] G. Weisbuch and F. Fogelman-Soulié. Scaling laws for the attractors of Hopfield networks.
J. Physique Lett., 46(14):623–630, 1985. doi:10.1051/jphyslet:019850046014062300. URL
https://doi.org/10.1051/jphyslet:019850046014062300.

[37] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of
video representations using lstms. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 843–852, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/srivastava15.html.

[38] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth,
Sarah Mack, et al. Principles of neural science. McGraw-hill New York, 6 edition, 2021.

[39] Dmitry Krotov and John J. Hopfield. Large associative memory problem in neurobiology
and machine learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=X4y_10OX-hX.

[40] Laureline Logiaco, LF Abbott, and Sean Escola. Thalamic control of cortical dynamics in a
model of flexible motor sequencing. Cell Reports, 35(9):109090, 2021.

[41] Felix W. Moll, Devorah Kranz, Ariadna Corredera Asensio, Margot Elmaleh, Lyn A. Ackert-
Smith, and Michael A. Long. Thalamus drives vocal onsets in the zebra finch courtship song.
Nature, 616(7955):132–136, Apr 2023. ISSN 1476-4687. doi:10.1038/s41586-023-05818-x.
URL https://doi.org/10.1038/s41586-023-05818-x.

[42] John E. Kolassa. Series Approximation Methods in Statistics. Springer New York, 1997.
doi:10.1007/978-1-4757-4277-0. URL https://doi.org/10.1007/978-1-4757-4277-0.

S1

https://doi.org/10.1007/s10955-017-1806-y
https://doi.org/10.1007/978-94-017-1323-8_3
https://doi.org/10.1007/978-94-017-1323-8_3
https://doi.org/10.1007/978-94-017-1323-8_3
https://doi.org/10.1239/jap/1032374647
https://doi.org/10.1109/TIT.1987.1057328
https://doi.org/10.1051/jphyslet:019850046014062300
https://doi.org/10.1051/jphyslet:019850046014062300
https://proceedings.mlr.press/v37/srivastava15.html
https://openreview.net/forum?id=X4y_10OX-hX
https://doi.org/10.1038/s41586-023-05818-x
https://doi.org/10.1038/s41586-023-05818-x
https://doi.org/10.1007/978-1-4757-4277-0
https://doi.org/10.1007/978-1-4757-4277-0


A DenseNet Capacity

In this Appendix, we analyze the capacity of the DenseNet. As introduced in Section 2 of the main
text, there are two notions of robustness to consider: the robustness of a single transition and the
robustness of the full sequence, which we determine based on the conditions

lim
N,P→∞

P
[
TDN (ξµ) = ξµ+1

]
≥ 1− c (A.1)

and

lim
N,P→∞

P

[
P⋂

µ=1

{TDN (ξµ) = ξµ+1}

]
≥ 1− c, (A.2)

respectively, for a fixed constant c ≥ 0.

Following Petritis [33]’s approach to the HN, to make analytical progress, we can use a union bound
to control the single-step error probability in terms of the probability of a single bitflip:

P
[
TDN (ξµ) = ξµ+1

]
= 1− P

[
N⋃
i=1

{TDN (ξµ)i ̸= ξµ+1
i }

]
(A.3)

≥ 1−
N∑
i=1

P
[
TDN (ξµ)i ̸= ξµ+1

i

]
(A.4)

= 1−NP[TDN (ξ1)1 ̸= ξ12 ]. (A.5)

where we use the fact that all elements of all patterns are i.i.d. by assumption. We use a similar
approach to control the sequence error probability in terms of the probability of a single bitflip:

P

[
P⋂

µ=1

{TDN (ξµ) = ξµ+1}

]

= 1− P

[
P⋃

µ=1

N⋃
i=1

{TDN (ξµ)i ̸= ξµ+1
i }

]
(A.6)

≥ 1−
P∑

µ=1

N∑
i=1

P
[
TDN (ξµ)i ̸= ξµ+1

i

]
(A.7)

= 1−NPP[TDN (ξ1)1 ̸= ξ12 ]. (A.8)

Thus, if

lim
N,P→∞

NP[TDN (ξ1)1 ̸= ξ21 ] ≤ c =⇒ lim
N,P→∞

P[TDN (ξµ) = ξµ+1] ≥ 1− c, (A.9)

while the stronger condition guarantees

lim
N,P→∞

NPP[TDN (ξ1)1 ̸= ξ21 ] ≤ c =⇒ lim
N,P→∞

P[∪Pµ=1{TDN (ξµ) = ξµ+1}] ≥ 1− c. (A.10)

As introduced in the main text, for perfect recall, we want to take the threshold c = 0. If the condition
(A.9) holds for all P = P (N) such that limN→∞ P (N)/PT (N) ≤ 1 and fails for all P (N) such
that limN→∞ P (N)/PT (N) > 1, we say that PT = PT (N) is the single-transition capacity of
the network. Similarly, if (A.10) holds for all P = P (N) such that limN→∞ P (N)/PS(N) ≤ 1
and fails for all P (N) such that limN→∞ P (N)/PS(N) > 1, we say that PS = PS(N) is the full
sequence capacity of the network. The capacities estimated through this argument are lower bounds
on the true capacities, as they are obtained from lower bounds on the true recall probability. However,
we expect for these bounds to in fact be tight in the thermodynamic limit [33, 34].

By the definition of the DenseNet update rule with interaction function f given in Equation (2), we
have

TDN (ξ1)1 = sgn

 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (A.11)
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and therefore the single-bitflip probability is

P[TDN (ξ1)1 ̸= ξ21 ] = P

sgn
 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 ̸= ξ21

 (A.12)

= P

ξ21 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < 0

 (A.13)

= P

f(1) + ξ21

P∑
µ=2

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < 0

 (A.14)

For both the polynomial (f(x) = xd) and exponential (f(x) = e(N−1)(x−1)) interaction functions,
f(1) = 1, and so

P[TDN (ξ1)1 ̸= ξ21 ] = P

 P∑
µ=2

ξ21ξ
µ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < −1

 . (A.15)

We refer to the random variable

C =

P∑
µ=2

ξ21ξ
µ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (A.16)

on the left-hand-side of this inequality as the crosstalk, because it represents the effect of interference
between the first pattern and all other patterns [25, 36].

We now observe that, as we have excluded self-interactions (i.e., the sum over neurons inside the
interaction function does not include j = 1), we can use the periodic boundary conditions to shift
indices as ξµ1 ← ξµ+1

1 for all µ, yielding

C
d
=

P∑
µ=2

ξ11ξ
µ
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (A.17)

Thus, the single-bitflip probability for this DenseNet is identical to that for the corresponding MHN
with symmetric interactions. Then, we can use the fact that ξµj ξ

1
j

d
= ξµj for all µ = 2, . . . , P to obtain

C
d
=

P∑
µ=2

ξµ1 f

 1

N − 1

N∑
j=2

ξµj

 < −1. (A.18)

Now, define the P − 1 random variables

χµ = ξµ1 f

 1

N − 1

N∑
j=2

ξµj

 (A.19)

for µ = 2, . . . , P , such that the crosstalk is their sum,

C =

P∑
µ=2

χµ. (A.20)

As the patterns ξµj are i.i.d., χµ are i.i.d. random variables of mean

E[χµ] = E[ξµ1 ]E

f
 1

N − 1

N∑
j=2

ξµj

 = 0 (A.21)
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and variance

var(χµ) = E

f
 1

N − 1

N∑
j=2

ξµj

2
 , (A.22)

which is bounded from above for any sensible interaction function. We observe also that the
distribution of each χµ is symmetric because of the symmetry of the distribution of ξµ1 . We will
therefore simply write χ for any given χµ.

Then, the classical central limit theorem implies that the crosstalk tends in distribution to a Gaussian
of mean zero and variance (P − 1) var(χ) as P → ∞, at lease for any fixed N . However, we are
interested in the joint limit in which N,P → ∞ together. We will proceed by approximating the
distribution of C as Gaussian, and will not attempt to rigorously control its behavior in the joint limit.

Approximating the distribution of the crosstalk for N,P ≫ 1 by a Gaussian, we then have

P[TDN (ξ1)1 ̸= ξ21 ] ≈ H

(
1√

(P − 1) var(χ)

)
(A.23)

where H(x) = erfc(x/
√
2)/2 is the Gaussian tail distribution function. We want to have

P[TDN (ξ1)1 ̸= ξ21 ] → 0, so we must have (P − 1) var(χ) → 0. Then, we can use the asymp-
totic expansion [25]

H(
√
z) =

1√
2πz

exp
(
−z

2

)[
1 +O

(
1

z

)]
as z →∞ (A.24)

to obtain

P[TDN (ξ1)1 ̸= ξ21 ] ≈
√

(P − 1) var(χ)

2π
exp

(
− 1

2(P − 1) var(χ)

)
. (A.25)

For each model, we can evaluate var(χ) and then determine the resulting predicted capacity.

Our first check on the accuracy of the Gaussian approximation will be comparison of the resulting
predictions for capacity with numerical experiment. As another diagnostic, we will consider the
excess kurtosis κ = κ4(C)/κ2(C) for κn(C) the n-th cumulant of C. If the distribution is indeed
Gaussian, the excess kurtosis vanishes, while large values of the excess kurtosis indicate deviations
from Gaussianity [42]. By the additivity of cumulants, we have

κn(C) = (P − 1)κn(χ). (A.26)

By symmetry, all odd cumulants of χ—and therefore all odd cumulants of C—are identically zero.
As noted above, we have

var(χ) = κ2(χ) = E

f
 1

N − 1

N∑
j=2

ξµj

2
 . (A.27)

If C is indeed Gaussian, then all cumulants above the second should vanish. As the third cumulant
vanishes by symmetry, the leading possible correction to Gaussianity is the fourth cumulant, which
as χ has zero mean is given by

κ4(χ) = E[(χ)4]− 3E[(χ)2] (A.28)

= E

f
 1

N − 1

N∑
j=2

ξµj

4
− 3E

f
 1

N − 1

N∑
j=2

ξµj

2

2

. (A.29)

Rather than considering the fourth cumulant directly, we will consider the excess kurtosis

κ =
κ4(C)

κ2(C)2
=

1

P − 1

κ4(χ)

κ2(χ)2
, (A.30)

which is a more useful metric because it is normalized.
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A.1 Polynomial DenseNet Capacity

We first consider the Polynomial DenseNet, with interaction function f(x) = xd for d ∈ N>0. To
compute the capacity, our goal is then to evaluate

var(χ) = E


 1

N − 1

N∑
j=2

ξ1j

2d
 (A.31)

at large N . From the central limit theorem, we expect

E


 1

N − 1

N∑
j=2

ξ1j

2d
 ∼ (2d− 1)!!

(N − 1)d
. (A.32)

We can make this quantitatively precise through the following straightforward argument. Let

Ξ =
1√

N − 1

N∑
j=2

ξ2j . (A.33)

We then have immediately that the moment generating function of Ξ is

M(t) = E[etΞ] = cosh

(
t√

N − 1

)N−1

, (A.34)

hence the cumulant generating function is

K(t) = logM(t) = (N − 1) log cosh

(
t√

N − 1

)
. (A.35)

The function x 7→ log cosh(x) is an even function of x, and is analytic near the origin, with the first
few orders of its MacLaurin series being

log cosh(x) =
x2

2
− x4

12
+O(x6). (A.36)

Then, the odd cumulants of Ξ vanish—as we expect from symmetry—while the even cumulants obey

κ2k =
C2k

(N − 1)k−1
(A.37)

for combinatorial factors C2k that do not scale with N . We have, in particular, C2 = 1 and C4 = −2.
By the moments-cumulants formula, we have

E[Ξ2k] = B2k(0, κ2, 0, κ4, · · · , κ2k) (A.38)

for B2k the 2k-th complete exponential Bell polynomial. From this, it follows that

E[Ξ2k] = (2k − 1)!! +O(N−1), (A.39)

as all cumulants other than κ2 = 1 are O(N−1). Therefore, neglecting subleading terms, we have

var(χ) = E


 1

N − 1

N∑
j=2

ξ1j

2d
 =

(2d− 1)!!

Nd

[
1 +O

(
1

N

)]
. (A.40)

Following the general arguments above, we then approximate

P[TDN (ξ1)1 ̸= ξ21 ] ∼
√

P (2d− 1)!!

2πNd
exp

(
− Nd

2P (2d− 1)!!

)
. (A.41)
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To determine the single-transition capacity following the argument in Section 2, we must determine
how large we can take P = P (N) such that NP[TDN (ξ1)1 ̸= ξ21 ]→ 0. Following the requirement
that P var(χ)→ 0, we make the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(A.42)

for some α. We then have

NP[TDN (ξ1)1 ̸= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (A.43)

This tends to zero if α ≥ 2, meaning that the predicted capacity in this case is

PT ∼
Nd

2(2d− 1)!! logN
. (A.44)

We now want to determine the sequence capacity, which requires the stronger condition
NPP[TDN (ξ1)1 ̸= ξ21 ]→ 0. Again making the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(A.45)

for some α, we then have

NPP[TDN (ξ1)1 ̸= ξ21 ] ∼
1√

2π(2d− 1)!! (α logN)3/2
Nd+1−α/2, (A.46)

which tends to zero if α ≥ 2d+ 2. Then, the predicted sequence capacity is

PS ∼
Nd

2(d+ 1)(2d− 1)!! logN
. (A.47)

Using the Gaussian approximation for moments of χ given above, we can easily work out that

κ4(χ) = E[(χ)4]− 3E[(χ)2] (A.48)

= E

f
 1

N − 1

N∑
j=2

ξµj

4
− 3E

f
 1

N − 1

N∑
j=2

ξµj

2

2

(A.49)

=
1

N2d
{(4d− 1)!!− 3[(2d− 1)!!]2}

[
1 +O

(
1

N

)]
. (A.50)

Then, the excess kurtosis of the Polynomial DenseNet’s crosstalk is

κ =
1

P − 1

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
. (A.51)

Thus, for the Polynomial DenseNet, we expect the excess kurtosis to be small for any fixed d so
long as P and N are both fairly large, without any particular requirement on their relationship. In
particular, under the Gaussian approximation we predicted above that the transition and sequence
capacities should both scale as

P ∼ Nd

αd logN
, (A.52)

where αd depends on d but not on N . This gives an excess kurtosis of

κ =
αd logN

Nd

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
(A.53)

which for any fixed d rapidly tends to zero with increasing N . This suggests that the Gaussian
approximation should be reasonably accurate even at modest N , but of course does not constitute a
proof of its accuracy because we have not considered higher cumulants. However, this matches the
results of numerical simulations shown in Figure 2.
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A.2 Exponential DenseNet capacity

We now turn our attention to the Exponential DenseNet, with separation function f(x) =
e(N−1)(x−1). In this case, we have

var(χ) = exp[−2(N − 1)]E

exp
2

N∑
j=2

ξ2j

 (A.54)

= exp[−2(N − 1)]

N∏
j=2

E
[
exp

(
2ξ2j
)]

(A.55)

= exp[−2(N − 1)] cosh(2)N−1 (A.56)

=
1

βN−1
, (A.57)

where we have defined the constant

β =
exp(2)

cosh(2)
≃ 1.96403. (A.58)

Then, we have the Gaussian approximation

P[TDN (ξ1)1 ̸= ξ21 ] ∼

√
P

2πβN−1
exp

(
−βN−1

2P

)
. (A.59)

As in the polynomial case, we first determine the single-transition capacity by demanding that
NP[TDN (ξ1)1 ̸= ξ21 ]→ 0. We plug in the Ansatz

P ∼ βN−1

α logN
(A.60)

for some α, which yields

NP[TDN (ξ1)1 ̸= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (A.61)

This tends to zero if α ≥ 2, which gives a predicted capacity of

PT ∼
βN−1

2 logN
. (A.62)

Considering the sequence capacity, which again requires that NPP[TDN (ξ1)1 ̸= ξ21 ]→ 0, we plug
in the Ansatz

P ∼ βN−1

αN
, (A.63)

which yields

NPP[TDN (ξ1)1 ̸= ξ21 ] ∼
1

αβ

√
1

2παN
exp

[(
log β − α

2

)
N
]
. (A.64)

This tends to zero for α ≥ 2 log β, meaning that the predicted capacity is in this case

PS ∼
βN−1

2 log(β)N
. (A.65)

Therefore, while the ratio of the predicted single-transition to sequence capacities is finite for the
Polynomial DenseNet—it is simply PS/PT ∼ d + 1—for the Exponential DenseNet it tends to
zero as PS/PT ∼ logN/[log(β)N ].

Now considering the fourth cumulant, we can easily compute

κ4(χ) =

(
cosh(4)

exp(4)

)N−1

− 3

(
cosh(2)2

exp(4)

)N−1

, (A.66)
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which yields an excess kurtosis of

κ =
1

P − 1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
. (A.67)

For this to be small, P must be exponentially large in N , which contrasts with the situation for
the Polynomial DenseNet, in which the excess kurtosis is small for any reasonably large P . If we
consider taking

P ∼ βN−1

α logN
, (A.68)

for a constant α, as the Gaussian theory predicts for the Exponential DenseNet transition capacity,
we have

κ ∼ α logN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(A.69)

∼ α logN

(
cosh(4)

exp(2) cosh(2)

)N−1

(A.70)

≃ α log(N)(0.9823)N−1. (A.71)

This tends to zero as N increases, but only very slowly. In particular, log(N)(0.9823)N−1 increases
with N up to around N ≃ 19, where it attains a maximum value around 2, before decreasing towards
zero. The situation is even worse for the sequence capacity, for which the Gaussian theory predicts

P ∼ βN−1

αN
, (A.72)

yielding

κ ∼ αN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(A.73)

∼ αN

(
cosh(4)

exp(2) cosh(2)

)N−1

(A.74)

≃ αN(0.9823)N−1. (A.75)

N(0.9823)N−1 increases with N up to around N ≃ 56, where it attains a value of approximately 21.

Taken together, these results suggest that we might expect substantial finite-size corrections to the
Gaussian theory’s prediction for the capacity. In particular, as the excess kurtosis of the crosstalk is
positive, the tails of the crosstalk distribution should be heavier-than-Gaussian, suggesting that the
Gaussian theory should overestimate the true capacity. This holds provided that the lower bound on
the memorization probability resulting from the union bound is reasonably tight.
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