
Lecture Notes on Infinite-Width Limits of Neural Networks

Cengiz Pehlevan and Blake Bordelon

June 2023

Contents

1 Introduction 1

2 Setting and Notation 2

3 Numerical evidence that the limit is descriptive of practical networks 3

4 Why this scaling of parameters? 3

4.1 General Scaling . 4

4.1.1 Preactivations are ON (1) at initialization . 5

4.1.2 Predictions Evolve in ON (1) time . 7

4.1.3 Features evolve in ON (1) time . 8

4.1.4 Putting Constraints Together . 9

5 Construction of a theoretical description in the infinite-width limit 9

5.1 Deep Network Field Definitions and Scaling . 10

5.2 DMFT for Two Layer NN . 12

5.3 DMFT for L > 2 . 15

5.4 Extensions . 15

5.5 Relation to some other work . 15

6 Linear Networks 15

A Proof of Proposition 4.1 18

1 Introduction

Deep learning has indelibly shaped many fields of study and application, driving innovation and

pushing the boundaries of what is technologically feasible. Nevertheless, it continues to be viewed

as a “black box”—a complex system whose internal workings are largely inscrutable. The desire to

peek inside this box has led to an urgent need for a theory of deep learning.

Such a theory, ideally, would exhibit certain critical features. It should be analytically tractable

and/or efficiently computable, lending itself to straightforward mathematical treatment or rapid

1

computational implementation. In addition, it must be mechanistically interpretable, revealing the

inner workings of deep learning systems. Moreover, this theory should have strong predictive power,

accurately forecasting outcomes in scenarios relevant to practical applications. Lastly, it should

provide answers to questions that emerge within various domains, like physics or neuroscience, that

have leveraged the power of deep learning.

In the pursuit of constructing this theory, it might be beneficial to draw upon insights from the

field of physics—specifically, the physics of disordered systems and statistical mechanics. These

areas offer key conceptual tools, such as the notion of a thermodynamic limit where system-size-

dependent fluctuations become negligible. This limit allows for the definition of holistic system

descriptors that can unveil intriguing aspects of system behavior, including emergent phenomena.

In the context of deep learning, we propose to apply these concepts to the gradient-descent

training of neural networks. Our focus is on exploring the “infinite-width” limit, where “width”

refers to the number of units in a single layer of a neural network.

We will show that the limit can be taken in many different ways, and the particular way the limit

is taken can result in different neural network behavior. We will construct theoretical descriptions

of the emergent behavior in these limits.

We will present compelling evidence to suggest that a specific way to take this infinite-width

limit offers a robust description of neural network behavior that closely parallels the performance

of practical neural networks. Here,“practical” implies networks that perform at a state-of-the-art

level and can be trained using reasonable computational resources. Thus, by uncovering these new

operational paradigms, we hope to unlock a deeper understanding of these complex systems and

push the frontiers of their capabilities.

This set of lectures was prepared for the Princeton Machine Learning Summer School that was

held in June 2023. It is accompanied by a set of slides posted on the School website. We focus on

the results of [1, 2, 3] and present them in a more pedagogical manner to an audience of graduate

students in machine learning.

2 Setting and Notation

In this set of lecture notes we will be concerned with supervised training of multilayer percep-

trons (MLP) with (full batch) gradient flow. Extensions including convolutional architectures and

gradient descent[1] and [4].

We will consider the learning dynamics of a feedforward MLP of L layers and a scalar output.

Given an input xµ ∈ RD, where µ = 1, . . . , P , we define the hidden pre-activation vectors h(ℓ) ∈ RN

for layers ℓ ∈ {1, ..., L} as

f(xµ) =
1

γ0N
w(L) · ϕ(h(L−1)

µ) , h(ℓ+1)
µ =

1√
N

W (ℓ+1)ϕ(h(ℓ)
µ) , h(1)

µ =
1√
D
W (1)xµ, (1)

where

θ ≡ Vec{W (1), ...,w(L)}

are the trainable parameters of the network and ϕ is a twice differentiable activation function. We

2

will sometimes use W (L) ≡ w(L) for notational convenience. The role of the parameter γ0 will

become apparent later. Note that we omitted the bias terms here for notational simplicity. The

network parameters θ will be initialized form a Gaussian distribution with zero mean and unit

variance, θi ∼ N (0, 1). We explore different scalings in later section.

Given a training set

D ≡ {(xµ, yµ)}Pµ=1,

we train the network on a loss

L(D;θ) ≡ 1

P

P∑
µ=1

l (f(xµ;θ), yµ) =
1

P

P∑
µ=1

lµ (2)

with full-batch gradient flow

dθ

dt
= −η

1

P

P∑
µ=1

∂lµ
∂θ

= η
1

P

P∑
µ=1

∆µ
∂f(xµ;θ)

∂θ
(3)

where η is a learning rate which scales as

η = η0γ
2
0N, (4)

and we defined

∆µ ≡ −∂l (f(xµ;θ),yµ)

∂f(xµ;θ)
. (5)

We will consider various limits in our discussion; certain quantities will be taken to zero or

infinity. We will use the notation q ∼ O(Nm) to denote the fact that limN→∞
q

Nm < ∞.

3 Numerical evidence that the limit is descriptive of practical net-

works

A recent preprint by our group [3] provides numerical experiments that provides evidence that

networks of practical size in the initialization we are studying are already operating close to their

limiting behavior with respect to width. For our purposes, by practical we mean that the network

is not so wide as to be infeasible to train on a single 80 GB GPU and can perform well on the tasks

of interest.

4 Why this scaling of parameters?

In Eq. 1, we made certain choices about how quantities behave as N → ∞. We scaled weights by

either 1/N or 1/
√
N . Why is this particular choice?

3

4.1 General Scaling

In a series of work, Yang and colleagues [5] provided conditions for how feature-learning networks

may arise in the infinite-width limit. Here, we provide an alternative version of that argument,

modified from the Appendices of [1].

Infinite-width limit is defined by taking N → ∞. We have to decide how various parameters of

the network scale in this limit. Let’s start with the most general case. We will assume the following

parameterization and initialization

fµ =
1

γ
h(L)µ , (6)

h(L)µ =
1

NaL
w(L) · ϕ(h(L−1)

µ) , w
(L)
i ∼ N

(
0,

1

N bL

)
, (7)

h(ℓ)
µ =

1

Naℓ
W (ℓ)ϕ(h(ℓ−1)

µ) , W
(ℓ)
ij ∼ N

(
0,

1

N bℓ

)
, (8)

h(1)
µ =

1

Na1

1

D1/2
W (1)xµ , W

(1)
ij ∼ N

(
0,

1

N b1

)
, (9)

and we consider training with gradient flow dynamics

dθ

dt
= η

1

P

P∑
µ=1

∆µ
∂fµ
∂θ

. (10)

The learning rate is scaled as

η = η0γ
2N−c (11)

with η0 = O(1). The reason for the factor of γ2 in the learning rate η will be clear later. Lastly,

we will scale the feature learning parameter γ as

γ = γ0N
d, (12)

with γ0 = O(1). This role of this parameter in switching between lazy and rich training regimes

was already emphasized before by other authors [6, 7]. We will find that only d = 1
2 will allow

feature learning. The reason for the slightly odd parameterization of the learning rate and the

feature learning parameter will be apparent below.

We will now derive constraints on (a, b, c, d) which give desired large width behavior. We require

that in the infinite-width limit have 1. finite preactivations, 2. learning in finite time, 3. feature

learning in finite time?.

A note about P : we will keep it O(1). We will point to where scaling it with N might change

our results.

4

4.1.1 Preactivations are ON (1) at initialization

In this section, we identify conditions under which h(ℓ) have ON (1) entries. Precisely, we will

demand the mean-squared values of the entries of hℓ to be ON (1), where the averages are taken

across random network initializations. This ensures that the network is not diverging or saturated,

or have zero output.

We denote averages with respect to initialization weights by

⟨q(θ)⟩ ≡ Eθ [q(θ)] . (13)

Later on, when we construct the infinite-width limit through a dynamical mean field theory, we

will see that these averages can also be interpreted as averages across units in a network layer.

We first establish the base case for h(1). Note that h(1) is a multivariate Gaussian since it is

given by a summation of Gaussian random variables (see (9)). Therefore, its statistics are fully

defined by its first two moments:〈
h
(1)
µ,i

〉
=

1

Na1

1√
D

∑
k

〈
W

(1)
ik (0)

〉
xµ,k = 0. (14)

and

〈
h
(1)
µ,ih

(1)
ν,j

〉
=

1

N2a1

1

D

∑
kk′

〈
W

(1)
ik (0)W

(1)
jk′ (0)

〉
xµ,kxν,k′ = δij

1

N2a1+b1

1

D

D∑
k=1

xµ,kxν,k. (15)

Assuming that the input norm does not scale with N as N → ∞, we find the constraint that

2a1 + b1 = 0, (16)

for the mean-squared values of preactivations to be ON (1).

Now that we have a condition for h(1) to be ON (1) in its entries, we proceed to next layer. Note

the mean of the entries of h(2) are still zero:〈
h
(2)
µ,i

〉
=

1

Na2

∑
k

〈
W

(2)
ik (0)ϕ(h

(1)
µ,k)
〉
=

1

Na2

∑
k

〈
W

(2)
ik (0)

〉〈
ϕ(h

(1)
µ,k)
〉
= 0. (17)

Here, we used the independence of weights at initialization in each layer. The covariance is then〈
h
(2)
µ,ih

(2)
ν,j

〉
=

1

N2a2

∑
k,k′

〈
W

(2)
ik (0)W

(2)
jk′ (0)ϕ(h

(1)
µ,k)ϕ(h

(1)
ν,k′)

〉
=

1

N2a2

∑
k,k′

〈
W

(2)
ik (0)W

(2)
jk′ (0)

〉〈
ϕ(h

(1)
µ,k)ϕ(h

(1)
ν,k′)

〉

= δij
1

N2a2+b2−1

1

N

N∑
k=1

〈
ϕ(h

(1)
µ,k)ϕ(h

(1)
ν,k)
〉
= δij

1

N2a2+b2−1

〈
ϕ(h

(1)
µ,1)ϕ(h

(1)
ν,1)
〉
. (18)

In the second line, we used the independence of weights at initialization in each layer. In the

5

third line, we used that h
(1)
µ,k are identical in distribution. We demand the mild condition that ϕ

is square-integrable with respect to the measure of h1k, and is ON (1). Altogether, these arguments

imply that

2a2 + b2 = 1. (19)

It is easy to see that this argument can be iterated for all layers. Hence, we identify the set of

constraints

2aℓ + bℓ = 1, l = 2, . . . , L. (20)

While we are discussing preactivations, we want to point to a key property of them. We want

to also define and discuss the following quantity:

Φ(ℓ)
µν ≡ 1

N
ϕ(h(ℓ)

µ) · ϕ(h(ℓ)
ν), l = 1, . . . , L− 1 (21)

We will call these quantities feature kernels.

Proposition 4.1. Given conditions (16) and (20), at initialization, in the infinite-width limit, the

feature kernels asymptote to deterministic objects. Further, h
(ℓ)
i,µ are Gaussian distributed:

h
(ℓ)
i,µ ∼ N

(
0,Φ(ℓ−1)

µν δij

)
(22)

and

Φ(ℓ)
µν = E

h
(l)
µ ∼N

(
0,Φ

(ℓ−1)
µν

) [ϕ(h(l)µ)ϕ(h(l)ν)
]

(23)

with initial condition

Φ(0)
µν =

1

D
xµ · xν . (24)

Remark 4.1. The preactivations are Gaussian processes. This result is a slight generalization of

the existing work on Neural Network Gaussian Processes [8, 9, 10].

Proof. A modification of the argument given in https://jzv.io/assets/pdf/lecture_notes_

on_nngp_from_mft.pdf and [11] can be used to prove this. See Appendix A. The proof introduces

techniques which will be used again later. For readers unfamiliar with the techniques commonly

employed in statistical mechanics, we strongly recommend a review of the appendix before studying

the dynamical mean field theory construction.

Remark 4.2. We note that in this limit the neurons in a particular layer ℓ are identically and

independently distributed.

6

https://jzv.io/assets/pdf/lecture_notes_on_nngp_from_mft.pdf
https://jzv.io/assets/pdf/lecture_notes_on_nngp_from_mft.pdf

4.1.2 Predictions Evolve in ON (1) time

Next, we demand that predictions evolve in ON (1) time under gradient-flow. This ensures that the

network learns in finite time in the infinite-width limit.

By chain rule, the predictions evolve under

df(xµ;θ)

dt
=

∂fµ
∂θ

· dθ
dt

= −η
1

P

P∑
ν=1

∂fµ
∂θ

· ∂lν
∂θ

= η
1

P

P∑
ν=1

∂fµ
∂θ

· ∂fν
∂θ

∆ν (25)

For the network prediction evolution to be ON (1), we demand ∂tfµ ∼ ON (1). This requires the

following quantity to be ON (1):

γ2

N c

∂fµ
∂θ

· ∂fν
∂θ

=
1

N c

∂h
(L)
µ

∂θ
· ∂h

(L)
ν

∂θ
=

1

N c

L∑
ℓ=1

∑
i,j

∂h
(L)
µ

∂W
(ℓ)
ij

∂h
(L)
ν

∂W
(ℓ)
ij

=
1

N c

L∑
ℓ=1

∑
i,j

∑
m,n

∂h
(L)
µ

∂h
(ℓ)
µ,m

∂h
(ℓ)
µ,m

∂W
(ℓ)
ij

∂h
(L)
ν

∂h
(ℓ)
ν,n

∂h
(ℓ)
ν,n

∂W
(ℓ)
ij

=
1

N c

L∑
ℓ=2

∑
i,j

∑
m,n

∂h
(L)
µ

∂h
(ℓ)
µ,m

∂h
(L)
ν

∂h
(ℓ)
ν,n

1

N2aℓ
ϕ(h

(ℓ−1)
µ,j)δimϕ(h

(ℓ−1)
ν,j)δin +

∂h
(L)
µ

∂h
(1)
µ,m

∂h
(L)
ν

∂h
(1)
ν,n

1

N2a1D
xµ,jδimxν,jδin

=
1

N c

[
ϕ(h

(L−1)
µ) · ϕ(h(L−1)

ν)

N2aL
+

L−1∑
ℓ=2

∂h
(L)
µ

∂h
(ℓ)
µ

· ∂h
(L)
ν

∂h
(ℓ)
ν

ϕ(h
(ℓ−1)
µ) · ϕ(h(ℓ−1)

ν)

N2aℓ
+

∂h
(L)
µ

∂h
(1)
µ

· ∂h
(L)
ν

∂h
(1)
ν

xµ · xν

N2a1D

]

=
1

N c

[
1

N2aL−1
Φ(L−1)
µν +

L−1∑
ℓ=2

1

N2aℓ−1
G(ℓ)

µνΦ
(ℓ−1)
µν +

1

N2a1
G(1)

µνΦ
(0)
µν

]
, (26)

where defined

G(ℓ)
µν ≡ 1

N
g(ℓ)
µ · g(ℓ)

ν , g(ℓ)
µ ≡

√
N

dh
(L)
µ

dh(ℓ)
. (27)

Φ
(L)
µν concentrate and are ON (1) under the assumptions of the previous section. The same can

be said about G
(ℓ)
µν . To see this, we start with the last layer and define with a more general scaling

g
(L−1)
µ,i = NaL+bL/2

∂h
(L)
µ

∂h
(L−1)
µ,i

= N bL/2w
(L)
i ϕ̇(h

(L−1)
i). (28)

Then, 〈
g
(L−1)
µ,i

〉
= N bL/2

〈
w

(L)
i

〉〈
ϕ̇(h

(L−1)
i)

〉
= 0,〈(

g
(L−1)
µ,i

)2〉
= N bL/2

〈(
w

(L)
i

)2〉〈(
ϕ̇(h

(L−1)
i)

)2〉
=

〈(
ϕ̇(h

(L−1)
i)

)2〉
= ON (1). (29)

We can similarly extend this definition to earlier layers gℓ = NaL+bL/2 ∂h
L+1

∂hℓ to see whether gℓ

7

remains ON (1) under its backward-pass recursion

gℓ =

(
∂hℓ+1

∂hℓ

)⊤

gℓ+1 = ϕ̇(hℓ)⊙
[
N−aℓW ℓ(0)⊤gℓ

]
(30)

Now, letting zℓ = N−aℓW ℓ(0)⊤gℓ+1 as in the main text, we have that zℓ|{gℓ+1} is Gaussian with

covariance 〈
zℓi z

ℓ
j

〉
= δijN

−2aℓ−bℓgℓ+1 · gℓ+1 = δijN
−2aℓ−bℓ+1Gℓ+1. (31)

Under the inductive hypothesis that Gℓ+1 ∼ ON (1) and the previous constraint 2aℓ + bℓ = 1, the

z variables have ON (1) variance. Overall, we can thus ensure that Φℓ, Gℓ ∼ ON (1) if 2aℓ + bℓ = 1

for ℓ ∈ {1, ..., L} and 2a0 + b0 = 0.

We thus find the following constraints

2aℓ + c = 1 , ℓ ∈ {2, ..., L}

2a1 + c = 0 . (32)

Again this is consistent with the mean-field parameterization in the previous section provided c = 0

and a1 = 0 and aℓ =
1
2 , ℓ = 2, . . . , L. We see that for non-zero c, we need non-zero a1.

4.1.3 Features evolve in ON (1) time

Now, we desire that preactivations all evolve by an ON (1) amount during network training, which

we chose to define as stable feature learning. This requires
dh

(ℓ)
µ

dt = ON (1). To see the scaling this

requires, let’s start with looking at first layer:

dh
(1)
µ

dt
=

1

Na1

dW (1)

dt

1√
D
xµ =

1

D

1

N2a1

η0γ
2

N c

1

P

P∑
ν=1

∆ν

γ

∂h
(L)
ν

∂h
(1)
ν

xν · xµ

=
1

N2a1+c−d+1/2
η0γ0

1

P

P∑
ν=1

∆νg
(1)
ν Φ(0)

µν . (33)

Except the coefficient N−2a1−c+d−1/2, everything else is ON (1). Given (32), this leads to

2a1 + c− d+ 1/2 = 0 (34)

Given (32), this leads to

d =
1

2
(35)

8

Now, we can go to the next layers:

dh
(ℓ)
µ

dt
=

1

Naℓ

dW (ℓ)

dt
ϕ(h(ℓ−1)

µ) +
1

Naℓ
W (ℓ)ϕ̇(h(ℓ−1)

µ)⊙ dh
(ℓ−1)
µ

dt

=
1

N2aℓ

η0γ
2

N cP

P∑
ν=1

∆ν

γ

∂hLν

∂h
(ℓ)
ν

ϕ(h(ℓ−1)
ν) · ϕ(h(ℓ−1)

µ) (36)

=
1

N2aℓ+c−d−1/2
η0γ0

1

P

P∑
ν=1

∆νg
(ℓ)
ν Φ(ℓ−1)

µν +
1

Naℓ
W (ℓ)ϕ̇(h(ℓ−1)

µ)⊙ dh
(ℓ−1)
µ

dt
(37)

This implies 2aℓ + c− d− 1/2 = 0. Given (32), this leads to

d =
1

2
(38)

On the other hand, any choice of d < 1
2 gives kernel behavior. The choice d = 0 corresponds to

the NTK parameterization.

4.1.4 Putting Constraints Together

The set of parameterizations which yield O(1) feature evolution are those for which

1. At initialization, features h are ON (1) =⇒ 2aℓ + bℓ = 1 for ℓ ∈ {2, ..., L} and 2a1 + b1 = 0.

2. Outputs predictions evolve in ON (1) time =⇒ 2aℓ + c = 1, for ℓ ∈ {2, ..., L}, 2a1 + c = 0

3. Features h have ON (1) evolution =⇒ d = 1
2 .

The parameterization discussed in Section 2 satisfies these with d = 1
2 , aℓ = 1

2 , bℓ = 0, c = 0.

The quite general requirement for feature learning that d = 1
2 indicates that γ = γ0

√
N for any

choice of aℓ, bℓ, c as we use in the main text. This indicates that neural network prediction logits

at initialization scale as fµ ∼ O(N−1/2) in the feature learning infinite width limit. The set

of parameterizations which meet these three requirements is one dimensional with d = 1
2 , and

(a, b, c) ∈ {(a, 1−2a, 1−2a) : a ∈ R} for all layers except the first layer which has (a1 = a− 1
2 , b1 =

1− 2a). Our parameterization corresponds to a = 1
2 .

If one further demands ON (1) raw learning rate η, then the parameterization is unique. This

requires, η = η0γ
2N−c = ON (N2d−c) = ON (1) =⇒ c = 2d = 1. Under this constraint, aℓ = 0

and bℓ = 1 for ℓ ∈ {2, ..., L} and a1 = −1
2 and b1 = 1, which corresponds to a modification

of standard parameterization, with first and last layer altered with width. In a computational

algorithm, the learning rate would be η = η0γ
2N−c = η0γ

2
0 = ON (1). This is equivalent to the µP

parameterization stated in Yang and Hu [5].

5 Construction of a theoretical description in the infinite-width

limit

In this section, we introduce the dynamical field theory setup and saddle point equations. The path

integral theory we develop is based on the Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ)

9

framework [12], of which a useful review for random recurent networks can be found here [13,

14]. Similar computations can be found in recent works which consider typical behavior in high

dimensional classification on random data [15, 16].

5.1 Deep Network Field Definitions and Scaling

Some of this section will be repetitive, but it is good to be reminded of things. As discussed before,

we consider the following wide network architecture

fµ =
1

γ0
√
N

h(L)µ , h(L)µ =
1√
N

w(L) · ϕ(h(L−1)
µ)

h(ℓ)
µ =

1√
N

W (ℓ)ϕ(h(ℓ−1)
µ) , h(1)

µ =
1√
D
W (1)xµ (39)

with initialization θi ∼ N (0, 1). Let’s also remind ourselves

g(ℓ)
µ =

√
N

∂h
(L)
µ

∂h
(ℓ)
µ

(40)

which admit the recursion and base case

g(ℓ)
µ =

√
N

∂h
(L)
µ

∂h
(ℓ)
µ

=

(
∂h

(ℓ+1)
µ

∂h
(ℓ)
µ

)⊤(√
N

∂h
(L)
µ

∂h
(ℓ+1)
µ

)
= ϕ̇(h(ℓ)

µ)⊙ z(ℓ)
µ , z(ℓ)

µ ≡ 1√
N

W (ℓ+1)⊤g(ℓ+1)
µ

g(L−1)
µ = ϕ̇(h(L−1)

µ)⊙w(L), z(L−1)
µ ≡ 1√

N
w(L)g(L)µ , g(L)µ ≡

√
N (41)

and

Φ(ℓ)
µν (t, s) =

1

N
ϕ(h(ℓ)

µ (t)) · ϕ(h(ℓ)
ν (s)) , G(ℓ)

µν (t, s) =
1

N
g(ℓ)
µ (t) · g(ℓ)

ν (s) (42)

.

Using gradient flow with learning rate η = η0γ
2 on loss function L = 1

P

∑P
µ=1 ℓ(fµ, yµ), and

remembering the definition of ∆µ = − ∂L
∂fµ

, gradient flow induces the following dynamics

dθ

dt
=

η0γ

P

∑
µ

∆µ
∂h

(L)
µ

∂θ
,

dfµ
dt

=
η0
P

∑
α

∆αK
NTK
µα , KNTK

µα ≡ ∂h
(L)
µ

∂θ
· ∂h

(L)
α

∂θ
, (43)

where KNTK is the Neural Tangent Kernel [17]. For the scaling we are working with, we already

showed that (Equation (26))

KNTK
µα = Φ(L−1)

µν +
L−1∑
ℓ=1

G(ℓ)
µνΦ

(ℓ−1)
µν . (44)

Ultimately, we want to average over initializations to develop our mean field theory. We want to

come up with a reformulation of gradient flow equations that depend only on weights at initalization,

10

but not later. This turns out to be possible through simple manipulations.

The update equations for W (ℓ) and h(ℓ) give

d

dt
W (ℓ) =

η0γ0
P

P∑
µ=1

∆µ
∂h(L)

∂hℓ
µ

ϕ(h(ℓ−1)
µ)⊤ =

η0γ0√
NP

P∑
µ=1

∆µg
(ℓ)
µ ϕ(h(ℓ−1)

µ)⊤

Integrating in time:

W (ℓ)(t) = W (ℓ)(0) +
η0γ0√
NP

∫ t

0
ds
∑
µ

∆µ(s)g
(ℓ)
µ (s)ϕ(h(ℓ−1)

µ (s))⊤ (45)

Now, noting that h(ℓ)(t) = 1√
N
W (ℓ)(t)ϕ(h(ℓ−1)(t))

h(ℓ)
µ (t) = χ(ℓ)

µ (t) +
η0γ0
P

∑
ν

∫ t

0
ds∆ν(s)g

(ℓ)
ν (s)Φ(ℓ−1)

µν (t, s). (46)

where

χ(ℓ)
µ (t) ≡ 1√

N
W (ℓ)(0)ϕ(h(ℓ−1)

µ (t)). (47)

We can do the same thing for the zℓ
µ(t) variables using their iterative definition.

Collecting together:

h(ℓ)
µ (t) = χℓ

µ(t) +
η0γ0
P

∫ t

0
ds
∑
ν

∆ν(s)g
(ℓ)
ν (t)Φ(ℓ−1)

µν (s, t), ℓ = 1, . . . L− 1

z(ℓ)
µ (t) = ξ(ℓ)µ (t) +

η0γ0
P

∫ t

0
ds
∑
ν

∆ν(s)ϕ(h
(ℓ)
ν (s))G(ℓ+1)

µν (s, t) , g(ℓ)
µ (t) = ϕ̇(h(ℓ)

µ (t))⊙ z(ℓ)
µ (t),

ℓ = 1, . . . L− 1

∂fµ
∂t

=
η0
P

∑
ν

∆ν(t)

[
Φ(L−1)
µν +

L−1∑
ℓ=1

G(ℓ)
µνΦ

(ℓ−1)
µν

]
(48)

In the above, we implicitly utilize the base cases G
(L)
µν (t, s) = 1. We also introduced the following

random fields χℓ
µ(t), ξ

ℓ
µ(t) which involve the random initial conditions

χ(ℓ)
µ (t) =

1√
N

W (ℓ)(0)ϕ(h(ℓ−1)
µ (t)) , ξ(ℓ)µ (t) =

1√
N

W (ℓ+1)(0)⊤g(ℓ+1)
µ (t). (49)

We observe that the dynamics of the hidden features is controlled by the factor γ0. If γ0 = o(1)

then we recover static NTK in the limit as N → ∞.

11

5.2 DMFT for Two Layer NN

To construct our mean field theory, we will compute the moment generating functional for the

stochastic processes {χ(ℓ), ξ(ℓ)}L−1
ℓ=1

Z[{j(ℓ),v(ℓ)}] =

〈
exp

L−1∑
ℓ=1

P∑
µ=1

∫ ∞

0
dt
[
j(ℓ)µ (t) · χ(ℓ)

µ (t) + v(ℓ)
µ (t) · ξ(ℓ)µ (t)

]〉
θ0=Vec{W 1(0),...wL(0)}

(50)

Moments of these stochastic fields can be computed through differentiation of Z near zero-source〈
χ(ℓ1)
µ1

(t1)...χ
(ℓn)
µn

(tn)ξ
(ℓ̄1)
µ̄1

(t1)...ξ
(ℓ̄m)
µ̄m

(tm)
〉

=
δ

δj
(ℓ1)
µ1 (t1)

...
δ

δj
(ℓn)
µn (tn)

δ

δv
(ℓ̄1)
µ̄1

(t1)
...

δ

δv
(ℓ̄m)
µ̄m

(tm)
Z[{jℓ,vℓ}]|j=v=0. (51)

Here, we provide a warmup problem of a 2 layer network which allows us to illustrate the

mechanics of the MSRDJ formalism. Networks with more layers are considered in [1, 4]. We will

give the result of that computation in the next section.

Though many of the interesting dynamical aspects of the deep network case are missing in the

two layer case, our aim is to show a simple application of the ideas. The fields of interest are

χµ = 1√
D
W (1)(0)xµ and ξ = w(2)(0). Unlike the deeper L > 2 case, both of these fields are time

invariant since xµ does not vary in time. These random fields provide initial conditions for the

preactivation and pre-gradient fields hµ(t), z(t) ∈ RN , which evolve according to

hµ(t) = χµ +
η0γ0
P

∫ t

0
ds
∑
α

gαΦ
(0)
µα∆α(s),

z(t) = ξ +
η0γ0
P

∫ t

0
ds
∑
α

ϕ(hα(s))∆α(s),

gµ = ϕ̇(hµ(t))⊙ z. (52)

where the network predictions evolve as

d

dt
fµ(t) =

η0
P

∑
α

[Φµα(t, t) +Gµα(t, t)Φ
(0)
µα]∆α(t) (53)

for kernels

Φµα(t, t) =
1

N
ϕ(hµ(t)) · ϕ(hα(t)), Gµα(t, t) =

1

N
gµ(t) · gα(t). (54)

At finite N , the kernels Φ, G will depend on the random initial conditions χ, ξ, leading to a

predictor fµ which varies over initializations. If we can establish that the kernels Φ, G concentrate

at infinite-width N → ∞, then ∆µ are deterministic.

12

We now study the moment generating function for the fields

Z[{jµ}µ∈[P],v] =

〈
exp

(∑
µ

jµ · χµ + ξ · v

)〉
θ0

. (55)

To perform the average over θ0 = {W (1)(0),w(2)(0)}, we enforce the definition of χµ, ξ with delta

functions

1 =

∫
dχµ δ

(
χµ − 1√

N
W (1)(0)xµ

)
=

∫
dχµdχ̂µ

(2π)N
exp

(
iχ̂µ ·

(
χµ − 1√

D
W (1)(0)xµ

))
1 =

∫
dξ δ

(
ξ −w(2)(0)

)
=

∫
dξdξ̂

(2π)N
exp

(
iξ̂ ·

(
ξ −w(2)(0)

))
. (56)

Though this step may seem redundant in this example, it will be very helpful in the deep network

case, so we pursue it for illustration. After multiplying by these factors of unity and performing

the Gaussian integrals, we obtain

Z =

∫ ∏
µ

dχµdχ̂µ

(2π)N
dξdξ̂

(2π)N
exp

(
−1

2

∑
µα

χ̂µ · χ̂αΦ
(0)
µα +

∑
µ

χµ · (iχ̂µ + jµ)−
1

2
|ξ̂|2 + ξ · (iξ̂ + v)

)
(57)

We now aim enforce the definitions of the kernel order parameters with delta functions

1 = N

∫
dΦµα(t, s) δ (NΦµα(t, s)− ϕ(hµ(t)) · ϕ(hα(s)))

=

∫
dΦµα(t, s)dΦ̂µα(t, s)

2πiN−1
exp

(
N Φ̂µα(t, s) (NΦµα(t, s)− ϕ(hµ(t)) · ϕ(hα(s)))

)
1 = N

∫
dGµα(t, s) δ (NGµα(t, s)− gµ(t) · gα(s))

=

∫
dGµα(t, s)dĜµα(t, s)

2πiN−1
exp

(
NĜµα(t, s) (NGµα(t, s)− gµ(t) · gα(s))

)
, (58)

where the fields hµ(t), gµ(t) are regarded as functions of {χµ}µ, ξ (see Equation (52)) and the Φ̂, Ĝ

integrals run over the imaginary axis (−i∞, i∞). After this step, we can write

Z ∝
∫ ∏

µαts

dΦµα(t, s)dΦ̂µα(t, s)dGµα(t, s)dĜµα(t, s) exp
(
NS[Φ, Φ̂, G, Ĝ]

)
(59)

where the DMFT action S[Φ, Φ̂, G, Ĝ] is ON (1) and has the form

S[Φ, Φ̂, G, Ĝ] =
∑
µα

∫
dtds[Φµα(t, s)Φ̂µα(t, s) +Gµα(t, s)Ĝµα(t, s)] +

1

N

N∑
i=1

lnZ[ji, vi]. (60)

The single site moment generating function Z[j, v] arises from the factorization of the integrals over

13

N different fields in the hidden layer and takes the form

Z[j, v] =

∫ ∏
µ

dχµdχ̂µ

2π

dξdξ̂

2π
exp

(
−1

2

∑
µα

χ̂µχ̂αΦ
(0)
µα + (jµ + iχ̂µ)χµ − 1

2
ξ̂2 + (v + iξ̂)ξ

)

× exp

(
−
∫ ∞

0
dt

∫ ∞

0
ds
∑
µα

[Φ̂µα(t, s)ϕ(hµ(t))ϕ(hα(s)) + Ĝµα(t, s)gµ(t)gα(s)]

)
(61)

where, again we must regard hµ(t), gµ(t) as functions of χ, ξ. The variables in the above are no longer

vectors in RN but rather are scalars. We can write Z[j, v] =
∫ ∏

µ dχµdχ̂µdξdξ̂ exp
(
−H[{χµ, χ̂µ}, ξ, ξ̂, j, v]

)
where H is the logarithm of the integrand above. Since the full MGF takes the form Z ∝∫
dΦdΦ̂dGdĜ exp

(
NS[Φ, Φ̂, G, Ĝ]

)
, characterization of the N → ∞ limit requires one to iden-

tify the saddle point of S, where δS = 0 for any variation of these 4 order parameters.

δS

δΦµα(t, s)
= Φ̂µα(t, s) = 0 ,

δS

δΦ̂µα(t, s)
= Φµα(t, s)−

1

N

N∑
i=1

⟨ϕ(hµ(t))ϕ(hα(s))⟩i = 0

δS

δGµα(t, s)
= Ĝµα(t, s) = 0 ,

δS

δĜµα(t, s)
= Gµα(t, s)−

1

N

N∑
i=1

⟨gµ(t)gα(s)⟩i = 0 (62)

where the i-th single site average ⟨⟩i of an observable O(χ, χ̂, ξ, ξ̂) is defined as〈
O(χ, χ̂, ξ, ξ̂)

〉
i
=

1

Z[ji, vi]

∫ ∏
µ

dχµdχ̂µdξdξ̂ exp
(
−H[{χµ, χ̂µ}, ξ, ξ̂, ji, vi]

)
O(χ, χ̂, ξ, ξ̂) (63)

Since Φ̂ = Ĝ = 0 the single site MGF reveals that the initial fields are independent Gaussians

{χµ} ∼ N (0,Kx) and ξ ∼ N (0, 1). At zero source j,v → 0, all single site averages ⟨⟩i are

equivalent and we may merely write Φµα(t, s) = ⟨ϕ(hµ(t))ϕ(hα(s))⟩ , Gµα(t, s) = ⟨gµ(t)gα(s)⟩,
where ⟨⟩ is the average over the single site distributions for j,v → 0.

Putting all of the saddle point equations together, we arrive at the following DMFT

{χµ}µ∈[P] ∼ N (0,Φ(0)) , ξ ∼ N (0, 1)

hµ(t) = χµ +
η0γ0
P

∫ t

0
ds
∑
α

[z(s)ϕ̇(hα(s))]Φ
(0)
µα∆α(s)

z(t) = ξ +
η0γ0
P

∫ t

0
ds
∑
α

ϕ(hα(s))∆α(s)

Φµα(t, s) = ⟨ϕ(hµ(t))ϕ(hα(s))⟩ , Gµα(t, s) =
〈
z(t)z(s)ϕ̇(hµ(t))ϕ̇(hα(s))

〉
∂fµ
∂t

=
η0
P

∑
α

[Φµα(t, t) +Gµα(t, t)Φ
(0)
µα]∆α(t) (64)

We see that for L = 2 networks, it suffices to solve for the kernels on the time-time diagonal.

Further in this two layer case χ, ξ are independent and do not vary in time. These facts will not

hold in general for L ≥ 2 networks, which requires a more intricate analysis as we show in the next

14

section.

5.3 DMFT for L > 2

We have the following complete DMFT equations. The full derivation is given in appendices of

[18]. See also slides:

{u(ℓ)µ (t)}µ∈[P],t∈R+
∼ GP(0,Φℓ−1) , {r(ℓ)µ (t)}µ∈[P],t∈R+

∼ GP(0,G(ℓ+1)),

h(ℓ)µ (t) = u(ℓ)µ (t) + γ0

∫ t

0
ds
∑
α

[
A(ℓ−1)

µα (t, s) + ∆α(s)Φ
(ℓ−1)
µα (t, s)

]
ϕ̇(h(ℓ)α (s))z(ℓ)α (s)

z(ℓ)µ (t) = r(ℓ)µ (t) + γ0

∫ t

0

∑
α

[
Bℓ

µα(t, s) + ∆α(s)G
(ℓ+1)
µα (t, s)

]
ϕ(h(ℓ)α (s))

Φ(ℓ)
µα(t, s) =

〈
ϕ(h(ℓ)µ (t))ϕ(h(ℓ)α (s))

〉
, G(ℓ)

µα(t, s) =
〈
g(ℓ)µ (t)g(ℓ)α (s)

〉
A(ℓ)

µα(t, s) = γ−1
0

〈
δϕ(h

(ℓ)
µ (t))

δr
(ℓ)
α (s)

〉
, B(ℓ)

µα(t, s) = γ−1
0

〈
δg

(ℓ+1)
µ (t)

δu
(ℓ+1)
α (s)

〉
,

d

dt
fµ(t) =

η0
P

∑
α

[Φµα(t, t) +Gµα(t, t)Φ
(0)
µα]∆α(t) (65)

where we define base cases Φ
(0)
µα(t, s) =

1√
D
xµ · xν , and G

(L)
µα (t, s) = 1, A(1) = B(L) = 0. Note that

A and B are new fields that do not appear in two layers.

5.4 Extensions

See slides and [4] for extensions to other learning rules. [1] also discusses extensions to gradient de-

scent, weight decay, multiple output channels, varying widths, convolutional networks, momentum,

and Langevin dynamics (Bayesian networks).

5.5 Relation to some other work

Previous work studied the same limit and weight scaling we are studying in two layer networks and

dervied a mean field theory description of learning dynamics [19, 20]. This mean field theory is

given by a partial differential equation (PDE) that tracks the evolution of the density of parameters

(weights). A PDE version of our DMFT can be derived in two layers, see appendices of [1], however

this PDE tracks the density of h and z.

6 Linear Networks

When activations are taken to be linear, the DMFT simplifies and can be closed under deterministic

equations [18]. Here, we will work out the simplest case of two-layer networks, MSE loss and Φ(0) = I

here, which is exactly solvable [18].

15

For two layer linear networks, (64) becomes

{χµ}µ∈[P] ∼ N (0,Φ(0)) , ξ ∼ N (0, 1)

hµ(t) = χµ +
η0γ0
P

∫ t

0
ds g(s)

∑
α

Φ(0)
µα∆α(s)

g(t) = ξ +
η0γ0
P

∫ t

0
ds
∑
α

hα(s)∆α(s)

Hµα(t, s) = ⟨hµ(t)hα(s)⟩ , G(t, s) = ⟨g(t)g(s)⟩ , ∆µ = − ∂lµ
∂fµ

,

dfµ
dt

=
η0
P

∑
α

[Hµα(t, t) +G(t, t)Φ(0)
µα]∆α(t) (66)

We will introduce a vector notation for this section h, f and ∆, whose elements are hµ=1,...,P ,

fµ=1,...,P and ∆µ=1,...,P , and a matrix notation for H =
〈
hh⊤〉.

In this case, we can have a differential version of these equations:

dh(t)

dt
=

η0γ0
P

g(t)Φ(0)∆,

dg(t)

dt
=

η0γ0
P

h ·∆

H(t) =
〈
h(t)h(t)⊤

〉
, G(t) =

〈
g(t)2

〉
,

df(t)

dt
=

η0
P

[
H(t) +G(t)Φ(0)

]
∆, (67)

h(0) ∼ N (0,Φ(0)), g(0) ∼ N (0, 1), H(0) = Φ(0), G(0) = 1, f(0) = 0. (68)

If we further commit to MSE loss, we can get rid of the stochasticity fully, and obtain a set of

equations that only involve H, G and f . In this case:

∆µ = yµ − fµ, =⇒ ∆ = y − f , ∆̇ = −ḟ . (69)

Now, note that:

d

dt
H(t) =

〈
ḣ(t)h(t)⊤

〉
+
〈
h(t)ḣ(t)⊤

〉
=

η0γ0
P

Φ(0)∆
〈
g(t)h(t)T

〉
+

η0γ0
P

⟨g(t)h(t)⟩∆⊤Φ(0),

d

dt
G(t) = 2 ⟨ġ(t)g(t)⟩ = 2

η0γ0
P

⟨g(t)h(t)⟩ ·∆, (70)

and

d

dt
⟨g(t)h(t)⟩ = ⟨ġ(t)h(t)⟩+

〈
g(t)ḣ(t)

〉
=

η0γ0
P

H(t)∆+
η0γ0
P

G(t)Φ(0)∆ = γ0
df(t)

dt
(71)

Noting that ⟨g(0)h(0)⟩ = f(0) = 0, we can conclude that ⟨g(t)h(t)⟩ = γ0f(t).

16

Collecting all these facts together, we are left with the following set of equations

dH(t)

dt
=

η0γ
2
0

P
Φ(0)(y − f)f⊤ +

η0γ
2
0

P
f(y − f)⊤Φ(0),

dG(t)

dt
= 2

η0γ
2
0

P
f · (y − f),

df(t)

dt
=

η0
P

[
H(t) +G(t)Φ(0)

]
(y − f),

H(0) = Φ(0), G(0) = 1, f(0) = 0. (72)

We repeat that we obtained a deterministic set of equations.

We can further simplify this set of equations if we commit to Φ(0) = I. In this case we get:

dH(t)

dt
=

η0γ
2
0

P
(y − f)f⊤ +

η0γ
2
0

P
f(y − f)⊤,

dG(t)

dt
= 2

η0γ
2
0

P
f · (y − f),

df(t)

dt
=

η0
P

[H(t) +G(t)I] (y − f),

H(0) = I, G(0) = 1, f(0) = 0. (73)

Now, we assume an änsatz of the form:

H(t) = (Hy(t)− 1)
yy⊤

|y|2
+ I, f(t) = fy(t)

y

|y|
(74)

where Hy(t) ≡ y⊤H(t)y

|y|2 . Plugging these we get:

dHy(t)

dt
=

2η0γ
2
0

P
(y − fy)fy,

dG(t)

dt
=

2η0γ
2
0

P
(y − fy)fy,

dfy(t)

dt
=

η0
P

(Hy(t) +G(t)) (y − fy),

Hy(0) = 1, G(0) = 1, fy(0) = 0. (75)

where y ≡ |y|. Note that since Ḣy(t) = Ġ(t) and Hy(0) = G(0), Hy(t) = G(t). Hence, we are left

with

dHy(t)

dt
=

2η0γ
2
0

P
(y − fy)fy,

dfy(t)

dt
=

2η0
P

Hy(t)(y − fy),

Hy(0) = 1, fy(0) = 0. (76)

These equations can further be reduced to a one dimensional system by noting that there exists a

17

conservation law:

L ≡ Hy(t)
2 − γ20fy(t)

2,

dL

dt
= 0, L(0) = 1, =⇒ L(t) = 1. (77)

As t → ∞, we expect f(t) → y or ft(t) → y. Therefore, we see that

lim
t→∞

H(t) = I+
1

y2

(√
1 + γ20 − 1

)
yy⊤. (78)

Further,we can substitute Hy(t) =
√

1 + γ20fy(t) to obtain

dfy(t)

dt
=

2η0
P

√
1 + γ20fy(t) (y − fy), fy(0) = 0. (79)

For γ0 → 0, this gives the lazy NTK limit dynamics as expected

dfy(t)

dt
≈ 2η0

P
(y − fy), fy(0) = 0, =⇒ f(t) = (1− e−2η0t/P)y. (80)

See slides for simulations and other comments.

Acknowledgments

CP thanks Boris Hanin for invitation to teach at the Princeton Machine Learning Summer School

in June 2023. CP also thanks GPT-4 for help with proofreading and editing the introduction. CP

and BB thank Jacob Zavatone-Veth for discussions.

A Proof of Proposition 4.1

This section is heavily influenced by Jacob Zavatone-Veth’s notes https://jzv.io/assets/pdf/

lecture_notes_on_nngp_from_mft.pdf. We will consider the cumulant generating function of

preactivations

logZ ≡ log

〈
exp

i

L∑
ℓ=1

P∑
µ=1

b(ℓ)µ · h(ℓ)
µ

〉 (81)

and show that in the N → ∞ limit with the assumed weight scalings, this is a cumulant generating

function for Gaussian fields. Our derivation uses some standard but useful tricks from statistical

mechanics.

To reduce the notational burden of the following calculations, we introduce the following defi-

18

https://jzv.io/assets/pdf/lecture_notes_on_nngp_from_mft.pdf
https://jzv.io/assets/pdf/lecture_notes_on_nngp_from_mft.pdf

nitions

W (L) ≡ (w(L))⊤, ϕℓ(h) ≡

{
ϕ(h), ℓ = 1, . . . , L− 1
h√
D
, ℓ = 0

. (82)

Also, note that we are performing averages with respect to weights at initialization. We would nor-

maly denote this with notation W (ℓ)(0), but we are suppressing the time dependence for notational

convenience.

We first start by noting that the average in (81) is with respect to weights at initialization,

but we are interested in distribution of the preactivations. To get at preactivation statistics, we

multiply Z by “1”:

1 =

∫
dh(ℓ)

µ δ

(
h(ℓ)
µ − 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

)
, ℓ = 1, . . . , L (83)

meaning,

Z =

∫  P∏
µ=1

L∏
ℓ=1

dh(ℓ)
µ

 exp

i

L∑
ℓ=1

P∑
µ=1

b(ℓ)µ · h(ℓ)
µ

〈 P∏
µ=1

L∏
ℓ=1

δ

(
h(ℓ)
µ − 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

)〉

(84)

If we could perform the weight averages over the delta functions, we would end up with the measure

we are looking for. This turns out to be slightly complicated, but manageable as we will see. A

helpful trick is the following:

δ

(
h(ℓ)
µ − 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

)
=

∫
dĥ

(ℓ)
µ

(2π)N
exp

(
iĥ(ℓ)

µ ·
(
h(ℓ)
µ − 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

))
(85)

Inserting this into Z to replace the delta functions, we get

Z =

∫  P∏
µ=1

L∏
ℓ=1

dh(ℓ)
µ

dĥ
(ℓ)
µ

(2π)N

 exp

i
L∑

ℓ=1

P∑
µ=1

(
b(ℓ)µ + ĥ(ℓ)

µ

)
· h(ℓ)

µ


×

L∏
ℓ=1

〈
P∏

µ=1

exp

(
−iĥ(ℓ)

µ · 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

)〉
W (ℓ)

(86)

Here, we introduced the notation ⟨·⟩W (ℓ) for averages with respect toW (ℓ). Note that these averages

19

are Gaussian, separate in weights, and can be performed in closed form:〈
P∏

µ=1

exp

(
−iĥ(ℓ)

µ · 1

Naℓ
W (ℓ)ϕℓ−1(h

(ℓ−1)
µ)

)〉
W (ℓ)

=

N∏
i,j=1

∫
dW

(ℓ)
ij√

2π/N bℓ
exp

−
N∑

i,j=1

W
(ℓ)
ij

2/N bℓ
− i

W
(ℓ)
ij

Naℓ

P∑
µ=1

ĥ
(ℓ)
µ,iϕℓ−1(h

(ℓ−1)
µ,j)


=

N∏
i,j=1

exp

− 1

2N2aℓ+bℓ

P∑
µ,ν=1

ĥ
(ℓ)
µ,iϕℓ−1(h

(ℓ−1)
µ,j)ĥ

(ℓ)
ν,iϕℓ−1(h

(ℓ−1)
ν,j)


= exp

− 1

2N2aℓ+bℓ

P∑
µ,ν=1

ĥ(ℓ)
µ · ĥ(ℓ)

ν ϕℓ−1(h
(ℓ−1)
µ) · ϕℓ−1(h

(ℓ−1)
ν)

 (87)

Now we remember the constraints (16) and (20). Putting everything together, we get:

Z =

∫  P∏
µ=1

L∏
ℓ=1

dh(ℓ)
µ

dĥ
(ℓ)
µ

(2π)N

 exp

i

L∑
ℓ=1

P∑
µ=1

(
b(ℓ)µ + ĥ(ℓ)

µ

)
· h(ℓ)

µ


× exp

−1

2

P∑
µ,ν=1

ĥ(ℓ)
µ · ĥ(ℓ)

ν

(
1

N1−δ1,ℓ
ϕℓ−1(h

(ℓ−1)
µ) · ϕℓ−1(h

(ℓ−1)
ν)

) . (88)

The feature kernels appeared in the above expression:

Φ(ℓ)
µν ≡ 1

N
ϕ(h(ℓ)

µ) · ϕ(h(ℓ)
ν), ℓ = 1, . . . , L

Φ(0)
µν ≡ 1

D
xµ · xν . (89)

We will now formally introduce them again using delta functions and their Fourier transforms,

except Φ
(0)
µν which we can simply replace because it doesn’t include any variables that are integrated

over. The statements below are for ℓ = 1, . . . , L:

1 =

∫
dΦ(ℓ)

µν δ

(
Φ(ℓ)
µν − 1

N
ϕ(h(ℓ)

µ) · ϕ(h(ℓ)
ν)

)
,

=

∫
dΦ(ℓ)

µν

dΦ̂
(ℓ)
µν

2π
exp

(
iΦ̂(ℓ)

µν

(
Φ(ℓ)
µν − 1

N
ϕ(h(ℓ)

µ) · ϕ(h(ℓ)
ν)

))
=

∫
dΦ(ℓ)

µν

dΦ̂
(ℓ)
µν

4π/N
exp

(
i

2
Φ̂(ℓ)
µν

(
NΦ(ℓ)

µν − ϕ(h(ℓ)
µ) · ϕ(h(ℓ)

ν)
))

. (90)

20

This gives us

Z =

∫  P∏
µ=1

P∏
ν=1

L∏
ℓ=1

dΦ(ℓ)
µν

dΦ̂
(ℓ)
µν

4π/N

 P∏
µ=1

L∏
ℓ=1

dh(ℓ)
µ

dĥ
(ℓ)
µ

(2π)N

 exp

 i

2

P∑
µ,ν=1

Φ̂(ℓ)
µν

(
NΦ(ℓ)

µν − ϕ(h(ℓ)
µ) · ϕ(h(ℓ)

ν)
)

× exp

i
L∑

ℓ=1

P∑
µ=1

(
b(ℓ)µ + ĥ(ℓ)

µ

)
· h(ℓ)

µ − 1

2

P∑
µ,ν=1

ĥ(ℓ)
µ · ĥ(ℓ)

ν Φ(ℓ−1)
µν

 . (91)

We rewrite this in the following form

Z =

∫  P∏
µ=1

P∏
ν=1

L∏
ℓ=1

dΦ
(ℓ)
µνdΦ̂

(ℓ)
µν

4π/N

 eNS(Φ,Φ̂), (92)

where

S(Φ, Φ̂) =
i

2
Φ̂(ℓ)
µνΦ

(ℓ)
µν +

1

N

L∑
l=1

N∑
j=1

log z
(ℓ)
j

(
b
(ℓ)
µ,j ,Φ

(ℓ−1), Φ̂(ℓ)
)

(93)

and

z
(ℓ)
j

(
b
(ℓ)
µ,j ,Φ

(ℓ−1), Φ̂(ℓ)
)
≡

∫  P∏
µ=1

dh
(ℓ)
µ,jdĥ

(ℓ)
µ,j

(2π)N

 exp

− i

2

P∑
µ,ν=1

Φ̂(ℓ)
µνϕ(h

(ℓ)
µ,j)ϕ(h

(ℓ)
ν,j)


× exp

−1

2

P∑
µ,ν=1

ĥ
(ℓ)
µ,j ĥ

(ℓ)
ν,jΦ

(ℓ−1)
µν + i

P∑
µ=1

(
b
(ℓ)
µ,j + ĥ

(ℓ)
µ,j

)
h
(ℓ)
µ,j

 . (94)

We expect S to be ON (1). Hence, in the large-N limit, we can evaluate Z using a saddle point

approximation and

logZ = NS(Φ∗, Φ̂∗). (95)

Saddle point equations are given by

∂S

∂Φ
(ℓ)
µν

= 0,
∂S

∂Φ̂
(ℓ)
µν

= 0, ℓ = 1, . . . , L, µ, ν = 1, . . . , P. (96)

Evaluating the first of these, we get

iΦ̂(ℓ)
µν =

1

N

∑
j

〈
ĥ
(ℓ+1)
µ,j ĥ

(ℓ+1)
ν,j

〉
j
, iΦ̂(L)

µν = 0 (97)

21

where we introduced

⟨·⟩j ≡
1

z
(ℓ)
j

(
b
(ℓ)
µ,j ,Φ

(ℓ−1), Φ̂(ℓ)
)
∫  P∏

µ=1

dh
(ℓ)
µ,jdĥ

(ℓ)
µ,j

(2π)N

 (·) exp

− i

2

P∑
µ,ν=1

Φ̂(ℓ)
µνϕ(h

(ℓ)
µ,j)ϕ(h

(ℓ)
ν,j)


× exp

−1

2

P∑
µ,ν=1

ĥ
(ℓ)
µ,j ĥ

(ℓ)
ν,jΦ

(ℓ−1)
µν + i

P∑
µ=1

(
b
(ℓ)
µ,j + ĥ

(ℓ)
µ,j

)
h
(ℓ)
µ,j

 (98)

The second saddle point equation gives

Φ(ℓ)
µν =

1

N

N∑
j=1

〈
ϕ(h

(ℓ)
µ,j)ϕ(h

(ℓ)
ν,j)
〉
j

(99)

A consistent solution to (97) is given by

Φ̂(ℓ)
µν = 0 (100)

One can see this by the following argument. Suppose one is interested in calculating a moment

that involves a finite number, say k ∼ ON (1), of hs (and their powers). We can achieve this only

by turning on the corresponding bs in the moment generating function, and keeping the rest of the

bs zero. This means, in the sum (97), there are N − k averages, where (98) is evaluated with b = 0.

These terms are identical and equal to 0, because the h integral gives a δ(ĥ) when Φ̂
(ℓ)
µν = 0. The

remaining k terms are ON (1/N) and asymptote to zero, leading to a consistent solution.

Note that under this condition,

z
(ℓ)
j

(
b
(ℓ)
µ,j ,Φ

(ℓ−1),0
)
=

∫  P∏
µ=1

dh
(ℓ)
µ,jdĥ

(ℓ)
µ,j

(2π)N

 exp

−1

2

P∑
µ,ν=1

ĥ
(ℓ)
µ,j ĥ

(ℓ)
ν,jΦ

(ℓ−1)
µν + i

P∑
µ=1

(
b
(ℓ)
µ,j + ĥ

(ℓ)
µ,j

)
h
(ℓ)
µ,j


=

∫ [∏P
µ=1 dh

(ℓ)
µ,j√

(2π)N detΦ(ℓ−1)

]
exp

−1

2

P∑
µ,ν=1

h
(ℓ)
µ,j

(
Φ(ℓ−1)

)−1

µν
h
(ℓ)
ν,j + i

P∑
µ=1

b
(ℓ)
µ,jh

(ℓ)
µ,j


(101)

which is the moment generating function of a multivariate Gaussian. Note that when b
(ℓ)
µ,j = 0, h

(ℓ)
µ,j

are identical in distribution across the j index. Then,

logZ =
L∑

ℓ=1

N∑
j=1

log z
(ℓ)
j

(
b
(ℓ)
µ,j ,Φ

(ℓ−1),0
)

(102)

What does this reveal?

h
(ℓ)
µ,j ∼ N

(
0,Φ(ℓ−1)

µν δij

)
(103)

22

and

Φ(ℓ)
µν = E

h
(l)
µ ∼N

(
0,Φ

(ℓ−1)
µν

) [ϕ(h(l)µ)ϕ(h(l)ν)
]

(104)

with initial condition

Φ(0)
µν =

1

D
xµ · xν . (105)

References

[1] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution

in wide neural networks. In Advances in Neural Information Processing Systems, 2022.

[2] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width kernel and prediction fluctua-

tions in mean field neural networks. arXiv preprint arXiv:2304.03408, 2023.

[3] Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and

Cengiz Pehlevan. Feature-learning networks are consistent across widths at realistic scales.

arXiv preprint arXiv:2305.18411, 2023.

[4] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics

in wide neural networks. In International Conference on Learning Representations (ICLR),

2023.

[5] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural

networks. In International Conference on Machine Learning, pages 11727–11737. PMLR, 2021.

[6] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-

gramming. Advances in Neural Information Processing Systems, 32, 2019.

[7] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature

and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and

Experiment, 2020(11):113301, 2020.

[8] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,

pages 29–53. Springer, 1996.

[9] Christopher KI Williams. Computing with infinite networks. Advances in neural information

processing systems, pages 295–301, 1997.

[10] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and

Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International Confer-

ence on Learning Representations, 2018.

23

[11] Kai Segadlo, Bastian Epping, Alexander van Meegen, David Dahmen, Michael Krämer, and

Moritz Helias. Unified field theoretical approach to deep and recurrent neuronal networks.

Journal of Statistical Mechanics: Theory and Experiment, 2022(10):103401, 2022.

[12] Paul Cecil Martin, ED Siggia, and HA Rose. Statistical dynamics of classical systems. Physical

Review A, 8(1):423, 1973.

[13] A Crisanti and H Sompolinsky. Path integral approach to random neural networks. Physical

Review E, 98(6):062120, 2018.

[14] Moritz Helias and David Dahmen. Statistical field theory for neural networks, volume 970.

Springer, 2020.

[15] Elisabeth Agoritsas, Giulio Biroli, Pierfrancesco Urbani, and Francesco Zamponi. Out-of-

equilibrium dynamical mean-field equations for the perceptron model. Journal of Physics A:

Mathematical and Theoretical, 51(8):085002, 2018.

[16] Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynam-

ical mean-field theory for stochastic gradient descent in gaussian mixture classification. Ad-

vances in Neural Information Processing Systems, 33:9540–9550, 2020.

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and

generalization in neural networks. In Advances in neural information processing systems, pages

8571–8580. Curran Associates, Inc., 2018.

[18] Blake Bordelon and Cengiz Pehlevan. Learning curves for stochastic gradient descent on

structured features. International Conference on Learning Representations, 2022.

[19] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers

neural networks: dimension-free bounds and kernel limit. In Conference on Learning Theory,

pages 2388–2464. PMLR, 2019.

[20] Grant M Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks:

An interacting particle system approach. arXiv preprint arXiv:1805.00915, 2018.

24

	Introduction
	Setting and Notation
	Numerical evidence that the limit is descriptive of practical networks
	Why this scaling of parameters?
	General Scaling
	Preactivations are ON(1) at initialization
	Predictions Evolve in ON(1) time
	Features evolve in ON(1) time
	Putting Constraints Together

	Construction of a theoretical description in the infinite-width limit
	Deep Network Field Definitions and Scaling
	DMFT for Two Layer NN
	DMFT for L>2
	Extensions
	Relation to some other work

	Linear Networks
	Proof of Proposition 4.1

