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LEARNING ALGORITHMS AND SIGNAL PROCESSING 
FOR BRAIN-INSPIRED COMPUTING

Inventors of the original artificial neural networks (ANNs) de-
rived their inspiration from biology [1]. However, today, most 
ANNs, such as backpropagation-based convolutional deep-

learning networks, resemble natural NNs only superficially. 
Given that, on some tasks, such ANNs achieve human or even 
superhuman performance, why should one care about such dis-
similarity with natural NNs? The algorithms of natural NNs are 
relevant if one’s goal is not just to outperform humans on certain 
tasks but to develop general-purpose artificial intelligence rivaling 
that of a human. As contemporary ANNs are far from achieving 
this goal and natural NNs, by definition, achieve it, natural NNs 
must contain some “secret sauce” that ANNs lack. This is why we 
need to understand the algorithms implemented by natural NNs.

Motivated by this argument, we have been developing ANNs 
that could plausibly model natural NNs on the algorithmic level. 
In our ANNs, we do not attempt to reproduce many biological 
details, as in existing biophysical modeling work. Rather, we try 
to develop algorithms that respect major biological constraints. 
For example, biologically plausible algorithms must be formu-
lated in the online (or streaming), rather than offline (or batch), 
setting. This means that input data are streamed to the algorithm 
sequentially, and the corresponding output must be computed 
before the next input sample arrives. Furthermore, memory 
accessible to a biological algorithm is limited so that no signifi-
cant fraction of previous inputs or outputs can be stored.

Another key constraint is that in biologically plausible NNs, 
learning rules must be local: a biological synapse can update its 
weight based on the activity of only the two neurons that the 
synapse connects. Such locality of the learning rule is violated 
by most ANNs, including backpropagation-based deep-learning 
networks. In contrast, our NNs employ exclusively local learn-
ing rules. Such rules are also helpful for hardware implementa-
tions of ANNs in neuromorphic chips [2], [3].

We derive the algorithms performed by our NNs from opti-
mization objectives. In addition to deriving learning rules for 
synaptic weights, as is done in existing ANNs, we also derive the 
architecture, activation functions, and dynamics of neural activ-
ity from the same objectives. To do this, we postulate only a cost 
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function and an optimization algorithm, which, in our case, is alter-
nating stochastic gradient descent/ascent [4]. The steps of this 
algorithm map to an NN, specifying its architecture, activation 
functions, dynamics, and learning rules. Viewing both weight 
and activity updates as the steps of an online optimization algo-
rithm allows us to predict the output of our NNs to a wide range 
of stimuli without relying on exhaustive numerical simulation.

To derive local learning rules, we employ optimization objec-
tives operating with pairwise similarities of inputs and outputs of 
an NN rather than individual data points. Typically, our objec-
tives favor similar outputs for similar inputs, hence the name 
similarity-matching objectives. The transformation of dissimi-
lar inputs in the NN depends on the optimization constraints. 
Despite using pairwise similarities, we still manage to derive 
online optimization algorithms.

Our focus is on unsupervised learning. This is not a hard con-
straint but rather a matter of priority. Whereas humans are clearly 
capable of supervised learning, most of our learning tasks lack 
big labeled data sets. On the mechanistic level, most neurons lack 
a clear supervision signal.

Background

Single-neuron online principal component analysis
In a seminal 1982 paper [5], Oja proposed that a biological neuron 
can be viewed as an implementation of a mathematical algorithm 
solving a computational objective. Specifically, he modeled a 
neuron by an online principal component analysis (PCA) algo-
rithm. As PCA is a workhorse of data analysis used for dimen-
sionality reduction, denoising, and latent factor discovery, Oja’s 
model offers an algorithmic-level description of biological NNs. 

Oja’s single-neuron online PCA algorithm works as fol-
lows. At each time step, ,t  it receives an input data sample, 

.x Rt
n!  As our focus is on the online setting, we use the same 

variable, ,t  to measure time and index the data points. Then, 
the algorithm computes and outputs the corresponding top 
principal component value, :y Rt !

	 ,y w xt t t1! <
- � (1)

where w Rt
n

1 !-  is the feature vector computed at time step, 
.t 1-  Here and ahead, lowercase italic letters are scalar variables, 

and lowercase boldfaced letters designate vectors. At the same time 
step ,t  after computing the principal component, the algorithm 
updates the (normalized) feature vector with a learning rate :h

	 .( )y yw w x wt t t t t t1 1! h+ -- - � (2)

If data are drawn independently from a stationary distribution 
with a mean vector of zero, the feature vector, ,w  converges 
to the eigenvector corresponding to the largest eigenvalue of 
input covariance [5].

The steps of the Oja algorithm in (1) and (2) naturally cor-
respond to the operations of a biological neuron. Assuming 
that the components of the input vector are represented by the 
activities (firing rates) of the upstream neurons, (1) describes a 
weighted summation of the inputs by the output neuron. Such 
weighted summation can be naturally implemented by stor-

ing the components of feature vector, ,w  in the corresponding 
synaptic weights. If the activation function is linear, the output, 

,yt  is simply the weighted sum. The weight update (2) is a bio-
logically plausible local synaptic learning rule. The first term 
of the update, ,yxt t  is proportional to the correlation of the 
presynaptic and postsynaptic neurons’ activities. The second 
term, ,ywt t

2  also local, asymptotically normalizes the synaptic 
weight vector to one. In neuroscience, synaptic weight updates 
proportional to the correlation of the presynaptic and postsyn-
aptic neurons’ activities are called Hebbian.

Minimization of the reconstruction error yields 
biologically implausible multineuron networks
Next, we would like to build on Oja’s insightful identification 
of biological processes with the steps of the online PCA al-
gorithms by computing multiple principal components using 
multineuron NNs. Instead of trying to extend the Oja model 
heuristically, we will derive them by using optimization of a 
principled objective function. Specifically, we postulate that 
the algorithm minimizes the reconstruction error, derive an 
online algorithm optimizing such objective, and map the steps 
of the algorithm onto biological processes.

In the conventional reconstruction error minimization 
approach, each data sample, ,x Rt

n!  is approximated as a lin-
ear combination of each neuron’s feature vector weighted by 
its activity [4]. Then the minimization of the reconstruction (or 
coding) error can be expressed as follows:

	 ,min min x Wy
t

T

t t
1

2
2

yW t
< <-

=

/ � (3)

where matrix ,W Rn k! #  ,k n1  is a concatenation of feature 
column vectors and T  is both the number of data samples and 
(in the online setting) the number of time steps.

In the offline setting, a solution to the optimization problem 
(3) is PCA: the columns of optimum W are a basis for the 
k-dimensional principal subspace [6]. Elements of W  could be 
constrained to avoid unreasonably low or high values. In the 
online setting, (3) can be solved by alternating minimization 
[4]. After the arrival of data sample, ,xt  the feature vectors are 
kept fixed while the objective (3) is minimized with respect to 
the principal components by running the following gradient-
descent dynamics until convergence:

	 ,y W x W W yt t t t t t1 1 1
.
= -< <

- - - � (4)

where $ is a derivative with respect to a continuous-time vari-
able that runs within a time step, .t  Unlike a closed-form out-
put of a single Oja neuron in (1), (4) is iterative.

After the output, yt converges at the same time step, ,t  the 
feature vectors are updated according to the following gradi-
ent-descent step, with respect to W  on the total objective:

	 .( )W W x W y yt t t t t t1 1! h+ - <
- - � (5)

If there were a single output channel, the algorithm in (4) and 
(5) would reduce to that in (1) and (2), provided that the scalar 
W Wt t1 1
<
- -  is rescaled to unity. In NN implementations of the al-

gorithm in (4) and (5), feature vectors are represented by synaptic 
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weights and components by the activities of output neurons. Then 
(4) can be implemented by a single-layer NN, as seen in Fig-
ure 1(a), in which activity dynamics converge faster than the time 
interval between the arrival of successive data samples. The later-
al connection weights, W Wt t1 1- <

- -  decorrelate neuronal feature 
vectors by suppressing activities of correlated neurons.

However, implementing the update in (5) in the single-layer 
NN architecture, as shown in Figure 1(a), requires nonlocal 
learning rules, making it biologically implausible. Indeed, the 
last term in (5) implies that updating the weight of a synapse 
requires the knowledge of output activities of all other neurons 
that are not available to the synapse. Furthermore, the matrix 
of lateral connection weights, ,W Wt t1 1- <

- -  in the last term 
of (4) is computed as a Gramian of feedforward weights, clear-
ly a nonlocal operation. This problem is not limited to PCA, 
and it arises in networks of nonlinear neurons as well [4], [11].

To respect the local learning constraint, many authors con-
structed biologically plausible single-layer networks using 
heuristic local learning rules that were not derived from an 
objective function [12], [13]. However, we think that abandoning 
the optimization approach creates more problems than it solves. 
Alternatively, NNs with local learning rules can be derived if 
one introduces a second layer of neurons [14]. However, such 
architecture does not map naturally on biological networks.

We outlined how the conventional reconstruction approach 
fails to generate biologically plausible multineuron networks 
for online PCA. In the next section, we introduce an alterna-
tive approach that overcomes this limitation. Furthermore, this 
approach suggests a novel view of neural computation, leading 
to many interesting extensions.

Similarity-based approach  
to linear dimensionality reduction
In this section, we propose a different objective function for 
the optimization approach to constructing PCA NNs, which 
we term similarity matching. From this objective function, we 

derive an online algorithm implementable by an NN with local 
learning rules. Then, we introduce other similarity-based al-
gorithms for linear dimensionality reduction that include more 
biological features, such as different neuron classes.

Similarity-matching objective function
We start by stating an objective function that will be used to 
derive NNs for linear dimensionality reduction. The similarity 
of a pair of inputs, xt  and ,xtl  both in ,Rn  can be defined as 
their dot product, .x xt t

<
l  Analogously, the similarity of a pair 

of outputs, which live in Rk  with ,k n1  is .yyt t
<
l  Similarity 

matching, as its name suggests, learns a representation where 
the similarity between each pair of outputs matches that of the 
corresponding inputs

	 ( ) .min
T
1 x x y yt t t t

t

T

t

T

2
2

11
, ,y yT1

-< <

==
f

l l

l

// � (6)

This offline objective function, previously employed for mul-
tidimensional scaling, is optimized by the projections of inputs 
onto the principal subspace of their covariance (i.e., performing 
PCA up to an orthogonal rotation). Furthermore, (6) has no lo-
cal minima other than the principal subspace solution [7], [15]. 
The similarity-matching objective in (6) may seem like a strange 
choice for deriving an online algorithm implementable by an NN. 
In (6), pairs of inputs and outputs from different time steps interact 
with each other. However, in the online setting, an output must be 
computed at each time step without accessing inputs or outputs 
from other time steps. In addition, synaptic weights do not appear 
explicitly in (6), seemingly precluding mapping onto an NN.

Variable substitution trick
Both of the aforementioned concerns can be resolved by a 
simple math trick akin to completing the square [16]. We first 
focus on the cross-term in the expansion of the square in (6), 
which we call similarity alignment. By introducing a new vari-
able, ,W Rk n! #  we can rewrite the cross-term
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FIGURE 1. (a) The single-layer NN implementation of the multineuron online PCA algorithm derived using the reconstruction approach requires 
nonlocal learning rules. (b) A Hebbian/anti-Hebbian network derived from similarity matching. (c) A biologically plausible NN with multiple popula-
tions of neurons for whitening inputs, derived from a constrained similarity-alignment cost function [7]. (d) The performance of the FSM algorithm, 
compared to state-of-the-art online PCA algorithms [8], [9] for the MNIST data set reduced to k 16=  dimensions (see [10] for details and error 
definitions). MNIST: Modified National Institute of Standards and Technology database; IPCA: incremental principal component analysis; CCIPCA: 
candid covariance-free IPCA.
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.min
T T
1 2 Try y x x y Wx W Wt

t

T

t

T

t t t t
t

T

t2
11 1W Rk n

- = - +< < < <

== =
! #

l

l l// / � (7)

To prove this identity, we find optimal W  by taking a de-
rivative of the expression on the right with respect to W  
and setting it to zero, and then we substitute the optimal 

/( / )T1W y x*
t
T

t t1= <
=  back into the expression. Similarly, for 

the quartic yt  term in (6)

	 .max
T T
1 2 Try y y y y My M Mt

t

T

t

T

t t t t
t

T

t2
11 1M Rk k

= -<< < <

== =
! #

l

l l// / � (8)

By substituting (7) and (8) into (6), we get

[ ( ) ( ) ( , , )],min max min
T

l1 2Tr TrW W M M W M yt t
t

T

1W M yR R Rk n k k t
k 1

- +< <

=
! ! !# # #

/
� (9)

where

	 ( ) .Wl 4 2, ,W M y x y y Myt t t t t t=- +< < < � (10)

In the resulting objective function in (9) and (10), optimal out-
puts at different time steps can be computed independently, 
making the problem amenable to an online algorithm. The price 
paid for this simplification is the appearance of the minimax 
optimization problem in variables W  and .M  Minimization 
over W  aligns output channels with the greatest variance di-
rections of the input, and maximization over M  diversifies 
the output by decorrelating output channels similarly to the 
Gramian, ,W W<  used previously. This competition in a gra-
dient descent/ascent algorithm results in the principal subspace 
projection, which is the only stable fixed point of the corre-
sponding dynamics [17].

Online algorithm and NN
We are ready to derive an algorithm for optimizing (6) online. 
First, we minimize (10) with respect to the output variables, ,yt  
while holding W  and M fixed using gradient-descent dynamics

	 .y Wx Myt t t
.
= - � (11)

As before, dynamics in (11) converge within a single time step, 
,t  and outputs .yt  After the convergence of ,yt  we update W  

and M  by the gradient descent of (7) and gradient ascent of 
(8), respectively

( ), ( ).W W y x W M M y y M
2ij ij i j ij ij ij i j ij! !h
h

+ - + - � (12)

The algorithm in (11) and (12), first derived in [17], can 
be naturally implemented by a biologically plausible NN, as 
shown in Figure 1(b). Here, activity of the upstream neurons 
corresponds to input variables. Output variables are computed 
by the dynamics of activity in (11) in a single layer of neurons. 
Variables W  and M  are represented by the weights of synapses 
in feedforward and lateral connections, respectively. The learn-
ing rules in (12) are local. That is, the weight update, ,WijT  for 
the synapse between the jth input neuron and the thi  output 
neuron depends only on the activities, ,x j  of the jth input neu-
ron and yi  of the thi  output neuron, and the synaptic weight. 

In neuroscience, learning rules in (12) for synaptic weights W  
and M-  [here, the minus sign indicates inhibitory synapses; 
see (11)] are called Hebbian and anti-Hebbian, respectively.

To summarize this section so far, starting with the similar-
ity-matching objective, we derived a Hebbian/anti-Hebbian 
NN for dimensionality reduction. The minimax objective can 
be viewed as a zero-sum game played by the weights of feed-
forward and lateral connections [16], [18]. This demonstrates 
that synapses with local updates can still collectively work 
together to optimize a global objective. A similar, although 
not identical, NN was proposed by Földiak [12] heuristical-
ly. The advantage of our optimization approach is that the 
offline solution is known.

Although no proof of convergence exists in the online setting, 
the algorithm in (11) and (12) performs well on large-scale data. 
A recent paper [10] introduced an efficient, albeit nonbiological, 
modification of the similarity-matching algorithm, fast similar-
ity matching (FSM), and demonstrated its competitiveness with 
the state-of-the-art principal subspace projection algorithms in 
both processing speed and convergence rate, as shown in Fig-
ure 1(d). FSM produces the same output yt  for each input xt  
as similarity matching by optimizing (10) by matrix inversion, 

.y M Wxt t
1= -  It achieves extra computational efficiency by 

keeping in memory and updating the M 1-  matrix rather than 
;M  see [10] for suggestions on the implementation of these algo-

rithms. A package with implementations of these algorithms can 
be found at https://github.com/flatironinstitute/online_psp and 
https://github.com/flatironinstitute/online_psp_matlab.

Other similarity-based objectives and linear networks
As the algorithm in (11) and (12) and the NN in Figure 1(b) 
were derived from the similarity-matching objective in (6), 
they project data onto the principal subspace but do not 
necessarily recover principal components per se. To derive 
PCA algorithms, we modified the objective function in (6) 
to encourage orthogonality of W  [19], [20]. Such algorithms 
are implemented by NNs of the same architecture, as in Fig-
ure 1(b), but with slightly different local learning rules.

Although the similarity-matching NN in Figure 1(b) relies 
on biologically plausible local learning rules, it lacks biologi-
cal realism in several other ways. For example, computing 
output requires recurrent activity that must settle faster than 
the time scale of the input variation, which is unlikely in biol-
ogy. To respect this biological constraint, we modified the 
dimensionality reduction algorithm to avoid recurrence [20].

Another nonbiological feature of the NN in Figure 1(b) is 
that the output neurons compete with each other by communi-
cating via lateral connections. In biology, such interactions are 
not direct but are mediated by interneurons. To reflect these 
observations, we modified the objective function by introduc-
ing a whitening constraint

	 , ,min
T T
1 1s.t.y y x x y y It

t

T

t

T

t t t t
t

t k2
11

, ,y yT1
- =< < <

==
f

l

l l// / � (13)

where Ik  is the k-by-k identity matrix. Then, by implementing the 
whitening constraint using the Lagrange formalism, we derived 
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NNs where interneurons appear naturally. Their activity is mod-
eled by the Lagrange multipliers, z zt t

<
l [see Figure 1(c)] [7]

( ),min max
T T
1 1y y x x z z y y ,t

t

T

t

T

t t t t
t

T

t

T

t t t t t2
11

2
11

, , , ,y y z zt T1 1
d- + -< < < <

== ==
f f

l

l l

l

l l l// //
� (14)

where ,t td l is the Kronecker delta. Notice how (14) contains the 
-y z similarity-alignment term similar to (7). We can now derive 

learning rules for the -y z  connections using the variable substi-
tution trick, leading to the network in Figure 1(c). In addition to 
dimensionality reduction, such a network can whiten the input 
data. For details of this and other NN derivations, see [7].

Nonnegative similarity-matching objective and 
nonnegative independent component analysis
So far, we considered similarity-based NNs comprising linear 
neurons. But many interesting computations require nonlin-
earity, and biological neurons are not linear. To construct more 
realistic and powerful similarity-based NNs, we note that the 
output of biological neurons is nonnegative (the firing rate can-
not be less than zero). Hence, we modified the optimization 
problem by requiring that the output of the similarity-matching 
cost function in (6) is nonnegative

	 .min
T
1 x x y yt t t t

t

T

t

T

2
2

11
, , 0y yT1

-< <

==
f $

l l

l

^ h// � (15)

Here, the number of output dimensions, ,k  may be greater than 
the number of input dimensions, ,n  leading to a dimensionally 
expanded representation. Equation (15) can be solved by the 

same online algorithm as in (6) except that the output variables 
are projected onto the nonnegative domain. Such an algorithm 
maps onto the same network and learning rules as in (12) [see 
Figure 1(b)] but with rectifying neurons [21], [25], [26], as 
shown in Figure 2(a).

A nonnegative similarity-matching (NSM) network learns fea-
tures that are very different from PCA. For example, when the net-
work is trained on whitened natural scenes, it extracts edge filters 
[21] (see Figure 2) as opposed to Fourier harmonics expected for 
a translationally invariant data set. Motivated by this observation, 
Bahroun and Soltoggio [24] developed a convolutional NSM net-
work with multiple resolutions and used it as an unsupervised fea-
ture extractor for subsequent linear classification on the CIFAR-10 
data set. They found that NSM NNs are superior to other single-
layer unsupervised techniques [24], [27] (see Table 1).

As edge filters emerge also in the independent component 
analysis (ICA) of natural scenes [28], we investigated a con-
nection of NSM with nonnegative ICA (NICA) used for blind 
source separation. The NICA problem is to recover indepen-
dent, nonnegative, and well-grounded (finite probability den-
sity function in any positive neighborhood of zero) sources, 

,s Rt
d!  from observing only their linear mixture, ,x Ast t=  

where A Rn d! #  and .n d$  Our solution of NICA is based 
on the observation that NICA can be solved in two steps [29], 
as shown in Figure 3(a). First, whiten the data and reduce it to 
d  dimensions to obtain an orthogonal rotation of the sources 
(assuming that the mixing matrix is full rank). Second, find 
an orthogonal rotation of the whitened sources that yields 
a nonnegative output, as in Figure 3(a). The first step can be 
implemented by the whitening network in Figure  1(c). The 
second step can be implemented by the NSM network, as in 
Figure 2(a), because an orthogonal rotation does not affect dot-
product similarities [25]. Therefore, NICA is solved by stack-
ing the whitening and the NSM networks, as in Figure 3(b). 
This algorithm performs well compared to other popular NICA 
algorithms [25], as shown in Figure 3(c).

Nonnegative similarity-based networks for 
clustering and manifold tiling
NSM can also cluster well-segregated data [21], [30], and for 
data concentrated on manifolds, it can tile them [31]. To under-
stand this behavior, we analyze the optimal solutions of nonnega-
tive similarity-based objectives. Finding the optimal solution for 
a constrained similarity-based objective is rather challenging, as 
has been observed for the nonnegative matrix factorization prob-
lem. Here, we introduce a simplified similarity-based objective 
that allows us to make progress with the analysis and that admits 
an intuitive interpretation. First, we address the simpler cluster-
ing task, which, for highly segregated data, has a straightforward 
optimal solution. Second, we address manifold learning by view-
ing it as a soft-clustering problem.

A similarity-based cost function and NN for clustering
The key to our analysis is formulating a similarity-based cost 
function, an optimization of which will yield an online algorithm 
and an NN for clustering. The algorithm should assign inputs xt  
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FIGURE 2. (a) A nonlinear Hebbian/anti-Hebbian network derived from 
NSM. (b) NSM learns edge filters from patches of whitened natural 
scenes. Learned filters are in small squares. See [21] for details of the 
simulations.

Table 1. The performance of unsupervised feature learning algorithms.

Algorithm Accuracy 
Convolutional NSM [24] 80.42% 
k-means [22] 79.60% 
Convolutional DBN [23] 78.90% 

We list linear classification accuracy on CIFAR-10 using features extracted by NSM 
networks. We also list the best single-layer feature extractor (k-means) from an earli-
er study [22] and a deep-belief network (DBN) [23] on the same task. Detailed 
comparisons are available in [24].
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to k  clusters based on pairwise similarities and output cluster 
assignment indices .yt  To arrive at a cost function, first con-
sider a single pair of data points, x1  and .x2  If ,x x21 1a<  where 
a  is a preset threshold, then the points should be assigned to 
separate clusters—that is, [ , ]1 0y1 = <  and [ , ]0 1y2 = <—set-
ting output similarity, ,y y1 2

<  to 0. If ,x x21 2a<  then the points 
are assigned to the same cluster, such as [ , ] .1 0y y1 2= = <  Such 
y1  and y2  are optimal solutions (although not unique) to the fol-
lowing optimization problem:

	 , . , .( )min 1 1s.tx x y y y y1 2 1 2 1 2 2 2
,0 0y y1 2

< < # < < #a - < <

$ $
	 (16)

To obtain an objective function that would cluster the whole data 
set of T  inputs, we simply sum (16) over all possible input pairs

( ) , , .min 1 1s.t.x x y y y yt t
t

T

t

T

t t T
11

1 2 2
, ,0 0y yT1

f< < # < < #a - < <

==
f$ $

l

l

l//
� (17)

Does optimization of (17) produce the desired clustering 
output? This depends on the data set. If a threshold, ,a  exists 
such that the similarities of all pairs within the same cluster 
are greater and similarities of pairs from different clusters are 

less than ,a  then the cost function in (17) is minimized by the 
desired hard-clustering output, provided that k  is greater than 
or equal to the number of clusters. To solve the objective of (17) 
in the online setting, we introduce the constraints in the cost 
via Lagrange multipliers. Using the variable substitution trick, 
we can derive an NN implementation of this algorithm [31], as 
shown in Figure 4(a). The algorithm operates with local Heb-
bian and anti-Hebbian learning rules, whose functional form is 
equivalent to (12).

Manifold-tiling solutions
In many real-world problems, data points are not well-segregat-
ed, but they lie on low-dimensional manifolds. For such data, 
the optimal solution of the objective in (17) effectively tiles the 
data manifold [31]. We can understand such optimal solutions 
using soft clustering (i.e., clustering where each stimulus may 
be assigned to more than one cluster and assignment indices 
are real numbers between zero and one). Each output neuron 
is characterized by the weight vector of incoming synapses, 
which defines a centroid in the input data space. The response 
of a neuron is maximum when data fall on the centroid and 
decay away from it. Manifold-tiling solutions for several data 
sets are shown in Figure 5.
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Authorized licensed use limited to: Harvard Library. Downloaded on August 31,2020 at 17:02:42 UTC from IEEE Xplore.  Restrictions apply. 



94 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2019   |

We can prove this result analytically by taking advantage of 
the convex relaxation in the limit of an infinite number of out-
put dimensions (i.e., ) .k "3  Indeed, if we introduce Grami-
ans ,D  such that ,D x xtt t t= <

l l  and ,Q  such that ,Q y ytt t t= <
l l  

and do not specify the dimensionality of y  by leaving the rank 
of Q open, we can rewrite (17) as

	 (( ) ),min Tr D E Q
1diagQ

TQ CP
a- -

#
!

� (18)

where E is a matrix whose elements are all ones, and the cone 
of completely positive T T#  matrices (i.e., matrices Q Y Y/ <  
with )0Y $  is denoted by CPT  [34]. Redefining the variables 
makes the optimization problem convex. For arbitrary data sets, 
optimization problems in CPT  are often intractable for large T  
[34] despite the convexity. However, for symmetric data sets, such 
as circle, two sphere and SO(3), we can optimize (18) by analyzing 
the Karush–Kuhn–Tucker conditions [31], as seen in Figure 5(a).

Other similarity-based NNs for clustering  
and manifold-tiling
A related problem to the objective in (17) is the previously stud-
ied convex semidefinite programming relaxation of commu-
nity detection in graphs [35], which is closely related to clus-
tering. The semidefinite program is related to (18) by requiring 
the nonnegativity of Q instead of the nonnegativity of Y

	 (( ) ).min Tr D E Q
, ,0 0 1diagQ Q Q

a- -
* $ #

� (19)

Although we chose to present our similarity-based NN 
approach to clustering and manifold tiling through the cost 
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FIGURE 5. Analytical and numerical manifold-tiling solutions of (17) for 
representative data sets provide accurate and useful representations. 
(a) A circular manifold (left) is tiled by overlapping localized receptive 
fields (right). In the continuum limit ( ),k "3  receptive fields are trun-
cated cosines of the polar angle, i  [31]. Similar analytical and numerical 
results are obtained for a spherical 3D manifold and SO(3) (see [31]). 
(b) The learning of the manifold of the zero digit from the MNIST data set 
by tiling the manifold with overlapping localized receptive fields. On the 
left is 2D linear embedding (PCA) of the outputs. The data are organized 
according to different visual characteristics of the handwritten digit (e.g., 
orientation and elongation). On the right are sample receptive fields over 
the low-dimensional embedding.
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function in (17), similar results can be obtained for other ver-
sions of similarity-based clustering objective functions. The 
NSM cost function in (15) and the NN derived from it [Fig-
ure 2(a)] can be used for clustering and manifold learning as well 
[21], [30], [31]. The k-means cost function can be cast into a 
similarity-based form, and an NN [Figure 4(b)] can be derived 
for its online implementation [36]. We introduced a soft k-means 
cost, also a relaxation of another semidefinite program for clus-
tering [37], and an associated NN, as seen in Figure 4(b) [36], 
and showed that they can perform manifold tiling [38].

The algorithms we discussed operate with the dot prod-
uct as a measure of similarity in the inputs. By augmenting 
the presented NNs by an initial random, nonlinear projection 
layer [Figure 4(c)], it is possible to implement nonlinear simi-
larity measures associated with certain kernels [32]. A clus-
tering algorithm using this idea is shown to perform on par 
with other online kernel clustering algorithms [32], as seen 
in Figure 4(d).

Discussion
To overcome the nonlocality of the learning rule in NNs de-
rived from the reconstruction error minimization, we proposed 
a new class of cost functions called similarity based. To sum-
marize, the first term in the similarity-based cost functions,

	 ( , ..., ) ,min fy y x x y yt
t

T

t

T

t t t T
11

1
,t yt
- +< <

==
6 !X

l

l l= G// � (20)

is the covariance of the similarity of the outputs and the simi-
larity of the inputs. Hence, the name similarity-based cost 
functions. Previously, such objectives were used in linear ker-
nel alignment [39]. Our key observation is that optimization of 
objective functions containing such a term in the online setting 
gives rise to local synaptic learning rules, as in (7) [16].

To derive biologically plausible NNs from (20), one must 
choose not just the first term but also the function, ,f  and 
the optimization constraints, ,X  so that the online opti-
mization algorithm is implementable by biological mecha-
nisms. We and others have identified a whole family of such 
functions and constraints (see Table 2), some of which were 
reviewed in this article. As a result, we can relate many fea-
tures of biological NNs to different terms and constraints in 
similarity-based cost functions and, hence, give them com-
putational interpretations.

Our framework provides a systematic procedure to design 
novel NN algorithms by formulating a learning task using simi-
larity-based cost functions. As evidenced by the high-performing 
algorithms discussed in this article, our procedure of incorporat-
ing biological constraints does not impede but rather facilitates the 
design process by limiting the algorithm search to a useful part of 
the NN algorithm space. The locality of learning rules in similarity-
based NNs makes them naturally suitable for implementation on 
adaptive neuromorphic systems, which have already been explored 
in custom analog arrays [3]. For broader use in the rapidly growing 
world of low-power, spike-based hardware with on-chip learning 
[2], similarity-based NNs were missing a key ingredient: spiking 

neurons. Very recent work [26] developed a spiking version of 
the NSM and took a step toward neuromorphic applications.

Despite the successes of similarity-based NNs, many inter-
esting challenges remain. First, whereas numerical experiments 
indicate that our online algorithms perform well, most of them 
lack global convergence proofs. Even for PCA networks, we 
can prove linear stability of the desired solution only in the sto-
chastic approximation setting. Second, motivated by biological 
learning, which is mostly unsupervised, we focused on unsu-
pervised learning. However, supervision, or reinforcement, does 
take place in the brain. Therefore, it is desirable to extend our 
framework to supervised, semisupervised, and reinforcement 
learning settings. Such extensions may be valuable as general 
purpose machine-learning algorithms. 

Third, whereas most sensory stimuli are correlated time series, 
we assumed that data points at different times are independent. 
How are temporal correlations analyzed by NNs? Solving this 
problem is important both for modeling brain function and devel-
oping general-purpose machine-learning algorithms. Fourth, 
another challenge is stacking similarity-based NNs. A heuristic 
approach to stacking yields promising results [24]. However, 
except for the NICA problem introduced in the “Nonnegative 
Similarity-Matching Objective and Nonnegative Independent 
Component Analysis” section, we do not have a theoretical under-
standing of how and why to stack similarity-based NNs. Finally, 
neurons in biological NNs signal each other using all-or-none 
spikes, or action potentials, as opposed to real-valued signals we 
considered. Is there an optimization theory accounting for spiking 
in biological NNs?
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