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Coordinated drift of receptive fields in 
Hebbian/anti-Hebbian network models 
during noisy representation learning

Shanshan Qin    1,2, Shiva Farashahi3,6, David Lipshutz    3,6, 
Anirvan M. Sengupta3,4, Dmitri B. Chklovskii3,5 & Cengiz Pehlevan    1,2 

Recent experiments have revealed that neural population codes in many 
brain areas continuously change even when animals have fully learned 
and stably perform their tasks. This representational ‘drift’ naturally leads 
to questions about its causes, dynamics and functions. Here we explore 
the hypothesis that neural representations optimize a representational 
objective with a degenerate solution space, and noisy synaptic 
updates drive the network to explore this (near-)optimal space causing 
representational drift. We illustrate this idea and explore its consequences 
in simple, biologically plausible Hebbian/anti-Hebbian network models 
of representation learning. We find that the drifting receptive fields of 
individual neurons can be characterized by a coordinated random walk, 
with effective diffusion constants depending on various parameters such 
as learning rate, noise amplitude and input statistics. Despite such drift, 
the representational similarity of population codes is stable over time. Our 
model recapitulates experimental observations in the hippocampus and 
posterior parietal cortex and makes testable predictions that can be probed 
in future experiments.

Memories and learned behavior can be stable for a long time. We can 
recall vividly the memory of events that happened years ago. Motor 
skills, such as riding a bike, once learned, can last life-long even without 
further practice. Learning and memory lead to structural changes in 
the brain’s neural networks establishing associations between external 
stimuli and internal neural population activities or representations. A 
natural question is then whether stable task performance and memories 
are related to stable neural representations.

Recent technical advances in electrophysiology and optical imag-
ing have enabled researchers to address this question by studying the 
long-term dynamics of neural population activity in awake-behaving 
animals1–6. A number of these experiments have shown that neural 
activities in cortical areas that are essential for specific tasks undergo 

continuous reorganization even after the animals have fully learned 
their tasks, a phenomenon termed ‘representational drift’7,8. For 
instance, in sensorimotor tasks, neural representations in the posterior 
parietal cortex (PPC) of mice change across days while the performance 
of animals remain stable and high9. Place fields of individual place 
cells in the CA1 region of the hippocampus drift over days and weeks 
even when the animals remain in the same familiar environment1,10,11. 
Individual neurons in the primary motor cortex and supplementary 
motor cortex show unstable tuning while animals perform highly 
stereotyped motor tasks12 (but see refs. 13–15). The neural ensemble 
representation of conditional stimuli in mouse amygdala shows con-
tinuous change over days after fear conditioning16. Representational 
drift has been observed even in primary sensory cortices, such as the 
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these networks satisfy the learning and representational degeneracy 
criteria of our hypothesis. To complete the ingredients, in this paper, we 
introduced noisy synaptic updates to Hebbian/anti-Hebbian networks 
and explored the properties of the representational drift that arises. 
We then tested the predictions of our model qualitatively and quanti-
tatively against experimental data, comparing to relevant null models, 
including an independent random walk model of representational drift.

By numerical and analytical methods, we find that while the RFs 
of individual neurons change significantly over time, the representa-
tional similarity of population codes remains stable. We show that the 
drift dynamics of individual RFs can be largely captured by a random 
walk on the input data manifold, with the effective diffusion constant 
depending on noise amplitude, learning rate and other model param-
eters. However, at the population level, the drifting RFs are coordi-
nated—unlike a null model where RFs perform independent random 
walks from each other on the data manifold—in a way that preserves 
representational similarity. We verify this key prediction by analyzing 
experimental data. Our model accounts for many other recent experi-
mental observations in the hippocampus and PPC and makes further 
testable predictions.

Overall, our results show how optimal representation learning and 
noise can lead to representational drift while maintaining representa-
tional similarity. While our modeling effort focuses on specific models 
and brain areas, our observation that drift of RFs is coordinated may be 
a general property of noisy representation learning with degenerate 
optimal network configurations.

Results
Drift dynamics in linear Hebbian/anti-Hebbian networks
We first study drift in linear Hebbian/anti-Hebbian networks, which 
compress inputs into a lower dimensional principal subspace29. While 
the resulting RFs are not localized, it is still instructive to study how 
learned representations evolve with noisy synaptic updates in this 
analytically tractable model. The insights we build will carry over to 
nonlinear network models.

The network we consider minimizes a similarity-matching cost 
function for its learned representations29. Here, the similarity between 
two vectors is defined as their dot product. Let xt ∈ ℝn, t = 1,⋯ ,T  be 
a set of network inputs (or sensory stimuli) and yt ∈ ℝk, k < n be the 
corresponding outputs constituting a neural representation, that is, 
firing rate vector. Similarity matching minimizes the mismatch 
between the similarity of pairs of inputs and corresponding pairs of 
outputs

min
∀t∈{1,…,T }∶yt

1
T2

T
∑
t=1

T
∑
t′=1

(x⊤t xt′ − y⊤t yt′ )
2. (1)

mouse visual cortex17,18 and piriform cortex3. The ubiquity of represen-
tational drift raises several important questions: what are the underly-
ing mechanisms of such drift? How can neural circuits generate stable 
coding in the presence of continuous drift? What are the dynamics of 
representational drift?

We put forward that representational drift can be accounted by 
a learning process with noisy synaptic dynamics and a degeneracy of 
possible learned representations. Indeed, synapses in the cortex are 
highly dynamic and have a relatively short lifetime with respect to task 
memories19–21. Thus, synaptic configurations in the brain might con-
tinuously evolve even if task performance is stable. Representational 
degeneracy can arise when learning representations of sensory inputs 
by optimizing a representational objective. Many different normative 
accounts of sensory representations have been proposed in neurosci-
ence22–30. If the representational objective has many solutions, meaning 
there are many optimal neural representations of the input stimuli, 
noisy synaptic updates during learning will drive the network to explore 
the synaptic weight space that corresponds to (near-)optimal neural 
representations. In other words, the neural representation will drift 
within the space of optimal representations.

We illustrate this idea and explore its consequences by focusing 
on representational drift in brain areas where neurons have localized 
receptive fields (RFs), such as the hippocampus and PPC1,9,10,31,32. In 
these systems, populations of neurons with ‘bump’ RFs tile the param-
eter space they encode (Fig. 1a); however, these bumps may move, or 
drift, on the parameter space over time1,9,10. By tracking the dynamics 
of these bumps over their respective parameter spaces, recent experi-
mental studies measured and quantified the drift of localized RFs in 
hippocampal place cells1,10 and PPC9 and provided datasets that allow 
testing of our hypothesis.

To further constrain our hypothesis and generate testable pre-
dictions for drift of localized RFs in such datasets, we introduce a 
minimal neural network model that exhibits all the mentioned ingre-
dients—learning, degeneracy and noisy synaptic dynamics—for rep-
resentational drift. Localized RFs can be modeled by a well-studied 
class of biologically plausible networks for representation learning: 
Hebbian/anti-Hebbian networks33,34 (Fig. 1b). These networks optimize 
similarity-matching objectives which exhibit a degeneracy of optimal 
representational solutions, all of which share the same representational 
similarity matrix34–36. As we will show, representational similarity is also 
preserved in experiments we consider, providing further motivation 
for our choice. Through mathematical analysis of the optimal solu-
tions of certain similarity-matching objectives, Hebbian/anti-Hebbian 
networks with rectifying nonlinearities have been shown to learn popu-
lation codes that tile the domain of latent variables of input data in a 
way that individual neurons have local ‘bump’ tuning curves37. Hence, 
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Fig. 1 | Learning localized RFs in Hebbian/anti-Hebbian networks. a, Illustration of localized RFs that tile the data manifold. b, A Hebbian/anti-Hebbian network with 
non-negative neural activity can learn localized RFs.
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Importantly, there is a continuum of equally optimal solutions to 
this problem which are given by the infinitely different ways of project-
ing the inputs to their principal subspace29. This degeneracy can be 
seen from the rotational symmetry of the cost function, Eq. (1). For any 
set of outputs {y1,… ,yT}, the sets {Ry1,⋯ ,RyT} have the same cost, 
where R is an orthogonal matrix.

Previous work showed that optimal representations for this cost 
function can be learned by a neural network in an online manner, where 
each input xt is presented sequentially and an output yt is produced by 
running the following neural dynamics until convergence29 (Methods):

ẏt = Wxt −Myt. (2)

Here, W holds the feedforward synaptic weights and M the lateral syn-
aptic weights.

After each presentation of an input and convergence of the neural 
dynamics, the weights W and M are updated with a Hebbian and an 
anti-Hebbian rule, respectively:

ΔW = η (ytx⊤t −W) , ΔM = η (yty⊤t −M) . (3)

These learning rules are local in the sense that synaptic updates only 
depend on activities of presynaptic and postsynaptic neurons. The 
update of M is anti-Hebbian due to the negation in Eq. (2). These weight 
updates constitute a gradient-based optimization algorithm for the 
similarity-matching cost function given in Eq. (1)29,36. As the number of 
inputs increases, these weights converge to a configuration where the 
network outputs are projections of the input to a principal subspace, 
minimizing the similarity-matching cost function29,36.

We now turn to representational drift under noisy synaptic plastic-
ity. We introduce an additive, independent and identically distributed 
Gaussian noise for each synaptic update (Eq. 12 in Methods). The net-
work still learns the principal subspace and maintains a stable perfor-
mance in its ability to project its inputs to their principal subspace 
(Extended Data Fig. 1a,b). However, due to the synaptic noise, network 
weights do not settle down to fixed points but roam around in the 
subspace that gives equally good solutions to the similarity-matching 
problem. Consequently, the representation of a given stimulus yt drifts 
over time (Fig. 2a). However, the similarity between any two outputs 
yt and yt′ remains stable which we show by plotting the output similarity 
matrix Y⊤Y, where Y ≡ [y1,⋯ ,yT], at two different times (Fig. 2b and 
Extended Data Fig. 1c). The drift of the representation ensemble 
{y1,⋯ ,yT} behaves like a randomly rotating rigid body consisting of a 
cloud of points (Fig. 2c). Such drift does not change the length of each 
output vector, yt, which undergoes a random walk on a spherical surface 
(Fig. 2d).

These observations motivate us to quantify the drift speed by a 
rotational diffusion constant Dφ (Extended Data Fig. 1d)38,39. We can 
derive an approximate analytical formula for Dφ from a linear stability 
analysis (Methods and Supplementary Note Section 1):

Dφ ≈
1
4
ησ2

k
∑
i=1

1
λ2i
, (4)

where λ1 ≥ λ2 ≥ ⋯ ≥ λk are the top k ordered eigenvalues of the input 
covariance matrix. Equation (4) indicates that Dφ is proportional to the 
noise amplitude. Further, the drift amplitude along each eigenvector 
is proportional to 1/λ2i . This is analogous to the rotation of an ellipsoid 
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Fig. 2 | Drift dynamics in the PSP task. a–d, We present a simulation where each 
input x ∈ ℝ10 is drawn independently from a correlated Gaussian distribution N 
(0, C). The first three eigenvalues of the covariance matrix are 4.5, 3.5, 1 and the 
rest are 0.01. Eigenvectors are random orthogonal vectors. A Hebbian/
anti-Hebbian network learns to project this input to a subspace with k = 3 
dimensions. a, The learned representation of an example input continuously 
changes due to noisy updates. Shown are the three components of the output to 
the same input through learning, denoted by y(t). b, Pairwise dot-product 
similarities between the learned representations are stable over time, as shown 
by the almost identical similarity matrices at t = 0 (left) and t = 5 × 104 (right). To 
calculate these similarity matrices, we froze the weights at t = 0 and t = 5 × 104 and 
ran the network for each input to find the corresponding output. c, The ensemble 

of outputs {y1,… ,yT} at two distinct time points, calculated as in b. The data 
clouds have an ellipsoid shape. d, Drifting representation as a random walk on a 
sphere. We show the representation of a single sample yt over time. Color codes 
different time steps. e, Relationship between Dφ and noise amplitude σ2 
(mean ± s.d., n = 40 independent simulations). Symbols with error bars denote 
numerical simulations, and the solid line is our theory (Eq. 4). f, Dependence of 
Dφ on the eigenspectrum {λi} of the input covariance matrix (mean ± s.d., 
n = 2,000 simulations are aggerated into 20 bins based on their ∑k

i=1 1/λ
2
i  in the 

log scale). In e,f, only upper error bars are shown to avoid cluttering. In all the 
figures, t = 0 marks a starting point after the representation is learned. See 
Supplementary Note Section 5 for details of simulations in e,f.
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rigid body under torque, where rotations around axes with smaller 
moment of inertia are faster. Predictions of Eq. (4) agree well with 
simulations (Fig. 2e,f).

The above simulations and analyses demonstrate that learned 
representations drift over time in linear Hebbian/anti-Hebbian net-
works, while the similarity of representations is preserved. This is due 
to a coordinated random walk in the representational space in the 
form of a rigid body rotation. This coordinated drift explores equally 
optimal representations.

Next, we consider nonlinear networks and show that these results 
carry over.

Drift dynamics in nonlinear Hebbian/anti-Hebbian networks
RFs of neurons in many brain areas are localized in the parameter space 
which they represent. For example, simple cells in the primary visual 
cortex (V1) are tuned to orientations of gratings40. Neurons in the owl’s 
external nucleus of the inferior colliculus (ICX) are tuned to different 
horizontal and vertical positions, forming an auditory spatial map41. 
Place cells in the hippocampus are active when an animal is at a par-
ticular location of an environment31.

If a rectifying neuronal nonlinearity is introduced, our Hebbian/
anti-Hebbian network can capture these localized RF properties (Fig. 1b; 
Methods). This network minimizes a non-negative similarity-matching 
(NSM) cost function:29,33,37

min
∀t∈{1,…,T }∶yt≥0

1
T2

T
∑
t=1

T
∑
t′=1

(x⊤t xt′ − y⊤t yt′ − α2)
2, (5)

where xt is the input and yt in the non-negative output firing rate vec-
tor, and α2 sets the threshold of similarity to be preserved in the output 
representation. The number of output neurons can be larger than, equal 
to, or smaller than the input dimensions. With non-negative neural 
activity, the above NSM objective function strives to preserve similar-
ity for similar pairs of input samples but orthogonalizes the outputs 
corresponding to dissimilar input pairs. Compared with the linear 
case, non-negativity breaks the rotational symmetry of the solution, 
but the permutation symmetry is still preserved, that is, exchanging 

identities of neurons does not change the objective function. One can 
further control the behavior of learned representations by introduc-
ing regularizers to yt in Eq. (5), for example, an l1 norm of yt leads to a 
sparser representation (Methods).

Like the previous linear Hebbian/anti-Hebbian network, this net-
work also operates in an online fashion with a similar local learning 
rule (Methods). Again, we focus on how the learned representations 
evolve in the presence of noise in synaptic updates. Specifically, we first 
consider stimuli living on a ring (Fig. 3a), like the direction of a drifting 
grating used in experimental studies of visual systems. The location 
of the stimulus on the ring is parameterized by an angular variable θ ∈ 
[0,2π) (Methods and Fig. 3a).

In the case of a single output neuron and without synaptic noise, 
the learned RF can be shown to be a truncated cosine curve centered 
around a random angle. Derivation of this result is given in Methods 
and Supplementary Note Section 2. With synaptic noise during learn-
ing, the centroid of the RF drifts on the ring like a random walk 
(Extended Data Fig. 2a). We quantified the speed of drift with an effec-
tive diffusion constant, D, on the ring (Methods and Supplementary 
Note Section 2). For a single neuron, when α =0, the dependence of D 
on the learning rate η and noise amplitude σ2 can be analytically approx-
imated as D ≈ η2/2 + 8ησ2  (Methods and Supplementary Note  
Section 2). The first term is due to the sampling noise, that is, the fact 
that the network sees one random stimulus at a time, and the second 
term is due to the explicit synaptic noise. This result indicates that 
faster learning and larger synaptic noise lead to more rapid drift of the 
RF as verified by our numerical simulations (Extended Data Fig. 2b,c).

When there is a population of output neurons, the nonlinear Heb-
bian/anti-Hebbian network learns multiple localized RFs that tile the 
ring manifold with overlaps (Fig. 3b), consistent with previous analyti-
cal accounts of simplified versions of such networks37. With synaptic 
noise, we expect each RF to drift by a similar diffusion process as in the 
single neuron case, but with interactions between the neurons affecting 
the dynamics (Fig. 3c). In particular, the structure of neural population 
activity, as indicated by output similarity matrix, is stable across time 
(Fig. 3d). Further, a neuron’s response to the same stimulus is intermit-
tent, having active and silent periods (Fig. 3e). At the population level, 
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Fig. 3 | Drift of manifold-tiling localized RFs in nonlinear Hebbian/
anti-Hebbian networks. a, A ring in two-dimensions as input dataset: 
x(θ) = [cos(θ), sin(θ)]⊤, θ ∈ [0,2π). b, Learned localized RFs tile the input ring 
data manifold. Colors represent RFs of five example neurons. c, Evolution of the 
RF centroids of two example neurons due to synaptic noise. d, The 
representational similarity matrix Y⊤Y is approximately circulant and stable over 

time. e, When there are a large number of neurons, each neuron has active and 
silent (shaded region) periods. f, At the population level, the fraction of neurons 
with active RFs are constant. g, The fraction of neurons that have active RFs 
decreases with the total number of output neurons, as well as the noise 
amplitude.
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the fraction of neurons that have active RFs at any given time is constant 
(Fig. 3f), and it decreases with total number of output neurons as well 
as the noise amplitude (Fig. 3g). Thus, in a large population of neurons, 
only a small fraction of them will be active at a given time, forming a 
sparse population code.

Different neurons show different levels of drift. We observed that 
neurons with stronger tuning (characterized by the peak amplitude 
of the RF) tend to be active more often (Fig. 4a) but have slower drift 
(Fig. 4b). Faster learning rate is correlated with more rapid drift for 
both homogeneous learning rates and heterogeneous learning rates 
across synapses in the population (Fig. 4c,d). These observations are 
consistent with the single neuron case (Extended Data Fig. 2d).

As in the linear case, we find that the drift of RFs is coordinated 
at the population level. To illustrate this point, we compared our 
model to a null model of independent random walkers: we simulated 
Nactive RFs undergoing independent random walks on the ring. The 
step size of the independent random walks was drawn from the 
same distribution as the distribution of RF centroid shifts between 
two adjacent time steps obtained from our model (Methods). We 
observed that centroids of RFs in our model tile the ring manifold 
more uniformly than those of independent random walkers, as 
indicated by the smaller variance of distances between two adjacent 
centroids on the ring (Fig. 4e).

We also explored how different sources of synaptic noise in the net-
work contribute to the representational drift. To this end, we examined 
the drift speed of population responses to stimuli (population vector 
or PV) by including synaptic noise either in the forward connections or 
in the recurrent connections. We found that the feedforward synaptic 
noise has much stronger influence on drift than the recurrent synaptic 
noise as indicated by a faster decay and lower asymptotic PV correlation 
coefficient (Fig. 4f and Extended Data Fig. 3).

Having gained better understanding of drifting dynamics in the 
above simple model, we now discuss models of representational drift 
in the hippocampus CA1 region and PPC. The observations made in 

Figs. 3 and 4 will conceptually carry over, providing explanations for 
previous experimental observations.

A Hebbian/anti-Hebbian Network model for drifting place 
fields in the hippocampal CA1 region
CA1 place cells in the hippocampus play a crucial role in spatial memory 
and navigation. Recent long-term recording experiments show that 
place coding by the population of CA1 pyramidal cells are dynamic 
even when the animal is in the same familiar environment. In a time 
course of several weeks, some neurons lose their place fields while 
other previously non-place coding cells gain place fields. Despite the 
drift, the spatial information is preserved1,10,11.

One possible mechanism of place field formation is that hippocam-
pal CA1 place cells receive both direct external input from grid cells in 
the entorhinal cortex and lateral competition from other place cells 
via local inhibitory interneurons42–45. Synapses between these neurons 
are plastic46,47. This motivated us to use the Hebbian/anti-Hebbian net-
work to learn a place cell representation of a two-dimensional square 
environment. Each position on the plane is represented by the firing 
rate vector of a population of grid cells with different grid spacing, 
phases and offsets (Fig. 5a; Methods), which serves as the input xt to the 
network. For simplicity, we modeled the inhibitory-neuron-mediated 
feedback inhibition as mutual inhibition between place cells (Fig. 5a). 
A more detailed network with inhibitory neurons generates quantita-
tively very similar results (Supplementary Note Section 3 and Extended 
Data Fig. 4).

After learning, many output neurons develop localized RFs (or 
place fields, Fig. 5b). This can be visualized by arranging each row 
of response matrix Y into a square matrix (Fig. 5b, left). These active 
place cells tile the two-dimensional environment, as indicated by the 
uniform distribution of centroids of place fields (Fig. 5b, right). Due 
to the noise in the weight update, place fields continuously drift over 
time (Fig. 5c). Despite the drift, representational similarity of positions 
in the two-dimensional environment is stable (Extended Data Fig. 5a). 
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We also observed that a place cell may lose its place field for some 
time and gain a new place field later on (Extended Data Fig. 5b). The 
intermittence of RFs is due to both the competition between RFs and 
the fluctuations of synaptic weights. For example, once the forward 
input to a neuron is smaller than the lateral inhibition at the centroid 
of an RF, it becomes silent. The durations of these silent periods follow 
approximately an exponential distribution (Extended Data Fig. 5c), 
suggesting that the transition between active and silent state of RFs is 
random and memoryless. However, the fraction of neurons with active 
place fields at any given time remains constant (Extended Data Fig. 5d).

The drift speed can again be quantified by an effective diffusion 
constant D, measuring how place field centroids drift over the arena. 
The dependence of D on the number of neurons N is nonmonotonic 
(Extended Data Fig. 5e). Neurons whose RFs have stronger tuning 
(larger peak amplitude of the RF) tend to be active more often and have 
smaller drift (Extended Data Fig. 5f,g).

While the above predictions could be compared with long-term 
recording experiments for animals in a two-dimensional environ-
ment, existing long-term recording experiments are limited to 
one-dimensional environments (typically linear tracks). To compare 
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distribution to the experiment p(Δr) (lower right). k, Drifts of RFs show 
distance-dependent correlations, quantified by average Pearson’s correlation 
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mean ± s.d.; n = 20 repeats). Experimental results in f–k are plotted using data 
from10.
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our model with these experimental results, we simulated our model in a 
one-dimensional environment, where grid cell responses are modeled 
as one-dimensional slices through the two-dimensional grid fields, as 
observed in experiments48 (Fig. 5d; Methods). The model generates 
qualitatively similar results as the above two-dimensional place cell 
model. The learned place fields tile the linear track but drift over time 
due to ongoing noisy weight updates, yet the representational similar-
ity is stable over time (Fig. 5e). This is also observed in an experiment10, 
where CA1 pyramidal cells were recorded when mice were in the same 
familiar environment for several months (Fig. 5f). Due to drifting place 
fields, the autocorrelation coefficients of neural population vectors 
in both our model and the experiment decay over time (Fig. 5g). The 
shift of centroids of place fields increases with time, with a distribution 
eventually approaching the case wherein the place fields are randomly 
permuted. Such behavior closely resembles that of the experiment10 
(Fig. 5h). Despite the continuous reconfiguration of the neural assem-
blies representing the position, the fraction of active place cells is stable 
over time in both our model and the experiment (Fig. 5i).

To further explore the underlying structure of centroid shifts and 
test the main prediction of our model that the drift of RFs is coordi-
nated, we set out to compare the experiment and our simulation results 
to a null hypothesis: the shifts of RFs behave like independent random 
walks. To make a fair comparison, for the null hypothesis, we assume 
that each centroid takes a step size Δs that is drawn from a distribution 
p(Δs) with a reflecting boundary condition (upper panel of Fig. 5j). The 
distribution p(Δs) was chosen such that the resulting centroid shift ∆r 
closely matches that of the experiment (Fig. 5j; Methods). Experimental 
centroid shifts show clear distance-dependent correlations, that is, 
two RFs that are very close to each other are more likely to drift in the 
same direction on the next day, while RFs that are far apart are more 
likely to drift in opposite directions (blue line, Fig. 5k). This is in stark 
contrast with the independent random walk picture (gray horizontal 
line, Fig. 5k) but can be recapitulated by our model (red line, Fig. 5k), 
suggesting that the drift of RFs is coordinated at the population level, 
possibly to preserve representational similarity.

In our model, synaptic weights are updated only when there is 
task-relevant sensory input. The time scale (or inverse learning rate η) 
involved with such updates is chosen to capture the magnitude of rep-
resentational drift which is significant even across a few experimental 
sessions, each of which is on the order of hundred trials. However, the fact 
that animals can retain neural representations during rest between sessions 
and task memories even after weeks without training suggests the existence 
of other and longer time scales involved in synaptic plasticity. Indeed, if 
only the time scale involved with (relatively) fast task learning was present 
and if our model’s synapses were updated during intersession periods in 
a way independent of task-relevant sensory variables, then task-relevant 
RFs would be rapidly forgotten. We addressed these issues by introducing 
longer synaptic forgetting time constants in our model (Supplementary 
Note Section 4 and Extended Data Fig. 6). We found that this model can 
exhibit both representational drift and retention of representations during 
arbitrarily long periods without any stimulus access.

A Hebbian/anti-Hebbian network model for drifting RFs of 
neurons in the PPC
We next study another sensorimotor task in which mice were trained 
to navigate a virtual T-maze9,49. In this experiment, at the first half of 
the T-stem, mice saw one of two alternative visual scenes and associ-
ated them with a left turn or a right turn at the T-junction to receive a 
reward at the end of the track (Fig. 6a). After learning, a subpopulation 
of neurons in the PPC developed localized RFs, that is, they fired when 
a mouse is at a specific position along the T-maze and their RFs tiled 
the T-maze9,49. While mice stably performed the task after learning, 
the neural population activities in the PPC continuously drifted over 
weeks9. Despite such drift, the task information could be stably encoded 
by the activities of a subpopulation of PPC neurons9.

We modeled this system using a Hebbian/anti-Hebbian network 
with noisy weight updates. This choice is consistent with recent con-
nectome data which show that excitatory neurons in the PPC strongly 
inhibit each other via local inhibitory neurons50. Here, we implement 
these inhibitory interactions through mutual inhibition between  
principal neurons. A more detailed network with both excitatory and 
inhibitory neurons generates very similar result (Extended  
Data Fig. 7). For simplicity, the input is represented by a vector 
xR/L (θ) = [cos (θ) , sin (θ) , ±1]⊤, θ ∈ [0, π), with the last entry indicat-
ing a right-turn (1) or a left-turn task (−1).

After learning, the population of output neurons in the model 
develops positional tuning to the T-maze, that is, for either left-turn 
input xL or right-turn input xR, there is a subpopulation of neurons that 
fire most strongly when the animal is at specific positions of the track, 
forming RFs that tile the maze (Fig. 6b). These tuning properties are 
consistent with what is observed during experiments9,49.

To see how the RFs of neurons evolve over time, we first sort neu-
rons with significant RFs based on the centroid positions of their RFs at 
a reference time point. We find that RFs of neurons drift over time, that 
is, neurons rarely have the same or similar RFs at two long-separated 
time points. However, the population representation of animal posi-
tion and task context information is stable across time. Thus, at any 
given time, we can identify a subset of neurons with significant RFs that 
tile the positions of the T-maze for both left-turn and right-turn tasks 
(Fig. 6c, upper and middle panels). Despite the drift, representational 
similarities of both left-turn and right-turn tasks are stable over time 
(Fig. 6c, lower panel).

We can make finer level comparisons to data from PPC experi-
ments9. The drift of an RF accumulates over time such that the prob-
ability of a centroid shift larger than a certain distance increases 
with time (left, Fig. 6d). Neurons also gain or lose their tuning to task 
choices. For example, a group of neurons that are tuned to the left-turn 
or right-turn tasks may lose such tuning later, and vice versa (left,  
Fig. 6e). Overall, the fraction of neurons that have positional tuning at 
any time is constant (left, Fig. 6f). All these behaviors are consistent 
with data from PPC experiments9 (right panels of Fig. 6d–f). Together, 
these comparisons shows that our simple model can explain many 
characteristics of representational drift in the PPC.

Discussion
In this paper, we explored the hypothesis that representational drift 
is due to the existence of many (possibly infinite) population codes 
that achieve a representational objective. Noise in learning drives 
the network to explore this space, causing the drift of population 
activity. We explored the experimental consequences of this idea by 
mathematically modeling representational drift in the hippocampus 
CA1 and PPC where neurons have drifting localized RFs1,9,10,31,32 using 
a well-studied class of models for biologically plausible represen-
tation learning: Hebbian/anti-Hebbian networks. These networks 
are ideal because they optimize similarity-based representational 
objectives with degenerate optima34 and are known to learn localized 
RFs37. Further, while simple, Hebbian/anti-Hebbian networks capture 
the essential properties of RF formation in the studied areas, RFs 
are shaped by input from upstream and effective lateral inhibition/
competition within the layer which can be biologically implemented 
by inhibitory neurons (Supplementary Note Section 3 and Extended 
Data Figs. 4 and 7). Through simulations and analytical arguments, 
we showed that these networks exhibit representational drift, and 
drifting RFs in these networks are coordinated such that the repre-
sentational similarity is stable across time.

Our model reproduces key drift phenomena at the population level 
observed in the hippocampal CA1 place cells and neurons in the PPC. 
First, a constant fraction of active neurons represents task variables at a 
given day. Second, neurons drop in and out of this assembly over days. 
Third, the autocorrelation coefficient of population vectors decay over 
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time. Fourth, drift at the population level preserves representational 
similarity (Figs. 5 and 6).

Besides reproducing already described experimental phenom-
ena, our model makes several testable predictions. First, our model 
predicts that neurons whose synapses have faster turnover dynamics 
are more likely to drift more rapidly. For example, the lifetime of spines 
of pyramidal neurons in the hippocampus is about 1–2 weeks, much 
shorter than that of neocortex neurons20. This suggests that a repre-
sentational drift should be more prominent in the hippocampus than in 
the neocortex. Furthermore, the lifetime of synapses can be perturbed 
by blocking receptors such as NMDA51, which will alter the stability of 
RFs. A definitive examination of this prediction requires experiments 
that both measure the lifetime of synapses and the long-term neural 
activity in brain regions that represent learned stereotyped behavior 
under unperturbed and perturbed states. While challenging, this is 
nonetheless becoming within reach with new experimental techniques. 
Second, our model predicts that neurons with strongly tuned RFs 
should be more stable. This prediction can be tested by examining 
the tuning curve amplitudes of individual neurons and their stability 
in long-term recording experiments. Furthermore, RF strengths can 
be perturbed by optogenetic tools to examine how they affect the RF 
stability. Third, our model predicts that RF drifts are coordinated in 
a specific way. This coordination arises from the fact that the neural 
population as a whole is optimizing a similarity-matching objective, 
and this process enforces RF drifts to be coordinated in a way to pre-
serve representational similarity. We quantified the various distinct 
ways in which the drift in our models differs from independent RF 
random walks (Fig. 4e) and verified our prediction in the hippocampal 
CA1 data (Fig. 5j,k).

Optimization of representational objective functions, such as vari-
ants of efficient coding, have been successfully used to describe neural 
representations especially in early sensory areas22–30. A difference of 

our work is that we not only consider the optimal representations but 
also the drifting representations encountered during the process 
of noisy learning. An interesting question is whether this considera-
tion of representational drift can provide evidence and information 
about the existence and nature of such objective functions. If a neu-
ronal population as a whole is optimizing a representational objective 
function with degenerate solutions, we expect this process to lead to 
coordinated drift of RFs in a way that keeps neural representations near 
the optimum of the representational objective. Then, existence of a 
representational objective function could be falsified by, for example, 
observing that the drift of individual RFs is statistically independent, 
as in the random walk null model we simulated in Fig. 5k. Further, one 
may be able to gather information about the representational objective 
from the particular way the drift is coordinated. In our case, preserva-
tion of representational similarity during drift was a consequence of 
the particular representational objective we considered.

Our model can be extended in several ways to study representa-
tional changes and drift in other contexts. First, while our focus was on 
synaptic noise, other sources of noise can also cause representational 
drift with potentially different statistics. However, we expect the drift 
to be strongly affected by the degeneracy of the solution space of the 
objective function. For example, in a feedforward network perform-
ing online principal component analysis, which has no degeneracy 
as the principal subspace projection (PSP) task, we found stabilized 
representations in the presence of noise (Extended Data Fig. 8). Sec-
ond, networks optimizing other objective functions than the ones 
we considered, such as those minimizing a supervised readout error 
through the biologically implausible backpropagation algorithm, can 
also show representational drift when learning with noise and redun-
dancy in optimal network weight configurations12,52. Third, our model 
explored drift of localized RFs arising from a particular competitive 
mechanism for RF formation. Other mechanisms may lead to different 
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drift statistics. For example, place fields of CA3 also show drift53 but 
may be more stable than CA154. This may be due to the strong collateral 
excitatory synapses between CA3 pyramidal cells55,56, which are not 
captured in our model. In another example, sequential activity in the 
PPC was modeled by training a general recurrent neural network with 
biologically implausible learning rules57. It will be interesting to see 
whether neurons in such network models with noisy weight updates 
also show representational drift. Fourth, there can be other represen-
tational changes than the ones we considered, for example, changes 
due to the process of learning near-optimal representations starting 
from suboptimal ones, as opposed to drifting among near-optimal 
representations.

Representational drift contradicts the hypothesis that stable 
neural population activity is the substrate of stable behavior. However, 
there needs to be stable aspects of representations which provide a 
substrate for stable downstream decoding and readout7,58. Represen-
tational similarity can be one such substrate for multiple reasons. First, 
our modeling shows that achieving stable representational similarity 
despite the drift of population activity is biologically plausible. Second, 
stable representational similarity may be a general internal structure of 
drifting neural population activity. For example, mouse visual cortices 
show strong representational drift yet the relation between population 
activities that represent different inputs remains stable and stereo-
typed17. The conserved and stable internal structure of neural activity 
has also been discovered in the hippocampus and prefrontal cortex in 
free-behaving mice59. A counterexample also exists; representational 
similarity is not preserved in the mouse piriform cortex during drift, 
yet the animal can still retain fear-conditioning memory for at least 
2 weeks3. Third, experimental evidence is consistent with stable rep-
resentational similarity being a foundation for robust downstream 
decoding. Studies in monkey motor cortices have shown that stable 
geometry of latent population dynamics underlies stereotyped reach-
ing tasks14 despite the inherently variable single neuron activities12 (see 
however4,13). Interestingly, a recent experiment has shown that the 
spatial code of different environments in the hippocampus is random 
in individual rodents but shares the same geometry across different 
animals60. Finally, preserving pairwise similarity of representations may 
provide some computational benefits. Recent unsupervised learning 
algorithms for image recognition, such as contrastive representational 
learning61 and ‘Barlow Twins’62, are based on objectives that maximize 
representational similarity between a sample and its distorted/aug-
mented versions. Such algorithms can achieve comparable perfor-
mance to supervised learning algorithms. From a theoretical point of 
view, the representational similarity matrix (or kernel) determines the 
number of sampled stimuli required to learn an accurate linear readout 
from a population code, indicating that performance need not suffer 
as long as the representational kernel is preserved63.

A hypothesis for achieving stable readout despite time-varying 
neural activity is that the variation happens in the ‘coding null space’64,65. 
Representations in our model exhibit drift in all dimensions, preclud-
ing the existence of such a space. Similarly, a closer scrutiny of the 
response of PPC neurons in the T-maze task showed that drift is not 
confined to a coding null space66. Hence, an adaptive readout mecha-
nism which involves synaptic plasticity to track and compensate the 
drift is required to achieve stable behavior66,67. Whether and how such 
a mechanism is implemented in the brain remains an open question.

The ubiquity of representational drift raises the question of 
whether it serves a function or it is an inevitable consequence of noise 
in the brain that needs to be compensated for7,68. Representational drift 
may indeed be desirable or a byproduct of another desirable feature 
under certain circumstances8. For example, in a model of the bird song 
learning system, variation in the neural representation of the stereo-
typed behavior enables the system to adapt quickly to a shift of target 
song and to reduce error due to loss of neurons69. Drift can accom-
modate new learning with minimal inference by modifying existing 

memories8. Drift can also arise in a fast representation learning system 
which continuously tracks changing environment statistics3. Other 
authors proposed that noisy synaptic plasticity and spine motility 
enable cortical networks of neurons to carry out probabilistic inference 
by sampling from a posterior distribution of network configurations70. 
Such sampling could lead to a representational drift as a byproduct.

Overall, our study presents mathematical models that provide 
parsimonious and mechanistic views of representational drift. Our 
models capture essential features of drift observed in experiments and 
make testable predictions. Further, because our mechanistic models 
are derived from optimization principles, they provide a link between 
normative accounts of neuronal representations and statistics of rep-
resentational drift.
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Methods
Similarity matching and the linear Hebbian/anti-Hebbian 
network
The linear Hebbian/anti-Hebbian network can be derived from Eq. (1). 
The detailed derivation can be found in29,36, we sketch the main steps 
here. Starting from the cross term in Eq. (1), by introducing a new matrix 
variable W ∈ ℝk×n, we obtain

− 1
T2

T
∑
t=1

T
∑
t′=1

y⊤t yt′x
⊤
t xt′ = min

W∈ℝk×n
− 2
T

T
∑
t=1

y⊤t Wxt + Tr (W⊤W) . (6)

Similarly, we can introduce another matrix variable M for the quartic 
yt term in Eq. (1):

− 1
T 2

T
∑
t=1

T
∑
t′=1

y⊤t yt′y
⊤
t yt′ = max

M∈ℝk×k

2
T

T
∑
t=1

y⊤t Myt − Tr (M⊤M) . (7)

By substituting Eqs. (6) and (7) into Eq. (1) and changing orders of 
optimization36, we get:

min
W∈ℝk×n

max
M∈ℝk×k

1
T

T
∑
t=1

[2Tr (W⊤W) − Tr (M⊤M) + min
yt∈Rk

lt (W,M,yt)] , (8)

where

lt (W,M,yt) = −4x⊤t Wyt + 2y⊤t Myt. (9)

The minimax problem (8) can be solved in an online fashion by the 
following two-step algorithm. For each input, first, we minimize (9) 
while keeping W and M fixed, which is done by running the following 
dynamics of the output variable yt until convergence

ẏt = Wxt −Myt. (10)

Here the time derivative is with respect to the parameter that governs 
neural dynamics, not the online time step t. Second, after the conver-
gence of yt, we keep it fixed and update W and M by gradient descent 
and gradient ascent steps on (8), respectively:

Wij ← Wij + η (yixj −Wij) , Mij ← Mij + η (yiyj −Mij) . (11)

The above learning algorithm defined by Eqs. (10) and (11) can be 
naturally mapped onto a single-layer biologically plausible neural 
network, the linear Hebbian/anti-Hebbian network. Here yt is the neural 
activity of the output, W and M are synaptic matrices of the forward 
and lateral connections, respectively. The synaptic update rule Eq. (11) 
is local since the change of a synapse only depends on the activity of 
presynaptic and postsynaptic neurons.

To achieve drifting representations, we introduce noise to synaptic 
updates

ΔWt = η (ytx⊤t −Wt) + ξξξ
W
t , ΔMt = η (yty⊤t −Mt) + ξξξ

M
t , (12)

where the noise terms ξWij,t, ξ
M
ij,t are independent Gaussian noises with the 

following statistics: ⟨ξWij,t⟩ = ⟨ξMij,t⟩ = 0  and ⟨ξWij,tξ
W
kl,t′ ⟩ = ησ

2
1δikδjlδtt′ , 

⟨ξMij,tξ
M
kl,t′ ⟩ = ησ

2
2δikδjlδtt′. For simplicity, we set σ1 = σ2 = σ  in all our numeri-

cal simulations.

Calculation of the rotational diffusion constant
An analytical calculation of the rotational diffusion constant, defined 
by refs. 38, 39, 71,

Dφ ≡ lim
t→∞

1
2(k−1)t

⟨|φ⃗ (t) − φ⃗ (0) |2⟩ , (13)

where φ⃗ (t) is the sum of single-step angular displacements of the data 
cloud (see Supplementary Note Section 1) and k is the number of dimen-
sions in which rotation occurs, is difficult. However, we were able to 
obtain an approximation that matches numerical experiments very 
well, as shown in Fig. 2e,f. We present the details of this derivation in 
Supplementary Note Section 1. Our approximation assumes that (1) 
angular displacements of the representation vectors after different 
time steps are not correlated, and (2) the network weights stay close to 
the optimal representation manifold. Under these assumptions, Dφ can 
be approximated by the mean squared angular displacement (MSAD),

Dφ ≈
1

2(k−1)
⟨|Δφ⃗|2⟩ , (14)

where Δφ⃗ arises from a noisy synaptic update to the network with an 
optimal set of synapses. We calculate MSAD analytically (Supplemen-
tary Note Section 1) to arrive at Eq. (4).

To numerically estimate Dφ from the trajectory of yt with a total 
length of T time steps, we first calculate each simulation step and then 
estimate φ⃗(t) by cumulatively summing δφ⃗ up to time step t. Next, we 
estimate the MSAD of interval τ, measured in discrete time steps, using 
all the pairs of φ⃗ (t + τ) and φ⃗ (t), which gives ⟨|Δφ⃗|2⟩ = ⟨|φ⃗ (t + τ) − φ⃗ (t) |2⟩. 
Last, we plot |Δφ⃗|2 as a function of τ and fit a line that pass the origin to 
the data. The slope of the best fit is then 4Dφ.

NSM and the nonlinear Hebbian/anti-Hebbian network
The nonlinear Hebbian/anti-Hebbian network (Eqs. 16 and 17) can be 
derived from the NSM problem34,72. Denoting the input data as a set of 
vectors xt=1,⋯,T ∈ ℝn  and the corresponding outputs as vectors 
yt=1,⋯,T ∈ ℝk, the NSM objective is defined as

min
∀t∈{1,…T }∶yt≥0

1
2T2

T
∑
t=1

T
∑
t′=1

(x⊤t xt′ − y⊤t yt′ − α2)2 +
1
T

T
∑
t=1
(2β1||yt||1 + β2||yt||22),

(15)

where α2 sets the threshold of similarity to be preserved in the output 
representation, and the other two regularizers β1, β2 control the sparsity 
and amplitude of the output. When β1 = β2 = 0, this objective function 
reduces to Eq. (5) up to an overall factor of ½ which does not affect the 
solutions. Compared to Eq. (1), the non-negativity of yt breaks the rota-
tional symmetry of the solution but keeps its permutation symmetry. 
To see this more clearly, the sum in the first term in Eq. (15) can be written 
in terms of input–output Gram matrices: ||X⊤X − Y⊤Y − α2E||2F , where 
X ∈ ℝn×T, Y ∈ ℝk×T, and E ∈ ℝT×T is the matrix with all entries set to 1. Thus, 
if Y is a solution, then PY is also a solution for any permutation matrix P. 
The regularizer terms are also invariant under such permutation.

A characteristic feature of the NSM objective, Eq. (15), is that it leads 
to localized RFs37. To build an intuition to why this happens, we can con-
sider the simpler case where β1 = β2 = 0 and a single pair of inputs. If two 
inputs are similar, that is, x1 ⋅ x2 > α2, then the corresponding outputs y1 
and y2 would prefer y1 ⋅ y2 = x1 ⋅ x2 − α2, that is, they are also similar. In 
contrast, if two inputs are less similar, that is, x1 ⋅ x2 < α2, due to the 
non-negativity of outputs, y1, y2 they tend to be orthogonal: y1 ⋅ y2 = 0. To 
achieve this, dissimilar inputs must activate nonoverlapping sets of neu-
rons. Thus, as in manifold learning, Eq. (15) preserves the local geometric 
structure of inputs. A detailed explanation of why localized RFs are learned 
in a simplified version of Eq. (15) is provided in ref. 37.

As in the linear case, an online optimization of Eq. (15) can be 
interpreted as a neural network algorithm, see refs. 72, 73 for detailed 
derivations. When β1 = β2 = 0, the network takes an input xt and gener-
ates an output yt by running the following neural dynamics until it 
converges:72

u̇i = −ui + [Wxt]i − αbi − [Myt]i,

yi = max{ui/Mii,0},
(16)
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where ui and yi represent the membrane potential and firing rate of 
neuron i, and bi is the bias term. The forward weight matrix W ∈ ℝk×n 
and recurrent weight matrix M ∈ ℝk×k (we have defined M = M − diag(M)) 
update according to the following noisy learning rule72:

ΔW = η (ytx⊤t −W) + ξξξWt , ΔM = η (yty⊤t −M) + ξξξMt ,

Δb = η (αyt − b) ,
(17)

where η is the learning rate, and ξWt  and ξMt  are Gaussian white noise 

terms: ⟨ξWij,t⟩ = ⟨ξMij,t⟩ = 0 and ⟨ξWij,tξ
W
kl,t′⟩ = ησ

2
1δikδjlδtt′, ⟨ξMij,tξ

M
kl,t′⟩ = ησ

2
2δikδjlδtt′.

The properties of the above learning rule without noise have been 
studied previously33,37,72–74. With the regularization of yt, that is, 
β1 ≠ 0,β2 ≠ 0, the neural dynamics derived from Eq. (15) differs from 
Eq. (16) only by the transfer function

yi = max {(ui − β1) / (β2 +Mii) ,0} . (18)

Derivation of the diffusion constant of the ring model
We define a diffusion constant of the centroid by the conventional 

relation: ⟨(ϕ (t + Δt) − ϕ (t))2⟩ = 2DΔt, where ϕ(t) is the centroid position

 of the RF at time t. Here Δt corresponds to an arbitrary number of time 
steps. We sketch the derivation of diffusion constant in the single 
neuron scenario here, more details are provided in Supplementary 
Note Section 2. We again consider the approximation that the diffusion 
constant can be approximated by the mean squared displacement 
around a fixed point by a noisy synaptic update.

Consider a single output neuron that learns an RF from inputs that 
are on a ring manifold (Fig. 3a). The response of the output neuron to 
an input x = [cosθ, sinθ]⊤ is

y (θ) = 1
m+β

[w1cosθ +w2sinθ − αb]+ , (19)

where […]+ denotes the rectified linear function and β is the l2 regular-
izer (we have set β1 = 0). The stationary state parameters {w∗

1 ,w
∗
2 ,m

∗,b∗} 
satisfy the following conditions:

w∗
1 = ⟨y(θ)cosθ⟩θ , w∗

2 = ⟨y(θ)sinθ⟩θ ,

m∗ = ⟨y2(θ)⟩θ , b∗ = α ⟨y (θ)⟩θ ,
(20)

where ⟨…⟩θ denotes an average over the ring. These equations can be 
solved self-consistently by assuming an ansatz of the form:

yϕ (θ) = μ[cos (θ − ϕ) − cos (ψ)]+, (21)

where ϕ is the centroid. This gives the dependence of μ and ψ on α,β

μ2 = 2ψ−sin2ψ−4βπ
4ψ+2ψcos2ψ−3sin2ψ

, α2 = cosψ(2ψ−sin2ψ)
4(sinψ−ψcosψ)

, (22)

from which all parameters can be recovered (Supplementary  
Note Section 2). Then, noting the fact that dy(θ)/dθ = 0 at θ = ϕ implies 
tanϕ = w2/w1, one can approximate the change in the centroid due to 
small weight changes by

where  is the norm of weight vector. Using the noisy 

update rule (17) and (21), the shift of the centroid due to one-step update 
becomes

Finally, using the relation ⟨(Δϕ)2⟩ ≈ 2D for a single-step update, we 
have

where

γ ≡ μ2

μ̂2
⟨([cos(θ − ϕ) − cosψ]2+sin

2(θ − ϕ))⟩
θ
. (26)

See Supplementary Note Section 2 for full expressions. When 
α = β = 0, we have γ = 1 and , (25) reduces to

D ≈ η2/2 + 8ησ2. (27)

Numerical simulation of two-dimensional place cells
We considered a 32 × 32 grid plane as the environment, each position 
(x, y) is represented by a group of grid cells with different grid spac-
ings, orientations and offsets as observed in experiment75. The hex-
agonal firing fields of grid cells are modeled as a summation of three 
two-dimensional sinusoidal functions as in42,76,77

G (r) = 2
3
( 1

3

3
∑
i=1

cos ( 4π
√3l

ei ⋅ (r − r0)) +
1
2
) , (28)

where r = [x, y]⊤ is the location on the plane, r0 = [x0, y0]⊤ is the phase 

offset, l is the grid spacing, and ei = (cos ( 2πi
3
+ θ) , sin ( 2πi

3
+ θ)) , i = 1, 2, 3 

is the unit vector in the direction 2πi/3 + θ with θ being the grid orienta-
tion. In the simulation, grid cells have 5 modules, that is, Nl = 5. The 
value of l increases as geometric series with a ratio 1.42 that is consistent 
with experiments75. For example, if the smallest spacing is 0.2L with L 
being the linear length of the plane, then the rest of the spacings would 
be 0.2 × 1.42L,⋯ ,0.2 × 1.42Nl−1L. In each module, the number of orienta-
tions θ is Nθ = 6, which are drawn uniformly in the range [0,π/3). Simi-
larly, the number of grid phase offsets x0, y0 are Nx and Ny, which are 
drawn uniformly in the range [0, l). As a result, the total number of grid 
cells is Ng = NlNθNxNy.

Numerical simulation of one-dimensional place cells
We consider a linear track with length L. Tuning curves of grid cells on 
the linear track are slices through two-dimensional grid fields described 
above with Nx = Ny = 3  and smallest grid spacing 0.25L. The orientations 
of the slices are the same and randomly selected in the range [0,π/3].

Autocorrelation coefficient of the population vector
In all the cases, the autocorrelation coefficient ρ of population vector 
is defined as Pearson’s correlation coefficient between yt and y0 to the 
same input:

ρ (t) = 1
n−1

n
∑
i=1
( y0,i−ȳ0

σy,0
) ( yt,i−ȳt

σy,t
), (29)

where ȳ0, ȳt are the means of y0,i and yt,i; and σy,0,σy,t are the standard 
deviations of y0,i and yt,i.

Step size in simulations where place fields perform 
independent random walks
In Fig. 3c, the step size of each independent random walker was drawn 
from the distribution p (Δr) of one-step centroid shift in our model, 
Δr = r(t + 1) − r(t).

In Fig. 5j,k, the step size of independent random walks was  
drawn from a distribution p(Δs) closely matching that of experiment. 
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To determine this distribution, we first calculated the distribution of 
centroid shifts between two adjacent days in the experiment: p(Δr) with 
Δr = r(t + 1) − r(t). For a random walk whose centroid is at position ̂rt, its 
position at the next time step is ̂rt+1 = ̂rt + Δs with Δs randomly sampled 
from p(Δs). To constrain ̂rt+1 in the range of the track [0, L] with L being 
the length of the track, we assumed a reflecting boundary condition, 
which gives

̂rt+1 =
⎧⎪
⎨⎪
⎩

| ̂rt + Δs|, ̂rt + Δs < 0,

2L − ( ̂rt + Δs) ̂rt + Δs > L

̂rt + Δs, otherwise

. (30)

The shift of centroid in the random walk model is then determined by 
Δ ̂r = ̂rt+1 − ̂rt according to the above equation. Our aim is to find a dis-
tribution p(Δs), such that p (Δ ̂r) is close to that of experiment p (r). Based 
on the shape of experimentally measured p(r), we searched p(Δs) from 
a family of Levy’s alpha stable distribution78 by minimizing the Kull-
back–Leibler divergence between p(r) and p( ̂r).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
No new experimental data were generated in this study.
Experimental data presented in Fig. 5 are originally described in  
ref. 10. We used the processed data and MATLAB code, which are availa-
ble at the Caltech Research Data Repository (https://doi.org/10.22002/
d1.1229) to produce these plots.
Experimental data presented in Fig. 6 is extracted from Fig. 2c and d of 
ref. 9. The data are freely available in ref. 79.

Code availability
Codes for numerical experiments were written in MATLAB (R2020b). 
Analysis and figures were made using MATLAB (R2020b) except 
Fig. 4a,b, which is made by R (version 4.2.0). All codes are avail-
able in the GitHub repository https://github.com/Pehlevan-Group/
representation-drift.
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Extended Data Fig. 1 | Performance of the linear Hebbian/anti-Hebbian 

network in the PSP task. (a,b) The PSP error as quantified by 

‖
‖F

⊤
t Ft − UU⊤‖

‖F /
‖
‖UU

⊤‖
‖F, where U is a n × k matrix whose columns are the top k left 

singular vectors of X ≡ [x1,⋯ ,xT] and Ft≡M−1
tWt, drops very quickly during 

training (a) and maintains the low error in the presence of synaptic noise (b). (c) 
The relative change of the similarity matrix at time t compared to time point 0, 
corresponding to the point where the network initially learned the task, defined 

as ‖‖Y
⊤
t Yt − Y⊤

0Y0
‖
‖F /

‖
‖Y

⊤
0Y0

‖
‖F. (d) Estimating rotational diffusion constant D from 

mean squared angular displacement (MSAD). Gray lines are MSAD estimated 

based on individual representation trajectory y(t). The dashed line is a linear fit 

between ⟨(Δφ)2⟩ ≡ ⟨(φ (t+ Δt) − φ (t))2⟩ and Δt to estimate the rotational 

diffusion constant. Inset: illustration of Δφ. Parameters are the same as Fig. 2 in 
the main text.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 2 | A single output neuron’s RF drift when stimuli lives on 
a ring. (a) With stimuli living on a ring, a single RF has the shape of a truncated 
cosine curve, whose centroid drifts on the ring like a random walk. (b,c) The 
effective diffusion constant D of the centroid position increases with learning 
rate η both without explicit synaptic noise (σ = 0) (b), and with explicit noise (c). 

Error bars: mean ± SD, n = 40 simulations. Magenta lines correspond to theory  
Eq. (27) in the main text. (d) The single RF with larger amplitude has smaller 
diffusion constant. The amplitude of RF is varied by changing the value of α. 
Shading: mean ± SD, n = 40 simulations.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Distinct contribution of noise from forward synapses 
and recurrent synapses to representational drift in the 1D place cell model. 
To further verify the role of noise in feedforward synapses, we simulated models 
of representational drift in 1D place cells, and compared the correlation 
coefficient of population vectors of the principal output neurons in three 
different noise scenarios: full model with all synaptic noises (blue); noise only in 
the forward synapses W (σM = 0, red); and noise only in recurrent synapses M 

(σW = 0, gray). These models are further explored in main text Fig. 5 and 
Extended Data Fig. 4. In both the simplified 1D place cell model (a) and the more 
detailed network model with inhibitory neurons (b), noise in the forward matrix 
has much larger influence on the representational drift. For the network with 
inhibitory neurons, forward noise corresponds to all noises in matrices 
M,WEI,WIE are set to 0. Shading: mean ± SD, n = 200 output neurons. Parameters 
used are in Supplementary Table 1 of SI.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | A Hebbian/anti-Hebbian network model of CA1 with 
both excitatory and inhibitory neurons exhibits similar representational 
drift as the network in Fig. 5 of the main text. (a) A Hebbian/anti-Hebbian 
network with inhibitory neurons derived from a similarity matching objective. 
The derivation is given SI Section 3. (b) Upper: learned place fields tile a 1D linear 
track when sorted by their centroid positions (left), but continuously change 
over time (right). Lower: Representational similarity matrix Y⊤Y of position is 
stable over time. (c) Peak amplitude of an example place field during a 
simulation. (d) Due to the drift, the average autocorrelation coefficient of 
population vectors decays over time. Shading: mean ± SD, n = 200 places, 

population vectors consist of only excitatory neurons. (e) Despite the continuous 
reconfiguration of place cell ensembles, the fraction of cells with active place 
fields is stable over time. (f) Neurons whose RFs have larger average amplitude is 
more stable, as characterized by smaller D. (g) Probability distribution of 
centroid drifts of place cells at three different time intervals. (h) Same as Fig. 5k in 
main text. Drifts of RFs show distance-dependent correlations, quantified by the 
average Pearson correlation coefficient. Shading: mean ± SD, n = 20 repeats. 
Error bars: mean ± SD, n = 13 animals. Parameters used are in Supplementary 
Table 1 of SI.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 5 | Drift of 2D place cells in the model. (a) Representational 
similarity is preserved despite the continuous drift of place cell RFs. Positions 
on the plane (discretized as 32 × 32 lattice) are represented by an index from 
1 to 1024. (b) The dynamics of RFs are intermittent. The peak amplitude of an 
example place field has active and silent bouts. (c) The intervals of silent bouts 
follow approximately an exponential distribution. (d) At the population level, 

there is a constant fraction of active RFs over time. (e) Dependence of the 
effective diffusion constant on the total number output neurons. Error bars: 
mean ± SD, n = 40 simulations. (f,g) Place cells that have stronger place fields 
tend to be active more often (f) and also more stable as indicated by smaller 
diffusion constant (g). Parameters used are in Supplementary Table 1 of SI.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 6 | Representational drift in a modified 1D place cell 
model with alternating learning and forgetting periods. We introduced a 
forgetting time scale (1/ηforget) to our learning rules. The model is described in 
detail in SI Section 4. (a) 100 synaptic updates (shaded region) are sequentially 
followed by a forgetting period with 500 synaptic updates. Including a slower 
forgetting time scale significantly enhances the stability of learned 
representation as quantified by the similarity matrix alignment (RSA), defined in 
equation (41) of SI (upper). The representational similarity matrices Y⊤Y after 

the last forgetting period for three different forgetting time scales (lower).  
(b) Place fields of 3 exemplar output neurons in the presence of input and 
synaptic noise. Time starts from when the system has fully learned the 
representation. (c) Even with slow forgetting time scale, the representation still 
drifts during ‘experiment’ sessions as shown by the decay of coefficients of 
population vectors across learning sessions (shaded regions in (a)). Parameters 
are listed in Supplementary Table 1 of SI. Shading: mean ± SD, n = 200 output 
neurons. In (a) and (b), ηforget = 10−3.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 7 | A Hebbian/anti-Hebbian network model of the 
PPC with both excitatory and inhibitory neurons exhibits similar 
representational drift as the network in Fig. 6 of main text. (a) Population 
activity of excitatory neurons for the left-turn and right-turn task before (upper) 
and after (lower) sorting based on the centroids of their RFs. Only neurons that 
have active RFs at the given time point are shown. (b) Population activity drifts 

but representational similarity is stable over time. Activity of excitatory neurons 
that are active (either tuned to left turn or right turn) in the sorted time (upper 
and middle). Representational similarity matrix is stable for both left-turn and 
right-turn task (lower panels). (c,d) Comparison of drift statistics between model 
and experiment, corresponding to panels d–f of Fig. 6 in the main text. Error bars: 
mean ± SD, n = 5, 5, 4 mice for ∆ = 1, 10, 20 days.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 8 | Degeneracy of the learning objective function and 
representational drift. We compare the long-term behavior of learned 
representations in three different networks. (a) Upper: the Hebbian/
anti-Hebbian network for PSP. Lower: the evolution of the three components of a 
representation yyyt. (b) Upper: The network differs from the Hebbian/anti-Hebbian 
network only in the recurrent matrix M which breaks the rotational symmetry of 

the PSP solution. The learning rule is the same. Lower: the learned representation 
is stabilized and only fluctuates around its equilibrium. (c) A single feedforward 
network that perform online principal component analysis with Sanger’s rule80. 
This network has only feedforward input matrix W and the learning rule is 
nonlocal. Lower: learned representation is relatively stable in the presence of 
noise. Parameters are the same as in the Fig. 2 of main text except that η = 0.01.

http://www.nature.com/natureneuroscience
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Hebbian/anti-Hebbian network models during noisy representation learning”

Shanshan Qin, Shiva Farashahi, David Lipshutz, Anirvan M. Sengupta, Dmitri B. Chklovskii, and Cengiz Pehlevan

I. DERIVATION OF THE ROTATIONAL DIFFUSION CONSTANT IN THE LINEAR
HEBBIAN/ANTI-HEBBIAN NETWORK

In this section, we derive an analytical expression for the rotational diffusion constant defined by [1, 2]

Dϕ ≡ lim
t→∞

1

2(k − 1)t
〈|~ϕ(t)− ~ϕ(0)|2〉, (1)

where k is the dimension of the space in which rotation occurs, and brackets mean averaging over different realizations
of the noise. ~ϕ(t) is a measure of angular displacement defined as follows. We assume that to arrive at the data cloud at

time step i, the data points at time i−1 are rotated by the rotation matrix R = exp(− ~∆ϕi(t)·~L), where ~L are the k×k
infinitesimal rotation generators [3]. These generators are given by 1) when k > 3, (L(mnm))ij = δmiδnmj − δmjδnmi.
Here, {i, j} ∈ {1, . . . k} are the matrix element indices; m ∈ {1, . . . , k} and nm ∈ {1, . . . , (m− 1)} label the k(k− 1)/2
generators, 2) when k = 3, (Li)jk = εijk, where {i, j, k} ∈ {1, 2, 3} and εijk is the completely antisymmetric tensor,

and 3) when k = 2, L =

(
0 1
−1 0

)
. We define

∆~ϕi = ~ϕ(i)− ~ϕ(i− 1), ~ϕ(t) ≡ ~ϕ(0) +

t∑
i=1

∆~ϕ(i). (2)

Obtaining an exact expression for Dϕ is difficult, but we were able to derive an approximation that matches
numerical experiments well, as shown in Fig. 2 E and F of main text. Our approach relies on two simplifications.
Note that

〈|~ϕ(t)− ~ϕ(0)|2〉 =

t∑
i=1

〈|∆~ϕi|2〉+

t∑
i=1

t∑
j=1,i6=j

〈∆~ϕi ·∆~ϕj〉. (3)

We assume that the correlation between angular displacements at different times is negligible. Therefore, we approx-
imate

Dϕ ≈ lim
t→∞

1

2(k − 1)t

t∑
k=1

〈|∆~ϕi|2〉. (4)

Second, we assume that the network weights start at a configuration that is already an optimal solution to the
similarity matching objective, projecting the input to its principal subspace, and the drift keeps the weights in the
optimal solution space. This is a reasonable approximation because of a linear stability analysis presented in [4, 5].
We now review that argument.

We first define the feature map F = M−1W, which relates the output to input at the fixed point of the network
dynamics defined by equation (2) in the main text. In other words, when the dynamics converges, yt = Fxt. We refer
to rows of F as neural filters. We refer to an optimal solution of the similarity matching problem in the offline setting
without noise as a fixed point, and denote it with .̂ We note that M̂ is symmetric, which we will use throughout. It
was shown in [5] that F̂F̂> = I and F̂ projects to the principal subspace.

We note that a general perturbation of feature map δF around a fixed point F̂ = M̂−1Ŵ can be decomposed as

δF = δAF̂ + δSF̂ + δBĜ, (5)

where δA is a k × k antisymmetric matrix, δS is a k × k symmetric matrix, δB is a k × (n − k) matrix, and Ĝ is a
(n− k)× n matrix with orthonormal rows. These rows are chosen to be orthogonal to the rows of F [5]. So we have

δA + δS = δFF̂>. The first term in (5) corresponds to a rotation of the neural filter basis in the principal subspace,
the second term captures deviations from orthogonality of the basis vectors within the subspace, and the third term
captures perturbations of the weight vectors that lead to projecting outside the principal subspace. As shown in [5],
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the fixed point is stable to the perturbations due to the second and third terms, meaning they decay exponentially to
zero, making a principal subspace projection linearly stable. Therefore, we consider drift due to the first term, which

rotates neural filters and, in turn, the data cloud. Then δA = − ~∆ϕ(t) · ~L, which follows from y = Fx. In this setup,
〈|∆~ϕi|2〉 is independent of time step i (see below). Therefore, our final approximation is

Dϕ ≈
1

2(k − 1)
〈|∆~ϕ|2〉, (6)

where ∆~ϕ arises from a noisy synaptic update to the network with an optimal set of synapses. This quantity is called
mean squared angular displacement (MSAD). This approximation turns out to match simulations very well as shown
in Fig. 2 E and F in the main text.

Next, we calculate Dϕ. In the linear Hebbian/anti-Hebbian network for the principal subspace projection task, the
learning rule with synaptic noise is

∆W = η(ytx
>
t −W) + ξWt , ∆M = η(yty

>
t −M) + ξMt , (7)

where 〈ξWij,t〉 = 〈ξMij,t〉 = 0 and 〈(ξWij,tξWkl,t′〉 = ησ2
1δikδjlδtt′ , 〈ξMij,tξMkl,t′〉 = ησ2

2δikδjlδtt′ .

By estimating the variance of the rotation of the learned representation during a single-step update under rule (7),
we can define an effective rotational diffusion constant that is related to this variance. More specifically, in the small
update and noise regime, δA is related to an infinitesimal rotation, R, of the output vectors, by R = exp(δA) =

exp(−∆~ϕ · ~L), where ~L are the infinitesimal rotation generators [3].

We start by writing δF in terms of the perturbations of Ŵ, M̂:

δF = M̂−1δW − M̂−1δMM̂−1Ŵ = M̂−1(δW − δMF̂). (8)

Right-multiplying (8) by F̂> and using (7), we have

δFF̂> = M̂−1(δWF̂> − δM) = M̂−1
(
η(yx>t − Ŵ)F̂> − η(yy> − M̂) + ξW F̂> − ξM

)
= M̂−1(ξW F̂> − ξM ), (9)

where we have used the property F̂F̂> = I and

M̂−1
(

(ytx
>
t − Ŵ)F̂> − (yty

>
t − M̂)

)
= M̂−1

(
yty
>
t − ŴF̂> − yty

>
t + M̂

)
= −M̂−1ŴF̂> + I = 0. (10)

Now, δA = 1
2 (δFF̂> − F̂δF>) can be written down explicitly:

δA =
1

2

[(
M̂−1ξW F̂> − F̂ξW

>
M̂−1

)
+
(
ξM

>
M̂−1 − M̂−1ξM

)]
. (11)

The mean squared angular displacement (MSAD) is related to δA. To see this more clearly, note that δA = −∆ϕn̂ ·~L,
where ∆ϕ is the magnitude of the rotation and n̂ is a unit vector pointing along ∆~ϕ. From here, using the definiton
of generators, it follows that

Tr(δAδA>) = 2(∆ϕ)2. (12)

Also, the variance of δAij is

〈δA2
ij〉 =

η

4
(σ2

1 + σ2
2)
∑
k

(
M̃2
kj + M̃2

ki − 2δijM̃kiM̃kj

)
, (13)

where M̃ ≡ M̂−1, the average 〈〉 is over the noise distribution, and we used F̂F̂> = I to simplify. Using the fact that

eig(M̂) = [λ1, · · · , λk], which was shown in [5], and TrM̃2 =
∑k
i=1 1/λ2i , we have

〈TrδAδA>〉 =
∑
ij

〈δA2
ij〉 =

1

2
η(k − 1)(σ2

1 + σ2
2)

k∑
i=1

1

λ2i
. (14)

Given our approximation of considering only a single-step, it follows from Eq. (1) that 〈|(∆ϕ)2|〉 = 2(k − 1)Dϕ.
With Eq.(12) and Eq.(14) and σ1 = σ2 = σ, we arrive at Eq. 4 in the main text. Note that k = 3 in Figure 2.
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II. DERIVATION OF THE EFFECTIVE DIFFUSION CONSTANT IN THE RING MODEL

Here, we calculate the diffusion constant in the ring model for a single output neuron. We again consider the
approximation that the diffusion constant can be approximated by the mean squared displacement around a fixed
point by a noisy synaptic update.

The position on the ring is represented by the input vectors x = [cos θ, sin θ]>. The response of the neuron is given
by

y(θ) =
1

m+ β
[w1 cos θ + w2 sin θ − αb]+. (15)

Here and after, we use [x]+ to denote the rectified linear function. We define a steady state where the average update
to the weights is zero. Denoting the stationary state weights as {w∗1 , w∗2 ,m∗, b∗}, this leads to the conditions:

w∗1 = 〈y(θ) cos θ〉θ, w∗2 = 〈y(θ) sin θ〉θ, m∗ = 〈y2(θ)〉θ, b∗ = α〈y(θ)〉θ, (16)

where 〈·〉θ means averaging over the input distribution θ ∈ [−π, π) which we assume to be uniform.
To solve these equations, we use an ansatz of the form

yφ(θ) = µ[cos(θ − φ)− cos(ψ)]+, (17)

where ψ ≥ 0 determines the width of the RF, µ(1−cosψ) is the peak amplitude, and φ is the centroid of the receptive
field. We solve for the parameters of the ansatz self-consistently. Due to the symmetry of the problem, any φ gives a
plausible solution. Plugging (17) into (15) and (16), we find that

w∗1 =
µ

4π
(2ψ − sin 2ψ) cosφ, (18)

w∗2 =
µ

4π
(2ψ − sin 2ψ) sinφ, (19)

m∗ =
µ2

4π
(4ψ + 2ψ cos 2ψ − 3 sin 2ψ), (20)

b∗ =
αµ

π
(sinψ − ψ cosψ). (21)

Equation (15) can be rewritten as

y(θ) =

√
w2

1 + w2
2

m+ β

[
w1√

w2
1 + w2

2

cos θ +
w2√

w2
1 + w2

2

sin θ − αb√
w2

1 + w2
2

]
+

. (22)

Comparing to (17), we have

µ =

√
w∗21 + w∗22
m∗ + β

, αb∗ =
√
w∗21 + w∗22 cosψ. (23)

Combining (18)-(21) and (23), we get the dependence of µ and ψ on α and β, given parametrically by

µ2 =
2ψ − sin 2ψ − 4βπ

4ψ + 2ψ cos 2ψ − 3 sin 2ψ
, α2 =

cosψ(2ψ − sin 2ψ)

4(sinψ − ψ cosψ)
. (24)

Given α and β, one can solve these equations for µ and ψ and plug them back into (18)-(21) to recover all parameters.
One can also check for the self-consistency of this solution by starting from (15) and plugging in (18)-(21) and (24).

Next, we proceed to estimate the drift due to noisy synaptic updates. First, to simplify the following calculations,
using (22) we define

µ̂ ≡ w∗1 cosφ+ w∗2 sinφ =
√
w∗21 + w∗22 =

µ

4π
(2ψ − sin 2ψ). (25)

Next, we want to estimate how the centroid changes. We define the centroid φ to be the angle at which the response
is maximum and positive. Then, dy(θ)/dθ = 0 at θ = φ. This implies tan(φ) = w2/w1. Note that this is true for
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any set of weights, not only {w∗1 , w∗2}. We can then approximate the change in the centroid ∆φ due to a small weight
change from the configuration {w∗1 , w∗2} by:

∆φ =
cos2 φ

w∗21
(∆w2w

∗
1 −∆w1w

∗
2) =

1

µ̂
(∆w2 cosφ−∆w1 sinφ) , (26)

where we have used the fact w∗1 = µ̂ cosφ and w∗2 = µ̂ sinφ from Eq.(25). In particular, we are interested in how the
centroid of the RF changes when a perturbation is added to the stationary weight vector

∆w1 = η(y(θ) cos θ − w∗1) + ξ1, (27)

∆w2 = η(y(θ) sin θ − w∗2) + ξ2. (28)

By their definition, the statistics of the Gaussian white noise terms are: 〈ξ1〉 = 〈ξ2〉 = 0, 〈ξ21〉 = 〈ξ22〉 = ησ2. From
(18), (19) and (25), we also have w∗1 = µ̂ cosφ and w∗2 = µ̂ sinφ. Then ∆φ can be written as

∆φ =
1

µ̂
(ηµ[cos(θ − φ)− cosψ]+ sin θ cosφ− ηµ[cos(θ − φ)− cosψ]+ cos θ sinφ+ (ξ2 cosφ− ξ1 sinφ))

=
1

µ̂
{ηµ[cos(θ − φ)− cosψ]+ sin(θ − φ) + (ξ2 cosφ− ξ1 sinφ)}.

(29)

Since in online learning θ is sampled randomly, we can average over θ to get mean squared displacement

〈(∆φ)2〉 =
µ2

µ̂2
η2〈([cos(θ − φ)− cosψ]2+ sin2(θ − φ))〉θ +

1

µ̂2
(cos2 φ〈ξ22〉+ sin2 φ〈ξ21〉) = γη2 +

ησ2

µ̂2
, (30)

where

γ ≡ µ2

µ̂2

1

2π

∫ π

−π
[cos(θ − φ)− cosψ]2+ sin2(θ − φ)dθ =

π

6

36ψ + 24ψ cos(2ψ)− 28 sin(2ψ)− sin(4ψ)

(2ψ − sin(2ψ))2
. (31)

Now, to calculate the diffusion constant, we again resort to approximation. We assume that the diffusion constant
can be obtained from a single-step update, 〈(∆φ)2〉 ≈ 2D. Then, we have

D ≈ 1

2

(
γη2 +

ησ2

µ̂2

)
. (32)

Since γ, µ̂ depend on the tuning width ψ of the RF, the dependence of D on the peak amplitude µ(1 − cos(ψ)) is
complicated. Numerical simulations shows that neurons with larger RFs typically have smaller D (Extended Data
Fig. 2D).

As a final note, we want to point that tracking peak activity is numerically prone to noise in simulations. Therefore,
we track center of mass of RFs. However, due to the symmetry of RFs, these two metrics largely coincide.

III. DERIVATION OF THE HEBBIAN/ANTI-HEBBIAN NEURAL NETWORK WITH INHIBITORY
NEURONS

In the main text, we presented Hebbian/anti-Hebbian networks with only principal cells for simplicity. The mutual
inhibition among these principal neurons violates Dale’s law because in the brain principal neurons are mostly excita-
tory. Here, we derive a Hebbian/anti-Hebbian networks with inhibitory neurons from a minimax similarity matching
objective

min
∀t∈{1,...,T}:yt≥0

max
∀t∈{1,...,T}:zt≥0

1

2T 2

∑
t,t′

[(
x>t xt′ − y>t yt′ − α2

)2 − (y>t yt′ − z>t zt′
)2]

+
1

T

T∑
t

(
2β1‖yt‖1 + β2‖yt‖22

)
.

(33)
Here yt are NE-dimensional (nonnegative) vectors and zt are NI -dimensional (nonnegative) vectors. These vectors
will map to activations of excitatory and inhibitory neurons respectively. Notice that if the rank of Z ≡ [z1, · · · , zT ] is
larger than the rank of Y = [y1, · · · ,yT ] at the optimum, which would always be true if NI ≥ NE , optimal solutions
satisfy y>t yt′ − z>t zt′ = 0, and the above objective function is equivalent to the Nonnegative Similarity Matching one
in the main text (Eq. 15). If not, Eq. (33) can be seen as an approximation to (Eq. 15) in the main text. In Extended
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Data Fig. 4, we show a simulation where NI < NE , and yet the principal neurons still learn localized receptive fields
and show drift.

In the online setting, we can follow a similar procedure to the one sketched in the Methods of the main text and
consider a dual problem to the above objective function by 1) introducing auxiliary variables WX, M, and WIE

through the same procedure as in Eqs. 6 and 7 of the main text, and 2) changing orders of optimization:

min
WX

min
M

max
WIE

max
b

1

T

T∑
t=0

[
TrWX>

WX − TrWIE>
WIE +

1

2
TrM>M− ‖b‖22 + min

yt≥0
max
zt≥0

lt(yt, zt,W
X,WIE,M,b)

]
(34)

where

lt ≡ −2y>t W
Xxt + 2αy>t b + 2z>t W

IEyt − z>t Mzt + 2β1‖yt‖1 + β2‖yt‖22. (35)

We solve this dual optimization problem again in an online manner. For each input, first, we optimize lt by a neural
minimax dynamics [6, 7]. To see how we do this, consider the following. If we treat yt as constant, then an inhibitory
neuron dynamics which maximizes lt is given by [8, 9]:

τv v̇i = −vi +
∑
j

W IE
ij yj −

∑
j 6=i

M̄ijzj , zi =

[
vi
Mii

]
+

. (36)

Similarly, for fixed zt, the following excitatory neuron dynamics minimizes lt [8, 9]:

τuu̇i = −ui +
∑
j

WX
ij xj −

∑
k

WEI
ik zk − αbi, yi =

[
ui − β1
β2

]
+

. (37)

We define a heuristic optimization algorithm by running these equations simultaneously. In simulations, we observe
that fast inhibitory neuron dynamics helps with convergence, consistent with the max operator appearing inside
the min in the y, z optimization. In particular, in our simulations of Extended Data Figures 4 and 7, we used
instantaneous inhibitory neurons, but observed that stable dynamics could be achieved for τv/τu / 1/100. We note
that such instantaneous neurons were used before in the literature, for example in [10, 11].

Second, we do gradient updates to the synaptic matrices and biases

∆WX = η(yx> −WX),

∆WEI = η(yz> −WEI),

∆WIE = η(zy> −WIE),

∆M = η(zz> −M),

∆b = η(αy − b). (38)

We modeled the hippocampal place cell formation in a 1D linear track environment using the above neural dynamics
and learning rules with independent random Gaussian noise. All the drifting dynamics and statistics are similar to
the simplified model without inhibitory neurons (Extended Data Fig. 4).

IV. MODIFIED MODEL WITH A SLOW FORGETTING TIMESCALE

In the main text, we considered the learning process only in the presence of sensory inputs. Animals can retain their
learned memories during long periods when such sensory inputs are absent. If our model’s synapses were updated
during these latter periods in a way independent of the task-relevant sensory variables, then the task-relevant receptive
fields would be rapidly forgotten. To resolve this, we note that memory processes in the brain operate at a spectrum
of timescales [12, 13]. By introducing a slow synaptic timescale that corresponds to a slower forgetting process as in
[14, 15], we show that learned representations in Hebbian/anti-Hebbian networks can be maintained for a long time
even in the absence of sensory inputs.

Our modified learning rules are the following:

∆W = −ηforgetW +
√
ηforgetσ2ζWt︸ ︷︷ ︸

forgetting

+ η(ytx
>
t −W) +

√
ησ2ξWt︸ ︷︷ ︸

sensory input

,

∆M = −ηforgetM +
√
ηforgetσ2ζMt + η(yty

>
t −M) +

√
ησ2ξMt ,

∆b = −ηforgetb + η(αyt − b). (39)
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The first two terms in the right hand side of the first equation above represent the forgetting process, while the last two
terms represent learning in the presence of sensory input. The other rules are modified similarly. ζAij,t, ξ

A
ij,t, A ∈ {W,M}

are unit Gaussian random variables with mean 0 and standard deviation 1. Both types of processes come with their
own noise terms reflecting that these processes are different. In the absence of sensory inputs, the synaptic weights
undergo a purely forgetting process:

∆W = −ηforgetW +
√
ηforgetσ2ζWt

∆M = −ηforgetM +
√
ηforgetσ2ζMt

∆b = −ηforgetb. (40)

In these equations, 1/ηforget sets the time scale for number of synaptic updates that lead to decay of memories.
In the numerical simulation shown in Extended Data Fig. 6, we start by learning representations of sensory inputs

using the above learning rules. We find that the system quickly develops place cell like representations and these
representations drift over time in the presence of synaptic noise (Extended Data Fig. 6A). We next simulate the
network with alternating learning (shaded region) and forgetting sessions. In each learning session, 100 randomly
selected inputs are presented to the network while the network weight matrices W,M and b are updated with rule
(39). Then, the network goes through a forgetting session with 500 iterations without sensory input in which the
synaptic weights undergo a biased random walk based on (40). We quantify how the representation similarity matrix
changes during this process with the “Representational Similarity Alignment” (RSA) metric [16]:

RSA =
‖YtY

>
0 ‖2F

‖Y>0 Y0‖F ‖Y>t Yt‖F
, (41)

where Y0 and Yt are the output matrices at time 0 and t respectively. An RSA with 1 means a perfect alignment
and 0 means totally orthogonal representations. We computed RSA with different forgetting timescales and found
that the network with slower forgetting timescale (smaller ηforget) has a much longer memory of representations,
as indicated by higher value of RSA and slower decay over time (Extended Data Fig. 6A). Longer sequences of
forgetting trials can be tolerated by the network by appropriate choice of ηforget. When focusing on the data from
only the learning sessions (similar to experimental data acquisition), we observed a decay of correlation coefficients
of population vectors consistent with experimental observations (Extended Data Fig. 6C). Together, these results
support the idea that slow forgetting timescale of synaptic plasticity can retain the learned representations/memories
in the absence of sensory input while still produce observed representational drift.

V. SIMULATION PARAMETERS

We collect in Table I all the simulation parameters. The MATLAB code for our simulations is available in the
Github repository: https://github.com/Pehlevan-Group/representation-drift.

In the simulation of PSP task Fig. 2E of the main text, the first 3 eigenvalues of the input covariance matrix C are
3.1, 3.1, 3.1 and the rest are set to be 0.01. In Fig. 2F of the main text, the first 3 eigenvalues are randomly sampled
from a log-normal distribution and normalized such that the summation of all the eigenvalues is 10.

https://github.com/Pehlevan-Group/representation-drift
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TABLE I. Simulation parameters used in the figures

Nout Nin η α2 σ β1 β2 λ Nl Nθ Nx Ny l0
(or n) (or k)

Fig. 2A-D 3 10 0.05 - 0.01 - - - - - - - -
Fig. 2E 3 10 0.1 - 0.01 - - - - - - - -
Fig. 2F 3 10 0.05 - 0.01 - - - - - - - -
Fig. 3B,C 5 2 0.05 0 0.02 0 0.02 - - - - - -
Fig. 3D-F 200 2 0.02 0 0.001 0 0.01 - - - - - -
Fig. 4A,B
Fig. 4C,D 100 2 [10−3, 10−1] 0 0.01 0 0.05 - - - - - -
Fig. 4E - 2 0.01 0 0.01 0 0.05 - - - - - -
Fig. 4F 200 2 0.05 0 0.002 0 0.05 - - - - - -
Fig. 5B,C 200 750 0.005 95 0.02 0.02 0.05 1.42 5 6 5 5 0.2L
Fig. 5D-I 200 270 0.05 60 0.005 0.02 0.05 1.42 5 6 3 3 0.25L
Fig. 6 300 3 0.01 1.5 4 × 10−5 2 × 10−5 10−3 - - - - - -
ED Fig. 2B 1 2 0.05 0 0 0 0 0 - - - - -
ED Fig. 2C 1 2 0.01 0 - 0 0 0 - - - - -
ED Fig. 3A 200 480 0.02 65 0.05 0.04 0.01 1.42 5 6 4 4 0.25L
ED Fig. D4,3B NE = 200, NI = 20 480 0.02 60 0.05 0.01 0.05 1.42 5 6 4 4 0.25L
ED Fig. 5E 200 750 0.005 95 0.008 0.01 0.05 1.42 5 6 5 5 0.2L
ED Fig, 6 200 270 0.05 35 0.005 0.0 0.05 1.42 5 6 3 3 0.25L
ED Fig. 7 NE = 200, NI = 20 3 0.03 1.5 3 × 10−4 5 × 10−6 10−3 - - - - - -
ED Fig. 8 3 10 0.01 - 0.01 - - - - - - - -
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