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Abstract

For animals to navigate an uncertain world, their brains need to estimate uncer-
tainty at the timescales of sensations and actions. Sampling-based algorithms
afford a theoretically-grounded framework for probabilistic inference in neural
circuits, but it remains unknown how one can implement fast sampling algorithms
in biologically-plausible spiking networks. Here, we propose to leverage the
population geometry, controlled by the neural code and the neural dynamics, to
implement fast samplers in spiking neural networks. We first show that two classes
of spiking samplers—efficient balanced spiking networks that simulate Langevin
sampling, and networks with probabilistic spike rules that implement Metropolis-
Hastings sampling—can be unified within a common framework. We then show
that careful choice of population geometry, corresponding to the natural space of
parameters, enables rapid inference of parameters drawn from strongly-correlated
high-dimensional distributions in both networks. Our results suggest design prin-
ciples for algorithms for sampling-based probabilistic inference in spiking neural
networks, yielding potential inspiration for neuromorphic computing and testable
predictions for neurobiology.

1 Introduction

Neural circuits perform probabilistic computations at the sensory, motor and cognitive levels [1–4].
From abstract representations of decision confidence [5] to estimates of sensory uncertainty in visual
cortex [6, 7], evidence of probabilistic representations can be found at all levels of the cortical
processing hierarchy [8]. To be behaviorally useful, these probabilistic computations must occur
at the speed of perception [9]. However, how neuronal dynamics allow brain circuits to represent
uncertainty in high-dimensional spaces at perceptual timescales remains unknown [3, 10–12].

Several neural architectures for probabilistic computation have been proposed, including: probabilistic
population codes [13], which in certain cases allow a direct readout of uncertainty; direct encoding of
metacognitive variables, such as decision confidence [4, 5, 8]; doubly distributional codes [14, 15]
which distinguish uncertainty from multiplicity; and sampling-based codes [9, 16–25], where the
variability in neural dynamics corresponds to a signature of exploration of the posterior probability.
Most experiments quantifying uncertainty representations in single biological neurons have only
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Figure 1: Probabilistic inference in spiking neural networks. a. Circuit diagram. b. Langevin
sampling in Euclidean space and natural space. c. Geometry of the inference space in (b). Arrows
indicate the principal directions of the sampling noise covariance. d. Comparison of Langevin and
Metropolis-Hastings sampling algorithms.

varied parameters along one or two dimensions, such as in Bayesian cue combination [2, 10, 26].
In these conditions, many algorithms can perform adequately. However, probabilistic inference
becomes more challenging as the entropy of the posterior distribution—which often scales with
dimensionality—increases [27, 28]. Some algorithms that work well in low dimensions, such as
probabilistic population codes, may scale poorly to high-dimensional settings [3].

Of the proposed approaches to probabilistic computation in neural networks, sampling-based codes are
grounded in the strongest theoretical framework [27, 29–33], and have been used to perform inference
at scale [34–36]. Moreover, they predict specific properties of neural responses in visual cortex,
including changes in Fano factor and frequency of oscillations with tuning and stimulus intensity [23].
Previous works have proposed several approaches to accelerate sampling in biologically-inspired
algorithms. Hennequin et al. [9] showed that adding non-reversible dynamics to rate networks can
reduce the sample autocorrelation time. However, they did not study convergence of the sampling
distribution, and did not consider the biologically-relevant setting of spiking networks. Savin and
Denève [20] used a distributed code to parallelize sampling in spiking networks, but only considered
two-dimensional distributions. Therefore, it remains unclear how accurate sampling from high-
dimensional distributions at behaviorally-relevant timescales can be achieved using spiking networks.

In this paper, we show how the choice of the geometry of neural representations at the population level
[37, 38], set by the neural code and the neural dynamics, can accelerate sampling-based inference
in spiking neural networks. Ideas from information geometry allow us to perform inference in the
natural space of parameters, which is a manifold with distances measured by the Fisher-Rao metric
(Figure 1.c) [39–42]. Concretely, we leverage recently-proposed methods for accelerating sampling
from the machine learning literature [28, 42–44] to design novel efficient samplers in spiking neural
networks. The structure and major contributions of this paper are divided as follows:

• In §2, we construct from first principles a novel spiking neural network model for sampling
from multivariate Gaussian distributions. This model is based on a probabilistic spike rule that
implements approximate Metropolis-Hastings sampling. We show that efficient balanced networks
(EBNs) [20, 45–49] emerges as a limit of this model in which spiking becomes deterministic.

• In §3, we show that population geometry enables rapid sampling in spiking networks. Leveraging
the “complete recipe” for stochastic gradient MCMC [43], we establish principles for the design
of efficient samplers in spiking neural networks. Then, we show how neural population geometry
enables fast sampling—on the timescale of tens of milliseconds—in two limits of the model
introduced in §2: EBNs in which sampling is driven by stochastic Langevin dynamics [20], and
networks in which sampling is driven purely by a Metropolis-Hastings probabilistic spiking rule.

• Finally, in §4 we conclude by discussing the implications of our results in the context of prior works,
and highlight their limitations as well as remaining open questions. In particular, we comment
on possibilities for future experimental studies of sampling in biological spiking networks, and
applications to neuromorphic computing.

2 Spiking networks for sampling-based probabilistic inference

We begin by proposing a framework for probabilistic inference in spiking neural networks in which
the spiking rule implements a Metropolis-Hastings step. We show that EBNs [20, 45–49] can be
recovered as a limiting case of this more general framework.
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In this work, we will keep our discussion quite general, and state our results for sampling from
a generic Gaussian distribution. However, the problem we aim to solve can be given a concrete
interpretation in a neuroscience context, and could also be extended to non-Gaussian distributions.
The goal of a neural network performing probabilistic inference is to estimate a posterior distribution
P (θ|x) over np latent variables (or parameters) θ given an input x (Figure 1). The input could
correspond to the activity of sensory neurons in early sensory processing (e.g. input onto ganglion
cells in the retina or onto mitral cells in the olfactory bulb) or inputs into a cortical column that
linearly sense features in the environment through an affinity matrix. We provide a detailed discussion
of this linear Gaussian model in Appendix C. In the rest of the paper, we will usually abbreviate the
distribution from which we want to sample as P (θ), rather than writing P (θ|x).

2.1 Deriving an approximate Metropolis-Hasting spiking sampler

We will build a network of nn spiking neurons to approximately sample an np-dimensional Gaussian
distribution of time-varying mean θ(t) and fixed covariance Ψ. We first consider the case in which θ
is constant, and then generalize the resulting algorithm to the case in which it is slowly time-varying.

As in prior work on probabilistic inference using spiking networks, we take the samples z to be
linearly decoded from the filtered spike trains r of nn neurons [20, 45–49]. Working in discrete time
for convenience and clarity (as in [48]), we let

zt = Γrt, where rt = (1− η)rt−1 + ot (1)

is the low-pass filtered history of spikes ot ∈ {0, 1}nn for some decay constant 0 ≤ η ≤ 1.

Metropolis-Hastings sampling constructs a Markov chain by drawing a proposed next state from some
distribution, and then deciding whether to accept or reject that proposal based on a probabilistic rule
[27, 50]. The acceptance ratio is given in terms of the relative posterior probability of the proposed
and current states. Here, we will randomly propose which neuron spikes at a given timestep.

In trying to build a Metropolis-Hastings sampler [27, 50] using a probabilistic spiking rule, we are
immediately faced with two problems. First, the spikes are sign-constrained and discrete. Second,
the dynamics of the filtered spike history incorporate a decay term, hence the readout z will change
even if no spikes are emitted. These conditions mean that the proposal density over z will not be
symmetric, and that the Markov process will not satisfy the condition of detailed balance [27, 50].
We note that previous work has shown that violations of detailed balance can accelerate sampling
[17, 18, 51], but we will not carefully explore this possibility in the present work. To obtain a
symmetric proposal distribution with sign-constrained spikes, we assume that the network is divided
into two equally-sized populations with equal and opposite readout weights, i.e. that the readout
matrix is of the form Γ = [+M,−M] for some matrix M ∈ Rnp×nn/2. This could be accomplished
by dividing the total population of neurons into excitatory and inhibitory populations with weights
that are fine-tuned to be equal and opposite. The second problem can be solved by assuming that
η = 0, i.e., that we have access to a perfect integrator of the spike trains.

At the t-th timestep, we choose one neuron j uniformly at random, and let the spike proposal be
o′ = ej , where ej is the j-th standard Euclidean basis vector (i.e., (ej)k = δjk). This yields a
candidate readout

z′ = (1− η)zt−1 + Γej . (2)

If η = 0 and the balance assumption on Γ is satisfied, then the proposal distribution is exactly
symmetric, in the sense that the probabilities of reaching z′ from zt−1 and of reaching zt−1 from z′

are equal. Then, if we accept the proposed spike with probability

A = min

{
1,

P (z′)

P (zt−1)

}
, (3)

we obtain a Metropolis-Hastings sampling algorithm for the discretized Gaussian [27, 50].

We now relax the assumption of the perfect integration, and assume only that η ≪ 1. Introducing
decay smooths the readout, which in the perfect integrator is discretized. With the same proposal
distribution as before, we take the acceptance ratio of the accept-reject step to be

A = min

{
1,
P [(1− η)zt−1 + Γej ]

P [(1− η)zt−1]

}
. (4)
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This choice has two important features. First, the decay means that the proposal distribution will be
asymmetric, and the Markov chain will no longer satisfy the condition of detailed balance [27, 50].
However, the resulting error will be small if η ≪ 1. Second, by comparing the likelihood of the
proposal, P [(1 − η)zt−1 + Γej ], to the likelihood of the next state without the proposed spike
but with the decay P [(1 − η)zt−1] (instead of the likelihood of the current state P [zt−1] as in the
Metropolis-Hastings algorithm), this choice implements a sort of look-ahead step that should allow
the algorithm to partially compensate for the decay in the rate.

With the choices above, we show in Appendix B that one can write the acceptance ratio (4) as

A = min {1, exp (Vt−1,j − Tj)} , (5)

where Vt−1 = −(1− η)Ωrt−1 + Γ⊤Ψ−1θ has the interpretation of a membrane potential,

Tj =
1

2
Ωjj (6)

has the interpretation of a spiking threshold, and the the recurrent weight matrix is defined as

Ω ≡ Γ⊤Ψ−1Γ. (7)

Thus far, we have assumed that the mean signal is constant. The natural generalization of this
algorithm to a time-varying mean signal θt is to take the membrane potential to be Vt = −(1 −
η)Ωrt + Γ⊤Ψ−1θt. This leads to the voltage dynamics

Vt − (1− η)Vt−1 = −(1− η)Ωot + Γ⊤Ψ−1[θt − (1− η)θt−1], (8)

which, when combined with the probabilistic spiking rule with uniform proposals and acceptance
ratio (5), yields our final algorithm. This will not be an exact Metropolis-Hastings sampler unless
the mean is constant, the decay term vanishes (η = 0), and the readout matrix Γ satisfies an exact
balancing condition. In particular, if these conditions are violated, the Markov chain will not satisfy
detailed balance. However, if they are violated only weakly, this algorithm can still be a reasonable
approximation to a true sampler. We will provide empirical evidence for this intuition in §3.

2.2 The continuous-time limit

We now consider the continuous-time limit of the model introduced above. This limit corresponds
to taking the limit in which spike proposals are made infinitely often, and regarding the dynamics
written down previously as a forward Euler discretization of an underlying continuous-time system.
For a timestep ∆ between spike proposals, we let the discrete-time decay rate be η = ∆/τm for a
time constant τm, thusly named because it has the interpretation of a membrane time constant. Then,
we show in Appendix B that the ∆ ↓ 0 limit of the discretized rate dynamics (1) yields the familiar
continuous-time dynamics

dr(t)

dt
= − 1

τm
r(t) + o(t). (9)

In continuous time, the spike train o(t) is now composed of Dirac delta functions, as the discretized
spikes are rectangular pulses of width ∆ in time and height 1/∆. We next consider the voltage
dynamics of the leaky integrator for a varying mean signal (8), which have a similar continuum limit:

dV(t)

dt
= − 1

τm
V(t)−Ωo(t) + Γ⊤Ψ−1

(
dθ(t)

dt
+

1

τm
θ(t)

)
. (10)

In this limit, the rate will decay by only a infinitesimal amount between a rejected spike proposal
and the next proposal, meaning that the error incurred by neglecting the asymmetry in the proposal
distribution due to the decay should be negligible. We also note that, though the probabilistic spike
rule (5) does not explicitly include a reset step, the dynamics (10) prescribe that the j-th neuron’s
membrane voltage should be decremented by 2Tj after it spikes.

2.3 Efficient balanced networks as a limit of the spiking Metropolis-Hastings sampler

This spiking network samples the posterior distribution by emitting spikes probabilistically, but we
can use the same architecture to re-derive EBNs, which approximate continuous dynamical systems
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using spiking networks [45–49]. If we take Ψ ∝ Inp (for Inp the np × np identity matrix) the
voltage dynamics (10) are identical to those of the EBN.3 The greedy spiking rule of the EBN can be
recovered in this framework by taking a limit in which the variance of the Gaussian target distribution
vanishes. Concretely, we let Ψ = ψInp , and define re-scaled variables Ṽ(t) ≡ ψV(t), Ω̃ ≡ ψΩ,
and T̃ ≡ ψT that will remain O(1) even as we take ψ ↓ 0. In terms of these new variables, the
acceptance ratio is A = min{1, exp[(Ṽj(t)− T̃j)/ψ]}, which tends to A = Θ(Ṽj(t)− T̃j) as ψ ↓ 0.
This explicitly recovers the greedy spike rule used in EBNs. In Appendix B, we further analyze how
the overall scales of Ψ and Γ affect the probabilistic spike rule.

The network with voltage dynamics (10) samples a distribution with mean θ and covariance Ψ.
Instead of sampling using the structured proposal distribution on spikes, this network can implement
sampling through slowly varying Langevin dynamics on θ. In the limit where the spike rule becomes
greedy, this recovers the spiking sampler studied by Savin and Denève [20]. We will discuss this
model further in §3.

3 Population geometry for fast sampling

3.1 Leveraging the geometry of inference to accelerate sampling

We first review recent work from the machine learning literature for how population geometry can be
chosen to accelerate simple Langevin sampling, which establishes principles for the design of fast
samplers. For probability distributions belonging to the exponential family, including the Gaussian
distributions on which we focus in this work, one can write the density P (z) in terms of an energy
function U(z) such that P (z) ∝ exp[−U(z)]. The classic algorithm to sample such a distribution is
the discretization of the naïve Langevin dynamics

dz(t) = −∇U(z) dt+
√
2 dW(t), (11)

where W(t) is a standard Brownian motion [29, 30, 33, 52]. By simply following these dynamics,
one can obtain samples from the target distribution and therefore an estimate of the uncertainty at the
timescale taken by the network to sufficiently explore the target distribution.

The Langevin dynamics (11) can be directly implemented in a rate network [9, 19] or approximately
implemented in a spiking network [20], but their convergence properties for high-dimensional
distributions have not been investigated in a neuroscience context. It is well known in statistics that,
as the dimensionality of the target distribution increases, convergence of Langevin sampling to the
target distribution slows dramatically. Furthermore, the discretization step can induce errors that
cause the variance estimated from sampling to exceed the target variance [29, 30, 33, 52].

To overcome these issues, prior work in statistics and machine learning has proposed algorithms
that can accelerate the sampling [28, 31, 42–44, 53–55] which we leverage here to propose our fast
samplers in spiking neural networks. These ideas were unified into a common framework by Ma et al.
[43] (and see also [44, 56]) who proposed a “complete recipe” for stochastic gradient MCMC:

dz(t) = −{[D(z) + S(z)]∇U(z) +Φ(z)} dt+B
√
2 dW(t) (12)

with BB⊤ = D. The matrix fields D(z) and S(z) modify the dynamics but keep the target
distribution unchanged. D is positive semi-definite and defines the local geometry of the space in
which the inference is occurring, while S is skew-symmetric and adds non-reversible dynamics.
When D and S are state dependent, the correction term Φ = div(D+ S) must be included [43].

The “complete recipe” provides a general framework to design samplers based on Langevin dynamics.
Samplers based on Riemannian geometry can be designed by choosing D to be the inverse of the
Fisher information matrix G (or an approximation thereof), yielding the natural gradient ∇natU =
G−1∇U (Figure 1) [39–42, 57, 58]. Samplers incorporating dummy variables can be designed
by expanding the parameter space and using the matrices D and S to obtain the desired dynamics
[31, 43, 44, 53–55, 59]. Similarly, prior works have proposed methods to accelerate sampling

3In Appendix B, we show how the elastic net prior on firing rates used by Boerlin et al. [45] can be
incorporated into this model. As it only modifies the definitions of the recurrent weights and spiking threshold,
this extension does not add new conceptual difficulties, hence we do not discuss it further in the main text.
Additionally, we provide a pedagogical introduction to the dynamics of the EBN in Appendix C.
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in biologically inspired neural networks by parallelizing the inference [20], using Hamiltonian
dynamics [21] or by adding non-reversible dynamics [9, 17, 18]. The “complete recipe” provides
a general framework that encompasses all these examples, allowing for the principled design of
biologically-plausible samplers.

In the simple setting of linear rate networks sampling from a Gaussian distribution with constant
mean µ and covariance Σ, the complete recipe for state-independent D and S takes the form

dz(t) = −(D+ S)Σ−1(z− µ) dt+
√
2B dW(t). (13)

In Appendix D, we show in the zero-mean case µ = 0 that large eigenvalues of the covariance
matrix Σ introduce long timescales in the sample cross-covariance for naïve Langevin dynamics
(D = B = Inp

, S = 0), which slow convergence to the target distribution. Concretely, the
2-Wasserstein distance between the ensemble sampling distribution at time t and the target is

W naïve
2 (t) =

√√√√ np∑
i=1

σi
[
1− (1− e−2t/σi)1/2

]2
, (14)

where σi are the eigenvalues of the covariance matrix. Networks performing inference in the natural
space (D = Σ, B = Σ1/2) are insensitive to these large eigenvalues, with 2-Wasserstein distance

W natural
2 (t) =

√√√√ np∑
i=1

σi

[
1− (1− e−2t)1/2

]
. (15)

For this analytical result, we consider the distribution of samples at time t over realizations of the
noise process, which differs from the distribution of samples over time within a single realization, as
used elsewhere in the paper. This choice is made because the joint distribution of samples within
a single realization is challenging to characterize [60]. These results show how natural gradient
can accelerate inference in linear rate networks, and complement Hennequin et al. [9]’s study of
how adding irreversible dynamics can reduce the sample autocorrelation time (i.e., D = B = Inp

,
S ̸= 0).

3.2 Fast sampling through population geometry in efficient balanced networks

We first consider a sampler based on efficient neural networks [20, 45–47] that leverages the geometry
of the inference to implement efficient sampling at the level of the population. In previous work,
Savin and Denève [20] derived a sampler implementing naïve Langevin dynamics (we provide a
full derivation using the notation from the present paper in Appendix C). Although they proposed to
accelerate sampling by implementing parallel inference loops, they do not leverage the geometry of
the inference nor do they test the convergence in high (np > 2) dimensions.

Here, we approximate the “complete recipe” dynamics (13) using an EBN, and show that performing
inference using natural gradients helps with speed and accuracy in high dimensions. As in §3, we
consider sampling from a Gaussian distribution of possibly time-varying mean µ and covariance
Σ.4 As we principally study the effect of the geometry, we henceforth set S = 0. Note that even
though the underlying dynamics of (13) are reversible if S = 0, the non-linearities introduced by
spiking lead to a non-reversible sampler. To embed these dynamics in the EBN framework, we take
the target mean in the voltage dynamics (10) to evolve according to the Ornstein-Uhlenbeck process
(13), which we generalize to include an intrinsic timescale τs. Following [20], we approximate the
true state of the sampling dynamics by the instantaneous estimate from the filtered spike history.
Then, as detailed in Appendix C, we obtain an EBN with the voltage dynamics

dV =

[
− 1

τm
V −Ωo+

1

τm
Γ⊤

(
Inp

− τm
τs

DΣ−1

)
Γr+

1

τs
Γ⊤DΣ−1µ

]
dt+

√
2

τs
Γ⊤B dW,

(16)
where the recurrent weight matrix is Ω = Γ⊤Γ, and the spiking rule is greedy, with thresholds
Tj = (Γ⊤Γ)jj/2.

4In Appendix C, we give a concrete interpretation of this task in terms of the Gaussian linear models used in
previous work by Hennequin et al. [9] and Savin and Denève [20].
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Figure 2: Accelerating inference through population geometry in EBNs simulating Langevin sampling:
a. 50 ms moving averages of parameter estimates θ̂i over time, for naïve and natural geometry in
a network sampling from np = 20-dimensional equicorrelated Gaussian distribution of correlation
ρ = 0.75 using a network of nn = 200 neurons. At t = 0.5 s, the target mean shifts from zero to
six, as indicated by the black dashed line. b. The distribution of ISIs across neurons and trials is
approximately exponential. See Supplemental Figure E.2 for more statistics of the resulting spike
trains. c. Comparison of performance in the 50 ms following stimulus onset (after t = 0.5 s) between
naïve and natural geometry for varying ρ c.i. The estimate of the mean collapses towards zero
with increasing ρ for naïve geometry, c.ii. The estimated variance increases catastrophically with
ρ for naïve geometry, but only mildly for natural geometry. c.iii. Inference accuracy as measured
by the mean marginal 2-Wasserstein distance across dimensions decreases for naïve. d. Similar
analysis when varying np for the d.i. Mean, d.ii. Variance and d.iii. mean 2-Wasserstein distance. In
panels c,d shaded error patches show 95% confidence intervals computed via bootstrapping over 100
realizations in all panels. In Supplemental Figure E.1 we show the full time course of the inferred
statistics for one set of network parameters and in Supplemental Figure E.3 we show the statistics
after the full 1.5s, which are qualitatively similar. See Appendix E for detailed numerical methods.

To illustrate how correlations between parameters affect sampling in high dimensions, we will
focus on equicorrelated multivariate distributions. The covariance matrix Σ of such a distribution
is parameterized by an overall variance σ > 0 and a correlation coefficient −1 < ρ < 1 such that
Σij = σ[δij + ρ(1 − δij)]. We will explore the performance of the sampling algorithms across
values of ρ for different dimensions of the parameter (np) and neuron (nn) spaces. For a multivariate
Gaussian distribution N (µ,Σ), the Fisher information matrix is G = Σ−1 and we will therefore use
D = G−1 = Σ (and B =

√
D) in our geometry aware implementation (see Appendix C). In our

simulations, we compare the accuracy of sampling of the naïve implementation (D = B = I) with
the geometry-aware version over a 50 millisecond window, which is roughly twice the membrane
time constant τm = 20 ms, as well as at steady-state. In Figure 2 and in Supplemental Figures
E.1-E.3, we show that the geometry-aware sampler is more robust to increasing the correlation of the
parameters and the dimensionality, allowing inference at behavioral timescales. As in non-spiking
Langevin sampling, discretization leads to an overestimation of variance [27], but this effect, although
still present, is strongly reduced in the geometry-aware implementation. Note here, that the geometry
is imposed through the dynamics of the membrane potentials via the recurrent connectivity in the
network.

3.3 Fast sampling through population geometry using probabilistic spike rules

In the preceding subsection, we have shown how neural population geometry, implemented through
neural dynamics, can accelerate the speed of approximate sampling in an efficient balanced network.
However, this approach suffers from a fundamental conceptual gap: the firing rates of the spiking
network are being used to simulate non-spiking Langevin dynamics; the spiking network itself has
not been designed to sample. Specifically, the discretization introduced by the spiking exacerbates
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Figure 3: Sampling using probabilistic spiking rules. a. Sampling from a np = 10-dimensional
equicorrelated Gaussian distribution of correlation ρ = 0.75 using a network of nn = 100 neurons.
a.i. 100 ms moving averages of parameter estimates θ̂i over time, for naïve and natural geometry.
At t = 0.5 s, the target mean shifts from zero to one, as indicated by the black dashed line. a.ii.
Marginal distributions of θi after stimulus appearance. a.iii Spike rasters over a 100 ms window. b.
Variability in spiking across 1000 trials. b.i. Spike rate distributions across neurons and trials for a
stimulus distribution as in (a). b.ii. The distribution of ISIs for an example neuron across trials is
approximately exponential. b.iii. The distribution of coefficients of variation of ISIs across neurons.
See Appendix E for detailed numerical methods.

the errors introduced by the discrete time implementation of the sampling dynamics, leading to
overestimation of the stimulus variance. In this subsection, we take a first step towards bridging this
gap by considering an alternative limit of the general model introduced in §2: the case in which
sampling is performed leveraging only the stochasticity in the spike rule. Our objective here is not to
demonstrate a fully biologically-plausible or practically useful sampling algorithm; rather, it is to
illustrate the importance of population geometry in a minimal model for probabilistic spiking.

As in 3.2, we focus on sampling from equicorrelated Gaussian distributions N (µ,Σ). In this case,
we set Ψ = Σ and θ = µ in (10). Naïve sampling here corresponds to choosing Γ in some sense
generically (see Appendix B), while geometry-aware sampling corresponds to choosing Γ such that
ΓΓ⊤ ≃ Σ up to overall constants of proportionality. In Figures 3 and 4, and in Supplemental Figure
E.4, we show that naïve choices of Γ lead to vanishing spike rates at strong correlations ρ and large
parameter-space dimensionalities np. This results in dramatic underestimation of the mean and
variance of the target distribution, which is resolved by choosing the geometry appropriately, again
allowing inference at behavioral time-scales. Moreover, these networks show Poisson-like variability
in spiking statistics (Figure 3), consistent with cortical dynamics [61, 62].

In Appendix B, we provide a more careful analysis of the strongly-correlated limit ρ ↑ 1. Informally,
we show that the probability of spiking should vanish if Γ is chosen sufficiently naïvely and the mean
of the target distribution is uniform across parameter dimensions, i.e., µt ∝ Inp

. This analysis is not
specialized to a particular case, and holds generally for the model of §2. Therefore, careful choice of
population geometry, as implemented by the neural code, is required for fast sampling in this model.

4 Discussion

In this paper, we have shown how careful choice of neural population geometry enables fast sampling
in spiking neural networks. We presented a unified framework in which EBN samplers approximating
Langevin dynamics with greedy spiking and approximate Metropolis-Hastings samplers with deter-
ministic voltage dynamics and probabilistic spiking can be unified. We then leveraged population
geometry to perform rapid sampling at behaviorally-relevant timescales in these two disparate limits
of our general model. We now discuss some of the limitations of our work, and highlight possible
directions for future inquiry.
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Figure 4: Population geometry enables fast sampling from strongly-correlated high-dimensional
distributions in networks with probabilistic spiking rules. a. Sampling from strongly-equicorrelated
Gaussians in np = 10 dimensions using a network of nn = 100 neurons requires careful choice of
geometry. The stimulus setup is as in Figure 3. a.i. At strong correlations ρ, spiking is suppressed in
networks with naïve geometry, but not when the natural geometry is used. a.ii. Dimension-averaged
estimate of the mean signal in the 50 ms after stimulus onset. See Supplemental Figure E.4 for
steady-state statistics. a.iii. As in ii, but for the variance. a.iv. As in ii, but for the mean marginal
2-Wasserstein distance across dimensions. b. Sampling in high dimensions requires careful choice of
geometry. b.i. At moderately strong correlations ρ = 0.75 and high dimensions, spiking is suppressed
in networks with naïve geometry, but not when the natural geometry is used. Here, we use 10 neurons
per parameter, i.e., nn = 10np. b.ii. Dimension-averaged estimate of the mean signal in the 50
milliseconds after stimulus onset. See Supplemental Figure E.4 for steady-state statistics. b.iii. As in
ii, but for the variance. b.iv. As in ii, but for the mean 2-Wasserstein distance. Shaded error patches
show 95% confidence intervals computed via bootstrapping over 100 realizations in all panels; see
Appendix E for further details.

Like the original EBN model, the probabilistic spiking model introduced in §2 suffers from the
limitations that it requires instantaneous propagation of spike information and that only one neuron
is allowed to spike at a time [20, 45–49]. Moreover, the discretization timestep enforces a hard
cutoff on the maximum spike rate. Some of these limitations could be partially circumvented by
generalizing the spike proposal distribution to allow multiple spikes. However, such a model would
still suffer from the issue that an accept/reject step that accounts for the effect of spikes from multiple
neurons will require instantaneous communication across the network. This limitation could possibly
be overcome within the framework of asynchronous Gibbs sampling [63, 64], which ignores the
requirement that updates should be coordinated across the network.

The analysis of §2 shows that the models of §3 can be viewed as limiting cases of a single framework.
It is likely that the parallels between these limiting models could be further strengthened by viewing
the Gaussian noise in the voltage dynamics of the EBN sampler as an approximation to the effect of
the stochastic spiking of other neurons in the Metropolis-Hastings sampler. Such an approximation
could be obtained in the limit of large network size given an appropriate treatment of asynchronous
updates, provided that one could neglect the coupling between spikes in different neurons induced by
the proposal distribution [62, 65–67]. Careful analysis of the relationship between these two sources
of stochasticity will be an interesting subject for future investigation. Moreover, it will be interesting
to investigate how they might be integrated in a single network, which would result in a spiking
sampler somewhat reminiscent of the Metropolis-adjusted Langevin algorithms used in machine
learning [68, 69].

Here, we have focused entirely on Gaussian target distributions. As we sketch in Appendices B and C,
both the probabilistic spiking sampler and the EBN sampler could in principle be extended to general
exponential family targets. However, the most naïve extensions to non-Gaussian distributions would
involve non-linear and non-local interactions in the voltage dynamics. In particular, one would have to
account for state-dependence in the matrix fields D(z) and S(z), which would require the inclusion of
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the field Φ(z) in the complete recipe (12) (see ref. [43]). Mapping such interactions onto biological
mechanisms requires more careful consideration. In recent work, Nardin et al. [70] have proposed
how dynamical systems with polynomial nonlinearities can be approximated by deterministic EBNs
with multiplicative synapses. This approach could be extended to the stochastic setting of networks
designed to sample, which will be interesting to test in future work.

In this work, we did not constrain neurons to follow Dale’s law, and single neurons therefore have both
excitatory and inhibitory effects on their neighbors. Many frameworks have been proposed to map
the connectivity of unconstrained network algorithms onto distinct excitatory and inhibitory neuron
types [9, 71, 72]. These refinements of the biological plausibility will not affect our key argument
of accelerating inference through a favorable population geometry. However, different possible
implementations that comply with Dale’s law will make different predictions for experimentally-
measureable biophysical properties. For example, although less numerous, fast spiking inhibitory
neurons have higher firing rates [71, 72], which could allow the approximate symmetry of the readout,
as required by the construction of §2, to be maintained.

In biological spiking networks, probabilistic spike emission and probabilistic synaptic release are
natural sources of stochasticity [73–76]. These two layers of probabilistic computation provide
additional flexibility in processing beyond the simple accept/reject step considered here. As a result,
it is likely that one could construct sampling algorithms that are at once more biophysically detailed
and more computationally efficient than the simple network constructed in §2. Further investigation
of how violations of detailed balance through these mechanisms and the matrix S in the “complete
recipe" framework could enable faster sampling will be a particularly interesting objective [17, 18, 51].
Moreover, it will be interesting to investigate how natural gradients can accelerate inference in the
presence of more complex synaptic dynamics, as studied in recent work by Kreutzer et al. [77].

The algorithms proposed in this work could also enable fast sampling in neuromorphic circuits
[78–80]. As they require only the local membrane voltage to compute accept/reject steps, these
algorithms could be implemented in a distributed neuromorphic architecture. They would then
potentially be limited only by the timescale of individual computing units (which are much faster
than biological neurons) rather than the dimensionality of the inference problem [81].

The sampling processes considered in this work focus on short-timescale perceptual inference.
However, similar probabilistic inference can occur at longer timescales of learning [82–84]. These
long-timescale sampling processes would allow networks to flexibly infer their synaptic weights.
Importantly, learning the task—i.e., learning the matrix Σ−1—and learning the representational
geometry—D, S, and Γ—are distinct processes that can occur in parallel. Once the task structure
is learned, adapting the geometry of the population code to match changing stimulus geometry can
be achieved through meta-learning [85]. Recent works have analytically studied the population
geometry that results from this sampling procedure in rate-based networks [86], and proposed
algorithms for efficient learning in EBNs [47, 87–89] and other classes of spiking networks [90–93].
However, the interactions between fast activity sampling and slow network parameter sampling in
neural circuits—particularly spiking networks—remain poorly understood [84]. Characterizing how
adaptive population geometry accelerates perceptual inference in dynamic environments will be an
important step towards a more complete understanding of probabilistic inference in neural circuits.

Acknowledgments and Disclosure of Funding

PM was supported by the Harvard Mind Brain Behavior Interfaculty Initiative. JAZ-V and CP were
supported by a Google Faculty Research Award and NSF Award DMS-2134157. This work was also
supported by a grant from the National Institute of Health (R01-DC-017311) to VNM. We thank
Tony Zador for co-organizing the NeurIPS 1996 workshop on "Synaptic transmission: reliability and
variability", whose follow-up discussions led to this paper.

10



References
[1] David C Knill and Alexandre Pouget. The Bayesian brain: the role of uncertainty in

neural coding and computation. Trends in Neurosciences, 27(12):712–719, 2004. doi:
10.1016/j.tins.2004.10.007.

[2] Konrad P Körding and Daniel M Wolpert. Bayesian integration in sensorimotor learning. Nature,
427(6971):244–247, 2004. doi: 10.1038/nature02169.
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A Table of variables and parameters used in the models and simulations

We provide a table stating the dimensionality and values taken by the variables and parameters used
throughout the paper.

Table 1: Variable and parameter names

Variable name Description Value/Size

np Number of features encoded by the network 2− 128
nn Number of neurons in the network 2− 2560
ni Dimensionality of the input signal usually np
θ Features inferred by the network np × 1
Γ Readout weights np × nn
Ψ Covariance of structured Gaussian posterior np × np
V Membrane voltage nn × 1
T Spiking thresholds (for each neuron) nn × 1
Ω Recurrent weights nn × nn
τm Membrane time constant scalar; ∼ 20 ms
∆ Discretization timestep scalar
η Discrete-time decay constant; η = ∆/τm scalar
α Elastic net ℓ1 penalty scalar
λ Elastic net ℓ2 penalty scalar
µ Mean of target Gaussian distribution np × 1
Σ Covariance of target Gaussian distribution np × np
ρ Cross-correlation of equicorrelated Gaussian [0-0.99]
x Input signal ni
A Input weights np × ni
W Standard Brownian motion usually np × 1

B Approximate Metropolis-Hastings sampling using probabilistic spiking
rules

In this Appendix, we provide a step-by-step construction of the spiking sampler introduced in §2 of
the main text. Our goal is to use

zt = Γrt (B.1)

to sample a Gaussian distribution P (z) with mean θ and covariance Ψ, where

rt = (1− η)rt−1 + ot (B.2)

is the filtered spike history for a decay constant 0 ≤ η ≤ 1 (note that ot ∈ {0, 1}nn). In §B.1, we
construct a circuit that samples a Gaussian distribution using a discrete-time perfect integrator of
the spike train (i.e., η = 0). In §B.2, we relax this assumption, yielding an approximate sampler
using leaky integration in discrete-time, and discuss the behavior of this model in the continuum limit.
In general, the proposal distribution could be computed using a stochastic gradient step followed
by an accept/reject step, yielding Metropolis-adjusted Langevin dynamics [1, 2]. In this case, the
accept/reject step allows the algorithm to compensate for some of the sampling error introduced by
discretization at the expense of needing to compute a likelihood ratio, which can be expensive for
high-dimensional distributions.
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B.1 A simple sampler assuming perfect integration and balance

We first construct a sampling circuit under the assumptions that we have access to a perfect integrator
of the spike train, i.e. that η = 0, and that the readout matrix is of the form

Γ = [+M −M] (B.3)

for some matrix M ∈ Rnp×nn/2.

At the t-th timestep, we choose one neuron j uniformly at random, and let the spike proposal be
o′ = ej , where ej is the j-th standard Euclidean basis vector (i.e., (ej)k = δjk). This yields a
candidate readout

z′ = Γ(rt−1 + ej) = zt−1 + Γej . (B.4)

Under the symmetry assumption on Γ, the acceptance ratio is given by

A = min

{
1,

P (z′)

P (zt−1)

}
, (B.5)

as the proposal distribution is exactly symmetric in z′ and zt. Then, we accept the proposed spike
with probability A. Concretely, for u ∼ U [0, 1], we take

ot =

{
ej if u ≤ A

0 if u > A
. (B.6)

For P (z) a Gaussian distribution with mean θ and covariance Ψ, we have

log
P (z′)

P (zt−1)
= −1

2
(Γrt−1 + Γej − θ)⊤Ψ−1(Γrt−1 + Γej − θ)

+
1

2
(Γrt−1 − θ)⊤Ψ−1(Γrt−1 − θ) (B.7)

= −e⊤j Γ
⊤Ψ−1(Γrt−1 − θ)− 1

2
e⊤j Γ

⊤Ψ−1Γej . (B.8)

Defining the matrix

Ω ≡ Γ⊤Ψ−1Γ, (B.9)

we interpret the first term in the log-odds ratio as a membrane potential,

Vt−1 = −Ωrt−1 + Γ⊤Ψ−1θ, (B.10)

and the second as a threshold

Tj =
1

2
Ωjj , (B.11)

such that the acceptance ratio is

A = min {1, exp (Vt−1,j − Tj)} . (B.12)

With this definition, the membrane voltage simply integrates the spike train:

Vt −Vt−1 = −Ωot. (B.13)

We now observe that, if nn > np, it is possible that a spike may not contribute to the parameter
estimate. Concretely, we say that a spike, or the corresponding neuron, is irrelevant if it is annihilated
by Γ, i.e., if Γej = 0. Irrelevant spike proposals are always accepted with probability one, as we
have z′ = zt−1. Moreover, the membrane voltage is not changed by the emission of irrelevant spikes.
For these reasons, we are free to re-define the population rate rt to exclude such spikes. Therefore, a
timestep with an irrelevant spike is equivalent to not updating the network at all, and we could choose
to re-define the network such that only relevant neurons are included. However, though there will
exist some non-trivial set of vectors that are annihilated by Γ if nn > np, the situation in which this
null space is axis-aligned (thus implying the existence of irrelevant neurons) is not generic.
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We note that appropriate initialization of the membrane potential (for the desired mean) is important,
as otherwise some bias will be introduced. Thus, as written, this model cannot easily accommodate a
time-varying mean signal θt. This shortcoming could obviously be addressed by taking

Vt = −Ωrt + Γ⊤Ψ−1θt, (B.14)
which yields voltage dynamics

Vt −Vt−1 = −Ωot + Γ⊤Ψ−1(θt − θt−1). (B.15)
Alternatively, one could also take

Vt = −Ωrt (B.16)
and re-define the threshold for the j-th neuron to be time-varying:

(Γ⊤Ψ−1θt)j −
1

2
Ωjj . (B.17)

The former of these approaches is reasonable from a biological perspective, as the new term
Γ⊤Ψ−1(θt − θt−1) in the voltage dynamics has the interpretation of a signal θt − θt−1 fed through
an input weight matrix Γ⊤Ψ−1. For this sampling procedure to work, the mean should be slowly-
varying.

B.2 Relaxing the assumption of perfect integration

We now relax the assumption of the perfect integration, and assume only that η ≪ 1. With the same
proposal distribution as before, we take the acceptance ratio of the accept-reject step to be

A = min

{
1,
P [(1− η)Γrt−1 + Γej ]

P [(1− η)Γrt−1]

}
. (B.18)

As noted in the main text, this choice implements a sort of look-ahead step. Moreover, if we took the
acceptance ratio to depend on the likelihood of the proposed state with decay, P [(1−η)Γrt−1+Γej ],
relative to the likelihood P [Γrt−1] of the current state (rather than the next state with decay but
without the proposed spike), the resulting log-odds ratio would include terms of order η that are
quadratic in the rate rt.

With the choices above, the log-odds ratio is

log
P [(1− η)Γrt−1 + Γej ]

P [(1− η)Γrt−1]
= −e⊤j Γ

⊤Ψ−1[(1− η)Γrt−1 − θ]− 1

2
e⊤j Γ

⊤Ψ−1Γej (B.19)

which, like in the perfect integrator model, is linear in the rate. As in the perfect integrator model, we
define the recurrent weight matrix

Ω ≡ Γ⊤Ψ−1Γ, (B.20)
and interpret the first term in the log-odds ratio as a membrane potential,

Vt−1 = −(1− η)Ωrt−1 + Γ⊤Ψ−1θ, (B.21)
and the second as a threshold

Tj =
1

2
Ωjj , (B.22)

such that the acceptance ratio is
A = min {1, exp (Vt−1,j − Tj)} . (B.23)

With this definition, the membrane voltage evolves as
Vt − (1− η)Vt−1 = −(1− η)Ωot + ηΓ⊤Ψ−1θ. (B.24)

Therefore, this model differs from the perfect integrator model of §B.1 only in the voltage dynamics;
the perfect integrator is recovered exactly if we set η = 0. As in the perfect integrator model, the
natural generalization of these leaky dynamics to time-varying mean signal θt is to take

Vt = −(1− η)Ωrt + Γ⊤Ψ−1θt, (B.25)
which leads to the dynamics

Vt − (1− η)Vt−1 = −(1− η)Ωot + Γ⊤Ψ−1[θt − (1− η)θt−1]. (B.26)
This will, of course, not be an exact sampler unless the mean is constant. If the mean is slowly-varying,
however, it should be a good approximate sampler. We remark that we can re-write the membrane
voltage as

Vt = Γ⊤Ψ−1[θt − (1− η)zt]. (B.27)
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B.3 Adding an elastic net prior on the rates

We now consider the effect of adding an elastic net prior on the rates, as was considered in the original
work of Boerlin et al. [3]:

Pe-net(r) ∝ exp

(
−α∥r∥1 −

1

2
λ∥r∥22

)
. (B.28)

Without loss of generality, we consider the case in which a decay term is included, as we can then
recover the perfect integrator by setting η = 0. Again defining the acceptance ratio in terms of a
comparison against the rate with decay but without the proposed spike, the addition of the prior adds

log
Pe-net[(1− η)rt−1 + ej ]

Pe-net[(1− η)rt−1]
= −α∥(1− η)rt−1 + ej∥1 −

1

2
λ∥(1− η)rt−1 + ej∥22

−
(
−α∥(1− η)rt−1∥1 −

1

2
λ∥(1− η)rt−1∥22

)
(B.29)

= −α− λ(1− η)e⊤j rt−1 −
1

2
λ (B.30)

to the log-odds ratio. This yields a modified recurrent weight matrix

Ω ≡ Γ⊤Ψ−1Γ+ λInn
(B.31)

and a modified threshold

Tj =
1

2
Ωjj + α, (B.32)

but the expression for the membrane voltage in terms of these parameters is identical in functional
form:

Vt = −(1− η)Ωrt + Γ⊤Ψ−1θt. (B.33)

Therefore, adding the elastic net prior changes the definitions of the weight matrix that maps rates to
voltages and of the threshold, but not the overall form of the result, hence it does not introduce any
new conceptual difficulties. We remark that we could include the constant factor α in the membrane
voltage as we do in our implementation of EBNs (see Appendix C) rather than in the threshold, which
would give it a somewhat different biological interpretation but would have no algorithmic effect.

B.4 The continuous-time limit

In this subsection, we consider the continuous-time limit of the models introduced above. This limit
corresponds to taking the limit in which spike proposals are made infinitely often, and regarding the
dynamics written down previously as a forward Euler discretization of an underlying continuous-time
system. For clarity, we write the discrete timesteps, denoted in previous sections simply by t, as td
here, and reserve the unsubscripted symbol t for the continuum variable. For a timestep ∆, we let
t = ∆td, and let the discrete-time decay rate be η = ∆/τm for a ‘membrane’ time constant τm. We
may then write the discretized rate dynamics (B.2) as

τm
r(∆td)− r(∆td −∆)

∆
+ r(∆td −∆) = τm

1

∆
otd (B.34)

which, taking ∆ ↓ 0, of course yields the familiar continuous-time dynamics

τm
dr(t)

dt
+ r(t) = τmo(t). (B.35)

In continuous time, the spike train o(t) is now composed of Dirac delta functions, as the discretized
spikes are rectangular pulses of width ∆ in time and height 1/∆. We next consider the voltage
dynamics of the leaky integrator for a varying mean signal (B.26), which may similarly be re-written
as

τm
V(∆td)−V(∆td −∆)

∆
+V(∆td −∆)

= −Ω

(
τm

1

∆
otd − otd

)
+ Γ⊤Ψ−1

(
τm

θ(∆td)− θ(∆td −∆)

∆
+ θ(∆td −∆)

)
. (B.36)
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In the continuum limit, we retain only the contribution of the first of the two terms involving the
discrete-time spike train, as the other yields pulses of width ∆ and height unity, which yield a
negligible contribution to the integral. Thus, we have the dynamics

τm
dV(t)

dt
+V(t) = −τmΩo(t) + Γ⊤Ψ−1

(
τm

dθ(t)

dt
+ θ(t)

)
. (B.37)

From these dynamics, one could then recover the continuum limit of the perfect integrator dynamics
by taking τm → ∞. In this limit, the rate will decay by only a infinitesimal amount between a
rejected spike proposal and the next proposal, meaning that the error incurred by neglecting the
asymmetry in the proposal distribution due to the decay should be negligible.

B.5 Analyzing the strongly-correlated limit of sampling from an equicorrelated Gaussian

Here, we consider how these models behave when sampling from an equicorrelated Gaussian
distribution, i.e., a distribution with covariance matrix

Ψ = (1− ρ)Inp
+ ρ1np

1⊤
np

(B.38)

for correlation coefficient ρ ∈ (−1,+1). We are particularly interested in the strongly-correlated limit
ρ ↑ 1. As we will consider the case in which the marginal variance does not scale with the correlation,
our choice of unit marginal variance is made without loss of generality. For this covariance matrix,
the Sherman-Morrison formula yields [4]

Ψ−1 =
1

1− ρ

(
Inp

− ρ

1 + (np − 1)ρ
1np

1⊤
np

)
. (B.39)

We first consider the case in which the mean signal θ is identically equal to zero. We argue that, for
choices of Γ that are in some sense sufficiently naïve, the probability that relevant spikes are emitted
should tend to zero as ρ ↑ 1. This corresponds to showing that Vt,j − Tj → −∞ as ρ ↑ 1 for all
indices j corresponding to relevant neurons. For θ = 0, we have

Vt,j − Tj = −e⊤j Γ
⊤Ψ−1Γ

(
(1− η)rt +

1

2
ej

)
. (B.40)

Consider the first timestep, with r0 = 0, for which we have

V0,j − Tj = −1

2
e⊤j Γ

⊤Ψ−1Γej (B.41)

= − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

ρ

1 + (np − 1)ρ
(1⊤

np
Γej)

2

)
. (B.42)

Near ρ = 1, we then have the expansion

V0,j − Tj = − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.43)

under the assumption that Γ is an O(1) function of ρ in this region, and thus cannot introduce
additional possible divergences. For relevant spikes, we have the strict inequality (Γ⊤Γ)jj > 0.
Moreover, by the Cauchy-Schwarz inequality, we have (1⊤

np
Γej)

2 ≤ np(Γ
⊤Γ)jj , with equality if

and only if Γej ∝ 1np
. If Γej ∝ 1np

, then spikes in neuron j affect the readout precisely only along
the common mode, and V0,j − Tj does not diverge as ρ ↑ 1. However, this case is quite fine-tuned.
For generic Γ not satisfying this alignment condition, we have the strict inequality

(Γ⊤Γ)jj −
1

np
(1⊤

np
Γej)

2 > 0 (B.44)

for all relevant neurons. Then, if (Γ⊤Γ)jj vanishes no more rapidly than 1 − ρ as ρ ↑ 1—i.e., if
(Γ⊤Γ)jj/(1− ρ) → ∞ as ρ ↑ 1—we have that V0,j − Tj → −∞ as ρ ↑ 1. This holds, for instance,
if (Γ⊤Γ)jj is a constant function of ρ. Thus, under these conditions, the probability that a relevant
spike is emitted at the first timestep vanishes as ρ ↑ 1. Heuristically, this in turn implies that the
(relevant component of the) rate at the second timestep will be zero with probability one. Therefore,
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we may iterate this argument forward in time, showing that the probability of emission of relevant
spikes should vanish in the limit ρ ↑ 1. This argument will not be affected by the addition of an
elastic net penalty unless the coefficients α and λ are taken to diverge as ρ is taken to unity, as the
coefficients are strictly non-positive.

The situation is somewhat more complicated if the mean signal is not identically zero, in which case
we have

Vt,j − Tj = −(1− η)e⊤j Γ
⊤Ψ−1Γrt −

1

2
(Γ⊤Ψ−1Γ)jj + Γ⊤Ψ−1θt. (B.45)

Following our previous analysis, at the first timestep we have

V0,j − Tj = −1

2
ejΓ

⊤Ψ−1Γej + e⊤j Γ
⊤Ψ−1θt. (B.46)

= − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+

1

1− ρ

(
e⊤j Γ

⊤θt −
1

np
(1⊤

np
Γej)(1

⊤
np
θt)

)
+O(1) (B.47)

near ρ = 1. There are now two possible divergent terms, which can compete to change the sign of
V0,j − Tj as ρ ↑ 1. One case of interest is when θt ∝ 1np . Then,

e⊤j Γ
⊤θt −

1

np
(1⊤

np
Γej)(1

⊤
np
θt) = 0 (B.48)

and we have

V0,j − Tj = − 1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.49)

as in the case when θ was strictly zero, implying that V0,j − Tj → −∞ under the abovementioned
conditions on Γ. Another illustrative case is θt = Γej . With this fine-tuning,

V0,j − Tj =
1

2(1− ρ)

(
(Γ⊤Γ)jj −

1

np
(1⊤

np
Γej)

2

)
+O(1), (B.50)

hence we expect V0,j − Tj → +∞ as ρ ↑ 1 under the abovementioned constraints on Γ. Thus, in
this case, the spike probability should tend to one, showing that complications can arise in the case of
a non-uniform mean signal.

B.6 Analyzing the small- and large-variance limits

We now consider how these models behave in the limits in which the variance of the target distribution
is small or large, or, nearly equivalently, the limits in which the scale of the readout matrix is
large or small, respectively. In §2.3 of the main text, we argued that the EBN is recovered in the
limit in which the variance of the target distribution tends to zero. Concretely, we let Ψ = ψΨ̃
for some fixed matrix Ψ̃, and take the zero-variance limit ψ ↓ 0. In terms of the renormalized
voltage Ṽ ≡ ψV, weight matrix Ω̃ = ψΩ, and threshold T̃ = ψT, the spike acceptance ratio is
A = min{1, exp[(Ṽj(t) − T̃j)/ψ]}. This tends to A = Θ(Ṽj(t) − T̃j) as ψ ↓ 0 assuming that the
re-scaled variables remain order one, recovering the greedy spiking rule used in the EBN. If we
instead take the large-variance limit ψ ↑ ∞, the acceptance ratio tends to 1 under the assumption
that Ṽj(t) − T̃j remains O(1). Then, each spike proposal is accepted with probability one, and
the total firing rate of the population is 1/∆ spikes per second for a timestep ∆, meaning that the
population-averaged rate is 1/(nn∆) spikes per second.

Re-scaling the readout matrix Γ differs from re-scaling the target covariance matrix Ψ because the
target mean and recurrent spikes appear with the same power of Ψ (in particular, Ψ−1) but different
powers of Γ in the voltage dynamics, scaling as O(Γ) and O(Γ2), respectively. Thus, in the large-Γ
limit in discrete time, the contribution of the target mean should be negligible relative to that of the
recurrent spiking input, while the opposite should hold in the small-Γ limit. However, these different
scalings should not affect the limiting behavior of the acceptance ratio. In Figure B.1, we probe how
sweeping the scale of Γ over five orders of magnitude affects sampling from a Gaussian distribution
of fixed variance. We show that the population-averaged spike rate tends to 1/(nn∆) spikes per
second in the small-Γ limit, while the spike rate tends to zero in the large-Γ limit.
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Figure B.1: Sensitivity of the Metropolis-Hastings sampler to the scale of the readout matrix. a.
Sampling performance of a network of nn = 100 neurons sampling from a np = 10-dimensional
equicorrelated Gaussian with ρ = 0.75 depends on the variance of the elements of the random
readout matrix Γ. The stimulus setup is as in Figure 3. a.i. At large variance, spiking is suppressed
in networks with naïve or natural geometry. At small variance, spikes are accepted with probability
one, and the population-averaged firing rate tends to 1/(nn∆), as indicated by the red dashed line.
a.ii. Dimension-averaged estimate of the mean signal over the entire stimulus interval. a.iii. As in ii,
but for the variance. a.iv. As in ii, but for the 2-Wasserstein distance. b. As in a, but for a network
of nn = 320 neurons sampling from an np = 32-dimensional Gaussian. Shaded error patches
show 95% confidence intervals computed via bootstrapping over 100 realizations in all panels; see
Appendix E for further details.

B.7 Alternative spike proposal distributions and membrane voltage bounds

In this appendix, we have considered the simplest possible spike proposal distribution: at each
timestep, we choose one neuron uniformly at random as a candidate. With this choice, obviously,
only one neuron can spike at each timestep, which parallels the spiking rule used in the EBN: only the
neuron with the maximum membrane voltage among the entire population is allowed to spike [3, 5].
With a discretization timestep ∆, the maximum total spike rate is then 1/∆. In the EBN literature,
previous analysis has shown that this constraint is vital to avoid pathological spiking patterns [3, 5–8],
and introduced alternatives such as Poisson spiking rules [8] or hand-tuned refractory periods [9].
We remark that, in these models, the membrane voltage is always strictly bounded from above, which
does not hold in our setting. As reset is achieved only through spike emission, and is strictly speaking
a decrement of the voltage rather than a true reset, a neuron can exceed the threshold voltage if it is
not chosen as a candidate to spike.

B.8 Sampling from non-Gaussian exponential families

Though our main focus is on Gaussian target distributions, in this appendix we briefly discuss the
possibility of constructing a probabilistic spiking sampler for other exponential families. For a
distribution with density

P (z) = exp[−U(z)] (B.51)

for an energy function U , the acceptance ratio (B.18) becomes

A = min

{
1, exp

(
U [(1− η)Γrt−1]− U [(1− η)Γrt−1 + Γej ]

)}
. (B.52)

In analogy to the Gaussian case, one could then define the difference of energies to be the difference
of the membrane voltage and the threshold. However, the resulting membrane voltage would be a
nonlinear function of the firing rate, and would in general evolve according to non-linear dynamics.
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Most directly, assuming ∥Γej∥ to be small and U to be not too quickly varying, one could make the
second-order approximation

U [(1− η)Γrt−1]− U [(1− η)Γrt−1 + Γej ] ≈ −∇U [(1− η)Γrt−1]
⊤Γej

− 1

2
e⊤j Γ

⊤∇2U [(1− η)Γrt−1]Γej , (B.53)

and define the membrane voltage and threshold as

Vt−1 = −Γ⊤∇U [(1− η)Γrt−1] (B.54)

and

Tj,t−1 =
1

2
(Γ⊤∇2U [(1− η)Γrt−1]Γ)jj , (B.55)

respectively. With this choice, the threshold would be state-dependent, but one could incorporate its
state-dependence into a re-defined voltage.

C Sampling in efficient balanced networks

C.1 Encoding a dynamical system in efficient balanced networks

In this section, we provide a pedagogical derivation of the efficient balanced network [3, 5] using
the notation we use throughout the paper. The goal of the network is to encode an estimate z(t) of a
signal θ (a vector of size np × 1 in a population of nn spiking neurons. The estimate is obtained by
reading out a low pass version of the population spiking activity:

z(t) = Γr(t) (C.1)

where Γ is the np × nn readout matrix and r(t) is the low-pass filter spike history:

dri(t)

dt
= − 1

τm
ri(t) + oi(t) (C.2)

where τm is the time constant of the readout neurons and oi is the spike train of neuron i, oi = 1 if
the neuron spiked at t and oi = 0 otherwise.

The goal of the network is to minimize the squared error between the signal and the estimate with
an elastic net prior on the firing rate in order to find a good solution while keeping the population
spiking activity relatively low:

L = (θ − z)⊤(θ − z) + 2αr+ λr⊤r (C.3)

In the standard implementation of efficient balanced networks, neurons use a greedy spiking rule. A
neuron should fire if emitting a spike will lower the loss function, i.e., if

L(oti = 0) > L(oti = 1). (C.4)

Using the loss function and the definition of the estimate (z(t) = Γr(t)), we can rewrite the spiking
rule for neuron i as:

(θ − z)⊤(θ − z) + 2α
∑
j

rj + λ
∑
j

r2j

> (θ − z− Γi)
⊤(θ − z− Γi) + 2α(1 +

∑
j

rj) + λ((1 + ri)
2 +

∑
j ̸=i

r2j ). (C.5)

Removing terms that appear on both sides, we get

0 > (θ − z)⊤(−Γi) + Γ⊤
i (θ − z− Γi) + 2α+ 2λri + λ, (C.6)

which we can further simplify to

Γ⊤
i (θ − z)− α− λri >

1

2
(Γ⊤

i Γ+ λ). (C.7)
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The term on the left hand can be interpreted as the voltage potential of neuron i:

Vi = Γ⊤
i (θ − z)− α− λri, (C.8)

while the term on the right hand size can be interpreted as the firing threshold3:

Ti =
1

2
(λ+ Γ⊤

i Γi). (C.9)

If the voltage potential exceeds this threshold, then the neuron will fire and lower its voltage potential
back below threshold. Using (C.8) we can express the dynamics of the voltage potential as a function
of the dynamics of θ and its estimate z:

dVi(t)

dt
= Γ⊤

i

(
dθ

dt
− dz

dt

)
− λ

dri
dt
. (C.10)

We can rewrite this equation to obtain an expression for the membrane dynamics as a function of the
signal, the firing rates, and the spike trains of the neurons. By adding and subtracting 1

τm
Γ⊤
i θ− 1

τm
α

and noting that Γ⊤
i Γr + λri − Γ⊤

i θ + α = −Vi, we further simplify the expression to obtain
membrane dynamics as a function of the membrane potential, the effect of a new spike on the circuit
and the encoded dynamical system:

dVi
dt

= Γ⊤
i

[
dθ

dt
− Γ

(
− 1

τm
r+ o

)]
+

1

τm
λri − λoi (C.11)

= −(Γ⊤
i Γi + λ)oi + Γ⊤

i

dθ

dt
+

1

τm
Γ⊤
i Γr+

1

τm
λri

− 1

τm
Γ⊤
i θ +

1

τm
α+

1

τm
Γ⊤
i θ − 1

τm
α (C.12)

= − 1

τm
Vi −

1

τm
α− (Γ⊤

i Γi + λ)oi + Γ⊤
i

(
dθ

dt
+

1

τm
θ

)
. (C.13)

We therefore obtain the membrane dynamics for the efficient balanced spiking network proposed in
[3, 5]. We can rewrite the dynamics in vector form:

dV

dt
= − 1

τm
V − 1

τm
α−Ωo+ Γ⊤

(
dθ

dt
+

1

τm
θ

)
, with Ω = (Γ⊤Γ+ λInn). (C.14)

Using this scheme one can encode of variety of dynamical systems, including Langevin dynamics
[5–7].

C.2 Sampling in efficient balanced networks using naïve Langevin dynamics

Using the scheme presented in §C.1 above, Savin and Denève [5] proposed to implement a dynamical
system corresponding to the naïve Langevin dynamics of a multivariate normal distribution. We
use a linear Gaussian model similarly to several studies of neuroscience inspired sampling-based
networks [5, 10]. These networks estimate the posterior probability of hidden sources (θ) given
sensory inputs x corrupted by Gaussian noise, p(x|θ) = N (x;Aθ, σ2

nI), and prior expectations
on the values of the hidden sources p(θ) = N (θ; 0,C). The mean µ and covariance Σ of the
posterior probability of the features given the input, p(θ|x) ∝ p(x|θ)p(θ), are µ = 1

σ2
n
ΣA⊤x and

Σ =
(
C + 1

σ2
n
A⊤A

)−1

respectively. Up to an irrelevant constant offset, the corresponding energy

function is U(θ) = 1
2 (θ − µ)⊤Σ−1(θ − µ), and its gradient is ∇U(θ) = Σ−1(θ − µ). We define

τs as the timescale of the inference process and we set ϵt = 1
τs

. Then, we can write down the naïve
Langevin dynamics

dθ(t) =

(
− 1

τs
Σ−1θ +

1

τs
A⊤x

)
dt+

√
2

τs
dW(t) (C.15)

3Here, we chose to include the regularizing term α as a fixed offset in the voltage potential but it can
equivalently be included as an offset in the spiking threshold Ti, as discussed in Appendix B.3.
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These dynamics can be approximated by an efficient balanced network by replacing in (C.14) θ by z.
As discussed in [5], this approximation will introduce an acceptable error in most practical situations:

dV
dt

= − 1

τm
V − 1

τm
α−Ωo + Γ⊤

(
dz

dt
+

1

τm
z

)
, (C.16)

and we therefore obtain the membrane dynamics for the efficient balanced network proposed by
Savin and Denève [5]:

dV(t) =

[
− 1

τm
V − 1

τm
α−Ωo +

1

τs
Γ⊤(A⊤x−Σ−1Γr) +

1

τm
Γ⊤Γr

]
dt+ Γ⊤

√
2

τs
dW(t)

(C.17)
Note here that we have two timescales: the timescale of neuronal representations τm ∼ 20 ms,
controlled by the biophysical properties of the neurons, and the timescale τs of the Langevin diffusion
encoded by the network.

C.3 Sampling in efficient balanced networks using the complete recipe for stochastic gradient
MCMC

The model proposed by Savin and Denève [5] implements naïve Langevin dynamics, which are
known to be slow in high dimensions. Instead, we can use the “complete recipe” for stochastic
gradient MCMC [11] to write another sampler with the same equilibrium distribution but more
favorable convergence properties. For any positive semi-definite matrix D and skew-symmetric
matrix S, the following dynamics will converge to N (µ,Σ) as their stationary distribution:

dθ(t) =

[
− 1

τs
(D+ S)(Σ−1θ −A⊤x)

]
dt+B

√
2

τs
dW(t) (C.18)

with BB⊤ = D.

We can use (C.14) to encode this more general formulation into an efficient balanced network,
yielding the following membrane dynamics:

dV =
1

τm

[
−V − α− τmΩo+ Γ⊤

(
Inp − τm

τs
(D+ S)Σ−1

)
Γr+

τm
τs

Γ⊤(D+ S)A⊤x

]
dt

+ Γ⊤B

√
2

τs
dW. (C.19)

Any choice of positive semi-definite matrix D leads to a valid sampler, but extensive work inspired
by Amari’s seminal work on natural gradient descent [12, 13] has shown that a principled choice is to
take D to be the inverse of the Fisher information matrix G [11, 14]. For the multivariate Gaussian
distribution, the Fisher information matrix is given by:

Gij = −E
[

∂2

∂θi∂θj
logP (θ)

]
(C.20)

= E
[

∂2

∂θi∂θj

1

2
(θ − µ)⊤Σ−1(θ − µ)

]
(C.21)

= Σ−1
ij (C.22)

We should therefore choose D = G−1 = Σ. Note that for the multivariate Gaussian distribution, the
Fisher information matrix is identical to the Hessian and is location independent - it does not depend
on the value of θ. For more complex distributions, the Fisher information matrix might be difficult to
compute and an approximation can be used as long as it is valid (positive semi-definite) within the
complete recipe framework [11, 15, 16] and state dependent matrices can be corrected for using the
term Φ from the complete recipe in eq. (12) of the main text [11].

In this work, we have considered only hand-tuned or random choices for the matrices controlling the
geometry. Previous work by Hennequin et al. [10], when framed within the complete recipe, proposes
methods to find a skew-symmetric matrix S which accelerates the dynamics. Non-reversibility is
indeed known to accelerate learning, but analysing networks with such dynamics is notoriously
difficult [17, 18]. In contrast, approximations for the inverse Fisher information matrix are readily
computable, even in non-Gaussian settings [15, 16].
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C.4 Sampling from non-Gaussian exponential families using efficient balanced networks

To sample from a non-Gaussian exponential family distribution with energy U(θ) using an EBN, we
can simulate the “complete recipe” for a general exponential-family as stated in eq. (12) of the main
text, which we reproduce below:

dz(t) = − 1

τs
{[D(z) + S(z)]∇U(z) +Φ(z)} dt+B

√
2

τs
dW(t), (C.23)

where BB⊤ = D [19]. Here, we have introduced an auxiliary time constant τs, as in our previous
discussion of the Gaussian case. Then, the EBN voltage dynamics (C.14) become

dV(t) =

[
− 1

τm
V − 1

τm
α−Ωo+ Γ⊤

(
− 1

τs
{[D(z) + S(z)]∇U(z) +Φ(z)}+ 1

τm
z

)]
dt

+ Γ⊤B

√
2

τs
dW(t) (C.24)

where we have again made the approximation of the Langevin sampling trajectory by the approximate
sampling trajectory z =. It is easy to see that these dynamics will in general involve non-linear
dependence on the population firing rate r through the readout z = Γr.

D Natural gradient enables fast sampling in linear rate networks

In this section, we analyze how natural gradients enable fast sampling in rate networks designed to
sample from zero-mean Gaussian distributions. Our starting point is the complete recipe for sampling
from a zero-mean Gaussian distribution with covariance Σ :

dz(t) = −(D+ S)Σ−1z dt+
√
2D dW(t) (D.1)

where D is a symmetric positive-semidefinite matrix and S is skew-symmetric. In previous work,
Hennequin et al. [10] showed how these dynamics can be interpreted as a linear rate network, and
demonstrated that careful choice of S can accelerate sample autocorrelation timescales in networks
with D = Inp

. Here, our objective is to show how the geometry of inference, set by D, can accelerate
sampling in these rate networks.

Our analysis is a straightforward application of the classic theory of Ornstein-Uhlenbeck processes
[20–22]. Assuming for simplicity a deterministic initial condition z(0) = 0, the solution to this
stochastic differential equation is given by the Itô integral

z(t) =
√
2

∫ t

0

e−(D+S)Σ−1(t−s)B dW(s), (D.2)

which has ensemble mean zero and ensemble covariance

C(t, t′) ≡ Ez(t)z(t′)⊤ = 2

∫ min(t,t′)

0

ds e−(D+S)Σ−1(t−s)De−Σ−1(D−S)(t′−s) (D.3)

The ensemble distribution of z(t) is of course Gaussian, with mean zero and covariance given by the
equal-time covariance function C(t) ≡ C(t, t).

We assume that (D+ S)Σ−1 is a non-defective matrix with all eigenvalues having positive real part,
such that the process has a well-defined stationary state. By construction, the covariance matrix of
the stationary state is precisely the target covariance matrix Σ. In the stationary state, we have a
simplified two-point function

Cs(t− t′) ≡ Esz(t)z(t
′)⊤ =

{
e−(D+S)Σ−1(t−t′)Σ, t > t′

e−(D−S)Σ−1(t′−t)Σ t < t′.
(D.4)

where we have observed that

Σe−Σ−1(D−S)(t′−t) =

∞∑
j=0

(t− t′)j

j!
Σ[Σ−1(D− S)]j (D.5)

=

∞∑
j=0

(t− t′)j

j!
[(D− S)Σ−1]jΣ (D.6)

= e−(D−S)Σ−1(t′−t)Σ (D.7)
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One standard case in which the integral defining the non-stationary covariance function can be
evaluated explicitly is if A = (D+ S)Σ−1 is a normal matrix (i.e., if AA⊤ = A⊤A) [20]. Then,
there exists a unitary matrix U such that UU† = Inp

and

UAU† = UA⊤U† = diag(λ1, λ2, . . . , λnp
), (D.8)

which, for all t ≥ t′, yields

C(t, t′) = U†G(t, t′)U (D.9)

for

[G(t, t′)]ij = 2
e−λi|t−t′| − e−λit−λjt

′

λi + λj
[BB⊤]ij . (D.10)

We will measure the rate of convergence of the ensemble distribution to the stationary distribution
in the Kullback-Leibler (KL) divergence and 2-Wasserstein distance for several choices of D. We
note that this is not the same measure as considered in our numerical simulations, where we examine
the distribution of samples over time within a single trajectory, and measure the mean 2-Wasserstein
distance between univariate marginals. As noted in Appendix E, an organism must usually make
estimates based on the distribution of samples over a single trajectory. However, even at equilibrium,
it is challenging to analytically characterize the 2-Wasserstein distance between samples from a
Gaussian distribution and the underlying population distribution [23]. Therefore, we will consider
the ensemble distribution at a given time. We denote the KL divergence and 2-Wasserstein distances
as a function of time by K(t) and W2(t), respectively. As all distributions of interest are Gaussian,
we have the relatively simple formulas

K(t) =
1

2

[
trΣ−1C(t)− np + log

detΣ

detC(t)

]
(D.11)

and

W2(t)
2 = tr

[
C(t) +Σ− 2(Σ1/2C(t)Σ1/2)1/2

]
. (D.12)

D.1 Naïve Langevin dynamics

We first consider naïve Langevin sampling with D = Inp and S = 0. In this case, A = (D +

S)Σ−1 = Σ−1 is symmetric and therefore normal, hence, letting the diagonalization of Σ be

UΣU† = diag(σ1, . . . , σnn), (D.13)

the result above yields

C(t, t′) = U†G(t, t′)U (D.14)

for

[G(t, t′)]ij = σi(e
−|t−t′|/σi − e−(t+t′)/σi)δij (D.15)

for all t ≥ t′. In particular, equal-time covariances are governed by

[G(t, t)]ij = σi(1− e−2t/σi)δij . (D.16)

In matrix form,

C(t, t′) = Σ(e−Σ−1|t−t′| − e−Σ−1(t+t′)) (D.17)

and

C(t) = (Inp
− e−2Σ−1t)Σ. (D.18)

This choice yields stationary covariance

Cs(t− t′) = e−Σ−1|t−t′|Σ (D.19)

hence large eigenvalues of Σ will introduce long autocorrelation timescales.
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In this case, K(t) and W2(t) are simple to compute thanks to the fact that Σ commutes with C(t),
yielding

K(t) = −1

2

[
tr e−2Σ−1t + log det(Inp − e−2Σ−1t)

]
. (D.20)

and

W2(t) =

√
tr
{
Σ
[
Inp

− (Inp
− e−2Σ−1t)1/2

]2}
. (D.21)

In terms of the eigenvalues σ1, . . . , σn of Σ, these distances are

K(t) = −1

2

np∑
i=1

[
e−2t/σi + log det(1− e−2t/σi)

]
. (D.22)

and

W2(t) =

√√√√ np∑
i=1

σi
[
1− (1− e−2t/σi)1/2

]2
. (D.23)

D.2 Sampling in the space of natural parameters

We now consider sampling in the space of natural parameters, with D = Σ and S = 0. In this case,
A = DΣ−1 = Inp is trivially normal, hence, for t ≥ t′,

C(t, t′) = (e−|t−t′| − e−(t+t′))Σ, (D.24)

with

C(t) = (1− e−2t)Σ (D.25)

in particular. In this case, the stationary covariance is

Cs(t− t′) = e−|t−t′|Σ, (D.26)

hence the stationary autocorrelation timescale will be independent of the spectrum of Σ.

This setup can also easily be generalized to the case in which S ̸= 0. In this case, A = (D+S)Σ−1 =
Inp

+ SΣ−1 is not in general a normal matrix. However, we can evaluate the covariance function
by exploiting the particular structure of the problem. Factoring out the terms involving the identity
matrix and using the skew-symmetry of S, we have

C(t, t′) = 2

∫ min(t,t′)

0

ds e−SΣ−1(t−s)ΣeΣ
−1S(t′−s)e−(t−s)−(t′−s). (D.27)

We now observe that

ΣeΣ
−1S(t′−s) =

∞∑
j=0

(t′ − s)j

j!
Σ(Σ−1S)j (D.28)

=

∞∑
j=0

(t′ − s)j

j!
(SΣ−1)jΣ (D.29)

= eSΣ
−1(t′−s)Σ, (D.30)

hence e−SΣ−1(t−s)ΣeSΣ
−1(t′−s) = e−SΣ−1(t−s)eSΣ

−1(t′−s)Σ = e−SΣ−1(t−t′)Σ, and therefore

C(t, t′) = 2

∫ min(t,t′)

0

ds e−(t−s)−(t′−s)e−SΣ−1(t−t′)Σ. (D.31)

The equal-time covariance is then

C(t) = 2

∫ t

0

ds e−2(t−s)Σ (D.32)

= (1− e−2t)Σ, (D.33)
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as in the case S = 0. Thus, the rate of convergence of the ensemble sampling distribution to the
stationary distribution will be unaffected if we add this skew-symmetric term. With the addition of
the skew-symmetric term, the stationary covariance is

Cs(t− t′) = e−|t−t′|e−SΣ−1(t−t′)Σ, (D.34)

which reflects the fact that this term introduces non-reversible dynamics. The spectrum of this matrix
is, however, not easy to analyze in general.

Once again, K(t) and W2(t) are easy to compute thanks to the fact that C(t) commutes with Σ,
yielding

K(t) = −n
2

[
e−2t + log(1− e−2t)

]
. (D.35)

and

W2(t) =
√
trΣ

[
1− (1− e−2t)1/2

]
. (D.36)

Comparing the W2 distance for naïve Langevin sampling (D.23) with (D.36), we can see that
sampling in the space of natural parameters eliminates the sensitivity of convergence speed to large
eigenvalues of the covariance matrix. Moreover, comparing the stationary cross-covariance at timelag
τ ≡ t − t′ for naïve Langevin sampling, Cs(τ) = e−Σ−1|τ |Σ, to that for sampling in the natural
space, Cs(τ) = e−|τ |Σ, we can see that the same qualitative difference is present. We note that
Hennequin et al. [10] focused on the speed of decay in Cs(τ). Therefore, in this simple setting, there
is a clear intuitive picture of why natural gradients enable fast sampling.

E Numerical methods and supplementary figures

In this appendix, we describe our numerical methods and include supplementary figures. All
simulations were run in MATLAB 9.10 (R2021a) or 9.12 (R2022a) (The MathWorks, Natick, MA,
USA) on desktop workstations (CPU: Intel i9-9900K or Xeon W-2145, 64GB RAM). They were
not computationally intensive, and required less than 24 hours of compute time in total. The code
used to generate all figures is available from GitHub: https://github.com/Pehlevan-Group/
FastSpikingSampler.

For the sweeps in ρ we tested 100 values of ρ ∈ [0; 0.99]. For the dimension sweeps we varied
np ∈ [2, 4, 8, 16, 32, 64] and k = nn

np
∈ [1, 5, 10, 20] is the number of neurons per parameters. Here,

we showed results for k = 10. As expected, sampling failed in the case of k = 1 as the sign constraint
introduced by spiking restricts the network to efficiently sample only one half on the values for each
parameter but results were qualitatively similar for k = nn/np ∈ [5, 10, 20].

In Figures 2, E.2, E.3, 4, and E.4, convergence statistics are computed based on distributions
of samples over time, that is, the values visited by the sampler over the course of a single trial.
Note that this is different than many machine learning studies, which instead consider distributions
across realizations at a single timepoint. However, for an organism, probabilistic inference must
be performed within a single trial. Because estimation of the full 2-Wasserstein distance between
high-dimensional distributions is computationally expensive [24], we instead computed the mean
across dimensions of the 2-Wasserstein distances between the marginals of the sampling and target
distributions.

For Figures 2, E.2 and E.3, we sampled with a discretization timestep of ∆ = 10−4 s and a membrane
time constant of τm = 20 ms. Γ by drawing independent and identically distributed Gaussian element.
We uses τs = 0.01τm and scaled the elastic net regularization parameters using α = λ =

√
nn.

For Figures 3, 4, and E.4, we simulated a Metropolis-Hastings sampling network with a discretization
timestep of ∆ = 10−5 s and a membrane time constant of τm = 20 ms. In the naïve case, we
generated the readout matrices as Γ = [−M,M] for random matrices M with independent and
identically distributed Gaussian elements. To perform sampling in approximately the natural space,
we chose Γ = Σ1/2[−M,M] for M a random matrix with i.i.d. Gaussian elements. For the
dimension sweeps in 4c and E.4b, we scale the variance of the elements of M to be 1/np. We
probe the sensitivity of the sampler to the variance of the random matrix in Figure B.1, showing
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a b c

Figure E.1: Time course of the inference statistics in EBNs implementing Langevin sampling using
naïve and natural geometry. There is initially no input (target mean µ = 0). At time t = 0.5s, the
stimulus appears (target mean µ = 6). The network parameters are ρ = 0.8, np = 20 and nn = 200.
This corresponds to network parameters for which the difference between the naïve and natural
geometry starts to be sizeable (See Figures 2.c and E.3.a). a. The inferred mean converges faster for
the natural geometry and there is a steady state error in the naïve implementation. b. The transient in
the value of the estimated variance at stimulus onset (t = 0.5s) and the steady state error are larger
and the transient relaxes to baseline more slowly in the naïve implementation than with the natural
geometry. c. The transient in the W2 distance to the target distribution at stimulus onset (t = 0.5s)
and the steady state W2 distance are larger and the transient relaxes to baseline more slowly in the
naïve implementation than with the natural geometry. Shaded error patches show 95% confidence
intervals computed via bootstrapping over 100 realizations in all panels
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Figure E.2: Additional statistics of spike trains in EBNs implementing Langevin sampling using
naïve and natural geometry. a. Marginal distribution of θi after stimulus onset. b. Example raster
plots over a 100 ms window for naïve and natural geometry. c. The distribution of coefficients of
variation of ISIs across neurons.

that its performance is robust within some range of variances. The distributions in Figure 3b were
generated using 1000 realizations of the randomness in the proposal and accept/reject steps for a
single realization of the random matrix M. Statistics in Figures 4 and E.4 were computed across 100
realizations of the random matrix M and of the randomness in the proposal and accept/reject steps.
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