
LETTER Communicated by João Sacramento

Contrastive Similarity Matching for Supervised Learning

Shanshan Qin
ssqin@g.harvard.edu
John A. Paulson School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, U.S.A.

Nayantara Mudur
nmudur@g.harvard.edu
Department of Physics, Harvard University, Cambridge, MA 02138, U.S.A.

Cengiz Pehlevan
cpehlevan@seas.harvard.edu
John A. Paulson School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, U.S.A.

We propose a novel biologically plausible solution to the credit assign-
ment problem motivated by observations in the ventral visual pathway
and trained deep neural networks. In both, representations of objects
in the same category become progressively more similar, while objects
belonging to different categories become less similar. We use this ob-
servation to motivate a layer-specific learning goal in a deep network:
each layer aims to learn a representational similarity matrix that inter-
polates between previous and later layers. We formulate this idea using
a contrastive similarity matching objective function and derive from it
deep neural networks with feedforward, lateral, and feedback connec-
tions and neurons that exhibit biologically plausible Hebbian and anti-
Hebbian plasticity. Contrastive similarity matching can be interpreted
as an energy-based learning algorithm, but with significant differences
from others in how a contrastive function is constructed.

1 Introduction

Synaptic plasticity is generally accepted as the underlying mechanism of
learning in the brain, which almost always involves a large population of
neurons and synapses across many different brain regions. How the brain
modifies and coordinates individual synapses in the face of limited infor-
mation available to each synapse in order to achieve a global learning task,
the credit assignment problem, has puzzled scientists for decades. A major
effort in this domain has been to look for a biologically plausible implemen-
tation of the backpropagation of error algorithm (BP) (Rumelhart, Hinton,

Neural Computation 33, 1300–1328 (2021) © 2021 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01374

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1301

Figure 1: Supervised learning via layer-wise similarity matching. For inputs of
different categories, similarity matching differentiates the representations pro-
gressively (top), while for objects of the same category, representations become
more and more similar (middle). For a given set of training data and their cor-
responding labels, the training process can be regarded as learning hidden rep-
resentations whose similarity matrices match that of both input and output
(bottom). The tuning of representational similarity is indicated by the springs
with the constraints that input and output similarity matrices are fixed.

& Williams, 1986), which has long been disputed due to its biological im-
plausibility (Crick, 1989), although recent studies have made progress in re-
solving some of these concerns (Xie & Seung, 2003; Lee, Zhang, Fischer, &
Bengio, 2015; Lillicrap, Cownden, Tweed, & Akerman, 2016; Nøkland, 2016;
Scellier & Bengio, 2017; Guerguiev, Lillicrap, & Richards, 2017; Whittington
& Bogacz, 2017, 2019; Sacramento, Costa, Bengio, & Senn, 2018; Richards
& Lillicrap, 2019; Belilovsky, Eickenberg, & Oyallon, 2018; Ororbia & Mali,
2019; Lillicrap, Santoro, Marris, Akerman, & Hinton, 2020).

In this letter, we present a novel approach to the credit assignment prob-
lem, motivated by observations on the nature of hidden-layer representa-
tions in the ventral visual pathway of the brain and deep neural networks.
In both, representations of objects belonging to different categories become
less similar, while representations of objects belonging to the same category
become more similar (Grill-Spector & Weiner, 2014; Kriegeskorte et al., 2008;
Yamins & DiCarlo, 2016). In other words, categorical clustering of repre-
sentations becomes more and more explicit in the later layers (see Figure
1). These results suggest a new approach to the credit assignment problem.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1302 S. Qin, N. Mudur, and C. Pehlevan

By assigning each layer a layer-local similarity matching task (Pehlevan &
Chklovskii, 2019; Obeid, Ramambason, & Pehlevan, 2019), whose goal is to
learn an intermediate representational similarity matrix between previous
and later layers, we may be able to get away from the need of backward
propagation of errors (see Figure 1). Motivated by this idea and previous
observations that error signal can be implicitly propagated via the change
of neural activities (Hinton & McClelland, 1988; Scellier & Bengio, 2017),
we propose a biologically plausible supervised learning algorithm, the con-
trastive similarity matching (CSM) algorithm.

Contrastive training (Anderson & Peterson, 1987; Movellan, 1991; Baldi
& Pineda, 1991) has been used to learn the energy landscapes of neu-
ral networks (NNs) whose dynamics minimize an energy function. Exam-
ples include influential algorithms like the contrastive Hebbian learning
(CHL) (Movellan, 1991) and equilibrium propagation (EP) (Scellier & Ben-
gio, 2017), where weight updates rely on the difference of the neural activity
between a free phase and a clamped (CHL) or nudged (EP) phase to locally
approximate the gradient of an error signal. The learning process can be in-
terpreted as minimizing a contrastive function, which reshapes the energy
landscape to eliminate spurious fixed points and makes the desired fixed
point more stable.

The CSM algorithm applies this idea to a contrastive function formu-
lated by nudging the output neurons of a multilayer similarity matching
objective function (Obeid et al., 2019). As a consequence, the hidden layers
learn intermediate representations between their previous and later layers.
From the CSM contrastive function, we derive deep neural networks with
feedforward, lateral, and feedback connections and neurons that exhibit bi-
ologically plausible Hebbian and anti-Hebbian plasticity.

The nudged phase of the CSM algorithm is analogous to the nudged
phase of EP but different. It performs Hebbian feedforward and anti-
Hebbian lateral updates. CSM has the opposite sign for the lateral con-
nection updates compared with EP and CHL. This is because our weight
updates solve a minimax problem. Anti-Hebbian learning pushes neurons
within a layer to learn different representations. The free phase of CSM
is also different, where only feedforward weights are updated by an anti-
Hebbian rule. In EP and CHL, all weights are updated.

Our main contributions and results follow:

• We provide a novel approach to the credit assignment problem us-
ing biologically plausible learning rules by generalizing the similar-
ity matching principle (Pehlevan & Chklovskii, 2019) to supervised
learning tasks and introducing the CSM algorithm.

• The proposed supervised learning algorithm can be related to other
energy-based algorithms, but with a distinct underlying mechanism.

• We present a version of our neural network algorithm with structured
connectivity.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1303

• We show that the performance of our algorithm is on par with
other energy-based algorithms using numerical simulations. The
learned representations of our Hebbian/anti-Hebbian network are
sparser.

The rest of this letter is organized as follows. In section 2, to illustrate our
main ideas, we introduce and discuss supervised similarity matching. We
then introduce the nudged deep similarity matching objective, from which
we derive the CSM algorithm for deep neural networks with nonlinear ac-
tivation functions and structured connectivity. We discuss the relation of
CSM to other energy-based learning algorithms. In section 3, we report the
performance of CSM and compare it with EP, highlighting the differences
between them. Finally, we discuss our results, possible biological mecha-
nisms, and relate them to other work in section 4.

2 Contrastive Similarity Matching for Deep Nonlinear Networks

2.1 Warm-Up: Supervised Similarity Matching Objective. Here we il-
lustrate our main idea in a simple setting. Let xt ∈ R

n, t = 1, . . . , T be a set of
data points and zl

t ∈ R
k be their corresponding desired output or labels. Our

idea is that the representation learned by the hidden layer, yt ∈ R
m, should

be halfway between the input x and the desired output zl . We formulate
this idea using representational similarities, quantified by the dot product
of representational vectors within a layer. Our proposal can be formulated
as the following optimization problem, which we name supervised similarity
matching:

min
{yt }T

t=1

1
T2

T∑
t=1

T∑
t′=1

[(x�
t xt′ − y�

t yt′)2 + (y�
t yt′ − zl�

t zl
t′)2]. (2.1)

To get an intuition about what this cost function achieves, consider the
case where only one training datum exists. Then, y�

1 y1 = 1
2 (x�

1 x1 + zl�
1 zl

1),
satisfying our condition. When multiple training data are involved, interac-
tions between different data points lead to a nontrivial solution, but the fact
that the hidden-layer representations are in between the input and output
layers stays.

The optimization problem, equation 2.1, can be analytically solved, mak-
ing our intuition precise. Let the representational similarity matrix of the
input layer be Rx

tt′ ≡ x�
t xt′ , the hidden layer be Ry

tt′ ≡ y�
t yt′ , and the output

layer be Rz
tt′ ≡ zl�

t zl
t′ . Instead of solving y directly, we can reformulate and

solve the supervised similarity matching problem, equation 2.1, for Ry, and
then obtain ys by a matrix factorization through an eigenvalue decomposi-
tion. By completing the square, problem 2.1 becomes an optimization prob-
lem for Ry:

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1304 S. Qin, N. Mudur, and C. Pehlevan

min
Ry∈Sm

1
T2

∥∥∥∥1
2

(Rx + Rz) − Ry
∥∥∥∥

2

F
, (2.2)

where Sm is the set of symmetric matrices with rank m and F denotes the
Frobenious norm. Optimal Ry is given by keeping the top m modes in the
eigenvalue decomposition of 1

2 (Rx + Rz) and setting the rest to zero. If
m ≥ rank(Rx + Rz), then optimal Ry exactly equals 1

2 (Rx + Rz), achieving
a representational similarity matrix that is the average of input and output
layers.

The supervised similarity matching problem, equation 2.1, can be solved
by an online algorithm that can be mapped onto the operation of a biologi-
cally plausible network with a single hidden layer, which runs an attractor
dynamics minimizing an energy function (see appendix A for details). This
approach can be generalized to multilayer and nonlinear networks. We do
not pursue it further because the resulting algorithm does not perform as
well due to spurious fixed points of nonlinear dynamics for a given input
xt . The CSM algorithm overcomes this problem.

2.2 Nudged Deep Similarity Matching Objective and Its Dual Formu-
lation. Our goal is to combine the ideas of supervised similarity matching
and contrastive learning to derive a biologically plausible supervised learn-
ing algorithm. To do so, we define the nudged similarity matching problem
first.

In energy-based learning algorithms like CHL and EP, weight updates
rely on the difference of neural activity between a free phase and a clamped
or nudged phase to locally approximate the gradient of an error signal.
This process can be interpreted as minimizing a contrastive function, which
reshapes the energy landscape to eliminate the spurious fixed points and
make the fixed point corresponding to the desired output more stable. We
adopt this idea to introduce what we call the nudged similarity matching
cost function and derive its dual formulation, which will be the energy func-
tion used in our contrastive formulation.

We consider a P-layer (P − 1 hidden layers) NN with nonlinear activa-
tion functions, f . For notational convenience, we denote inputs to the net-
work by r(0), outputs by r(P), and activities of hidden layers by r(p), p =
1, · · · , P − 1. We propose the following objective function for the training
phase where outputs are nudged toward the desired labels zl

t :

min
a1 ≤ rp

t ≤ a2
t = 1, . . . , T
p = 1, . . . , P

P∑
p=1

γ p−P

2T2

T∑
t=1

T∑
t′=1

||r(p−1)�
t r(p−1)

t′ − r(p)�
t r(p)

t′ ||22

+
P∑

p=1

2γ p−P

T

T∑
t=1

F(r(p)
t)�1 + 2β

T

T∑
t=1

∥∥∥r(P)
t − zl

t

∥∥∥2

2
. (2.3)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1305

Here, β is a control parameter that specifies how strong the nudge is. β →
∞ limit corresponds to clamping the output layer to the desired output. γ ≥
0 is a parameter that controls the influence of the later layers to the previous
layers. F(r(p)

t) is a regularizer defined and related to the activation function
by dF(r(p)

t)/dr(p)
t = u(p)

t − b(p)
t , where r(p)

t = f (u(p)
t), u(p)

t , and r(p)
t are the total

input and output of the pth layer, respectively, and b(p)
t is the the threshold

of neurons in layer p. The reason for the inclusion of this regularizer will
be apparent below. We assume f to be a monotonic and bounded function,
whose bounds are given by a1 and a2.

The objective function, equation 2.3, is almost identical to the deep simi-
larity matching objective introduced in Obeid et al. (2019), except the nudg-
ing term. They used the β = 0 version as an unsupervised algorithm. Here,
we use a nonzero β for supervised learning.

We note that we have not made a reference to a particular neural network
yet. This is because the neural network that optimizes equation 2.3 will be
fully derived from the nudged similarity matching problem. It will not be
prescribed as in traditional approaches to deep learning. We next describe
how to do this derivation.

Using the duality transforms introduced in Pehlevan, Sengupta, and
Chklovskii (2018) and Obeid et al. (2019), the above nudged supervised
deep similarity matching problem, equation 2.3, can be turned into a dual
minimax problem:

min
{W(p)}

max
{L(p)}

1
T

T∑
t=1

lt
(
{W(p)}, {L(p)}, r(0)

t , zl
t, β

)
, (2.4)

where

lt := min
a1≤r

(p)
t ≤a2

p=1,...,P

P∑
p=1

γ p−P
[

TrW(p)�W(p) − 2r(p)�
t W(p)r(p−1)

t

+ 1 + γ (1 − δpP)
2

c(p)
(

2r(p)�
t L(p)r(p)

t − TrL(p)�L(p)
)

+ 2F
(

r(p)
t

)�
1
]

+ 2β

∥∥∥r(P)
t − zl

t

∥∥∥2

2
. (2.5)

Here, we introduced c(p) as a parameter that governs the relative importance
of forward versus recurrent inputs and c(p) = 1 corresponds to the exact
transformation (the details are given in appendix B).

In appendix C, we show that the objective of the min in lt defines an
energy function for a deep neural network with feedforward, lateral, and
feedback connections (see Figure 2). It has the following neural dynamics:

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1306 S. Qin, N. Mudur, and C. Pehlevan

Figure 2: Illustration of the Hebbian/anti-Hebbian network with P layers that
implements the contrastive similarity matching algorithm. The output layer
neurons alternate between the free phase and nudged phase.

τp
du(p)

dt
= −u(p) + W(p)r(p−1)

t − c(p)[1 + γ (1 − δpP)]L(p)r(p)
t + b(p)

t

+ γ (1 − δpP)W(p+1)�r(p+1)
t − 2βδpP(r(P)

t − zl
t),

r(p)
t = f (u(p)), (2.6)

where δpP is the Kronecker delta, p = 1, . . . , P, τp is a time constant, and
W(P+1) = 0, r(P+1)

t = 0. Therefore, the minimization can be performed by
running the dynamics until convergence. This observation is the building
block of our CSM algorithm, which we present below. Finally, we note that
the introduction of the regularizer in equation 2.3 is necessary for the en-
ergy interpretation and for proving the convergence of the neural dynamics
(Obeid et al., 2019).

2.3 Contrastive Similarity Matching. We first state our contrastive
function and then discuss its implications. We suppress the dependence on
training data in lt and define

{L∗(p)} ≡ arg max
{L(p)}

1
T

T∑
t=1

lt
(
{W(p)}, {L(p)}, {b(p)}, β

)
(2.7)

and

E({W(p)}, {b(p)}, β) = 1
T

T∑
t=1

lt
(
{W(p)}, {L∗(p)}, {b(p)}, β

)
. (2.8)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1307

Finally, we formulate our contrastive function as

Jβ ({W(p)}, {b(p)}) = E(β) − E(0), (2.9)

which is to be minimized over feedforward and feedback weights {W(p)}, as
well as bias {b(p)}. For fixed bias, minimization of the first term, E(β), cor-
responds exactly to the optimization of the minimax dual of nudged deep
similarity matching, equation 2.4. The second term, E(0), corresponds to a
free phase, where no nudging is applied. We note that in order to arrive at a
contrastive minimization problem, we use the same optimal lateral weights,
equation 2.7, from the nudged phase in the free phase. Compared to the
minimax dual of nudged deep similarity matching, equation 2.4, we also
optimize it over the bias for better performance.

Minimization of the contrastive function, equation 2.9, closes the energy
gap between nudged and free phases. Because the energy functions are
evaluated at the fixed point of the neural dynamics, equation 2.6, this pro-
cedure enforces the output of the nudged network to be a fixed point of the
free neural dynamics.

To optimize our contrastive function, equation 2.9, in a stochastic (one
training datum at a time) manner, we use the following procedure. For
each pair of training data {r0

t , zl
t}, we run the nudged phase (β �= 0) dynam-

ics, equation 2.6, until convergence to get the fixed point r(p)
β,t . Next, we run

the free phase (β = 0) neural dynamics, equation 2.6, until convergence. We
collect the fixed points r(p)

0,t . L(p) is updated following a gradient ascent of,
equation 2.7, while W(p) and b(p) follow a gradient descent of equation 2.9:

�L(p) ∝
(

r(p)
β,tr

(p)�
β,t − L(p)

)
,

�W(p) ∝
(

r(p)
β,tr

(p−1)�
β,t − r(p)

0,t r(p−1)�
0,t

)
,

�b(p) ∝
(

r(p)
β,t − r(p)

0,t

)
. (2.10)

In practice, learning rates can be chosen differently to achieve the best
performance. A constant prefactor before L(p) can be added to achieve nu-
merical stability. The CSM algorithm is summarized in algorithm 1.

2.3.1 Relation to Gradient Descent. The CSM algorithm can be related to
gradient descent in the β → 0 limit using similar arguments as in Scellier
and Bengio (2017). To see this explicitly, we first simplify the notation by
collecting all W(p) and b(p) parameters under one vector variable θ, denote
all the lateral connection matrices defined in equation 2.7 by L∗, and repre-
sent the fixed points of the network by r̄. Now the energy function can be
written as E(θ, β; L∗, r̄), where L∗ and r̄ depend on θ and β implicitly. In the

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1308 S. Qin, N. Mudur, and C. Pehlevan

limit of small β, one can approximate the energy function to leading order
by

E(θ, β; L∗, r̄) ≈ E(θ, 0) +
(

Tr
(

∂E
∂L∗

∂L∗

∂β

)
+ ∂E

∂ r̄
· ∂ r̄
∂β

+ ∂E
∂β

)∣∣∣∣
β=0

β. (2.11)

Note that the maximization in equation 2.7 implies ∂E
∂L∗ = 0. If ∂E

∂ r̄ is also 0,
that is, the minima of equation 2.5 are not on the boundaries but at the inte-
rior of the feasible set; then in the limit β → 0, the gradient of the contrastive
function is the gradient of the mean square error function with respect to θ:

lim
β→0

1
β

∂J
∂θ

= ∂

∂θ

∂E
∂β

∣∣∣∣
β=0

= ∂

∂θ

1
T

T∑
t=1

∥∥r̄P
t − zl

t

∥∥2
2 . (2.12)

It is important to note that while the β → 0 limit of CSM is related to gra-
dient descent, this limit is not necessarily the best-performing one (as also
observed in Scellier & Bengio, 2017, for EP) and β is a hyperparameter to
be tuned. In appendix F, we present simulations that confirm the existence
of an optimal β away from β = 0.

2.3.2 Relation to Other Energy-Based Learning Algorithms. The CSM algo-
rithm is similar in spirit to other contrastive algorithms, such as CHL and
EP. Like these algorithms, CSM performs two runs of the neural dynamics in
a “free” and a “nudged” phase. However, there are important differences.
One is that in CSM, the contrastive function is minimized by the feedfor-
ward weights. The lateral weights take part in the maximization of a differ-
ent minimax objective, equation 2.7. In CHL and EP, such minimization is
done with respect to all the weights.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1309

As a consequence of this difference, CSM uses a different update for lat-
eral weights than CHL and EP. This anti-Hebbian update is different in two
ways. First, it has the opposite sign, that is, EP and CHL nudged/clamped
phase lateral updates are Hebbian. Second, no update is applied in the free
phase. As we will demonstrate in numerical simulations, our lateral update
imposes a competition between different units in the same layer. When net-
work activity is constrained to be nonnegative, such lateral interactions are
inhibitory and sparsify neural activity.

Analogs of two hyperparameters of our algorithm play special roles in
EP and CHL. The β → ∞ limit of EP corresponds to clamping the output to
the desired value in the nudged phase (Scellier & Bengio, 2017). Similarly,
the β → ∞ limit of CSM also corresponds to training with fully clamped
output units. We discussed the gradient descent interpretation of the β →
0 limits of both algorithms above. CHL is equivalent to backpropagation
when feedback strength, the analog of our γ parameter, vanishes (Xie &
Seung, 2003). In CSM, γ is a hyperparameter to be tuned, which we explore
in appendix F.

2.4 Introducing Structured Connectivity. We can also generalize the
nudged supervised similarity matching (see equation 2.3) to derive a
Hebbian/anti-Hebbian network with structured connectivity. Following
Obeid et al. (2019), we can modify any of the cross terms in the layer-wise
similarity matching objective, equation 2.3, by introducing synapse-specific
structure constants. For example,

− 1
T2

N(p)∑
i

N(p−1)∑
j

T∑
t

T∑
t′

r(p)
t,i r(p)

t′,i r
(p−1)
t, j r(p−1)

t′, j sW
i j , (2.13)

where N(p) is the number of neurons in the pth layer, and sW
i j ≥ 0 are con-

stants that set the structure of feedforward weight matrix between the pth
layer and the (p − 1)th layer. In particular, setting them to zero removes
the connection without changing the interpretation of the energy function
(Obeid et al., 2019). Similarly, we can introduce constants sL

i j to specify the
structure of the lateral connections (see Figure 6A). Using such structure
constants, one can introduce many different architectures, some of which
we experiment with below. We present a detailed explanation of these
points in appendix C.

3 Numerical Simulations

In this section, we report the simulation results of the CSM algorithm on
a supervised classification task using the MNIST data set of handwritten
digits (LeCun, Cortes, & Burges, 2010) and the CIFAR-10 image data set

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1310 S. Qin, N. Mudur, and C. Pehlevan

(Krizhevsky, 2009). For our simulations, we used the Theano deep learn-
ing framework (Theano Development Team et al., 2016) and modified the
code released by Scellier and Bengio (2017). The activation functions of the
units were f (x) = min{1, max{x, 0}} and c(p) = 1/2(1 − δpP). Following Scel-
lier and Bengio (2017), we used the persistent particle technique to tackle
the long period of free phase relaxation. We stored the fixed points of hid-
den layers at the end of the free phase and used them to initialize the state
of the network in the next epoch.

3.1 MNIST. The inputs consist of gray-scale 28-by-28 pixel images, and
each image is associated with a label ranging from {0, . . . , 9}. We encoded
the labels zl as one-hot 10-dimensional vectors. We trained fully connected
NNs with one and three hidden layers with lateral connections within each
hidden layer. The performance of the CSM algorithm was compared with
several variants of the EP algorithm: (1) EP: beta regularized, where the net-
works had no lateral connections and the sign of β was randomized to act
as a regularizer as in Scellier and Bengio (2017); (2) EP: beta positive, where
the networks had no lateral connections and β was a positive constant; and
(3) EP: lateral, where networks had lateral connections and were trained
with a positive constant β. In all the fully connected network simulations
for MNIST, the number of neurons in each hidden layer is 500. We attained
0% training error and 2.16% and 3.52% validation errors with CSM, in the
one and three hidden-layer cases, respectively. This is on par with the per-
formance of the EP algorithm, which attains validation errors of 2.53% and
2.73%, respectively, for variant 1 and 2.18% and 2.77% for variant 2 (see Fig-
ure 3). In the three-layer case, a training error–dependent adaptive learning
rate scheme (CSM-Adaptive) was used, wherein the learning rate for the
lateral updates is successively decreased when the training error drops be-
low certain thresholds (see appendix D for details).

3.2 CIFAR-10. CIFAR-10 is a more challenging data set that contains 32-
by-32 RGB images of objects belonging to 10 classes of animals and vehicles.
For fully connected networks, the performance of CSM was compared with
EP (positive constant β). We obtain validation errors of 59.21% and 51.76%
in the one and two hidden-layer networks, respectively, in CSM, and vali-
dation errors of 57.60% and 53.43% in EP (see Figure 4). The mean and stan-
dard errors on the mean, of the last 20 validation errors, are reported here in
order to account for fluctuations about the mean. It is interesting to note that
for both algorithms, deeper networks perform better for CIFAR-10 but not
for MNIST. For both data sets, the best-performing network trained with
CSM achieves slightly better validation accuracy than the best-performing
network trained with EP. The errors corresponding to the fully connected
networks for both algorithms and data sets are summarized in Table 1. Here,
CSM has been compared to the variant of EP with β > 0.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1311

Figure 3: Comparison of training (left) and validation (right) errors between
CSM and EP algorithms for a network with one hidden layer (784-500-10, upper
panels) and three hidden layers (784-500-500-500-10, lower panels) trained on
the MNIST data set.

Figure 4: Training (left) and validation (right) error curves for fully connected
networks trained on CIFAR-10 data set with CSM (solid) and EP (dashed) algo-
rithms. The best fully connected CSM network attains slightly better validation
accuracy than the best fully connected EP network.

For CIFAR-10, the CSM algorithm with two hidden layers has a vali-
dation error around 51% after 1000 epochs but was run for a total of 3584
epochs since the training error was still decreasing. The simulation does
not reach zero training error but starts plateauing at around 18%, with a
decrease of only 0.3% for the last 100 epochs. The validation error does not
decrease with the additional training beyond 1000 epochs. It is possible that

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1312 S. Qin, N. Mudur, and C. Pehlevan

Table 1: Comparison of the Training and Validation Errors of Fully Connected
Networks for EP (Beta Positive) and CSM.

MNIST CIFAR-10

Rule Train (%) Validate (%) Rule Train (%) Validate (%)

CSM:1hl 0.00 2.16 CSM:1hl 1.77 59.21 ± 0.08
EP:1hl 0.03 2.18 EP:1hl 0.76 57.60 ± 0.06
CSM:3hl 0.00 3.52 CSM:2hl 17.96 51.76 ± 0.002
EP:3hl 0.00 2.77 EP:2hl 1.25 53.43 ± 0.04

Notes: For both algorithms, the best-performing networks correspond to
two hidden-layer networks for CIFAR-10 and one hidden-layer network for
MNIST. Here, xHL means that the network has x hidden layers. For the CIFAR-
10, CSM, 2HL simulation, errors at the end of 3584 epochs are reported. For the
other CIFAR-10 simulations, errors at the end of 1000 epochs are reported.

Figure 5: Representations of neurons in NNs trained by the CSM algorithm are
much sparser than that of the EP algorithm on the MNIST data set. (A) Heat
maps of representations at the second hidden layer; each row is the response of
500 neurons to a given digit image. Top: CSM algorithm. Bottom: EP algorithm.
(B) Representation sparsity, defined as a fraction of neurons whose activity is
larger than a threshold (0.01) along different layers. Layer 0 is the input. The
network has a 784-500-500-500-10 architecture.

better validation accuracy could be reached if better training errors were
achieved—for example, by better-performing learning rate schedules.

3.3 Neuronal Representations. While CSM and EP perform similarly,
their learned representations differ in sparseness (see Figure 5). Due to the
nonnegativity of hidden unit activity and anti-Hebbian lateral updates, the
CSM network ends up with inhibitory lateral connections, which enforce
sparse response (see Figure 5). This can also be seen from the similarity
matching objective equation 2.3. Imagine there are only two inputs with a
negative dot product, x · x′ < 0. The next layer will at least partially match
this dot product, however, because the lowest value of y · y′ is zero due to
y, y′ ≥ 0, y, and y′ will be forced to be orthogonal with nonoverlapping sets

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1313

Figure 6: (A) Sketch of structured connectivity in a deep neural network. Neu-
rons live on a 2D grid. Each neuron takes input from a small grid (blue) from the
previous layer and a small grid of inhibition from its nearby neurons (orange).
(B) Training and validation curves of CSM with structured single hidden-layer
networks on the MNIST data set, with a receptive field of radius 4 and neurons
per site 4, 16, and 20.

of active neurons. Sparse response is a general feature of cortical neurons
(Olshausen & Field, 2004) and energy efficient, making the representations
learned by CSM more biologically relevant.

3.4 Structured Networks. We also examined the performance of CSM
in networks with structured connectivity. Every hidden layer can be con-
structed by first considering sites arranged on a two-dimensional grid. Each
site only receives inputs from selected nearby sites controlled by the ra-
dius parameter (see Figure 6A). This setting resembles retinotopy (Kandel,
Schwartz, Jessell, Siegelbaum, & Hudspeth, 2000) in the visual cortex. Mul-
tiple neurons can be present at a single site controlled by the neurons per
site (NPS) parameter. We consider lateral connections only between neu-
rons sharing the same (x, y) coordinate.

For the MNIST data set, networks with structured connectivity trained
with the CSM rule achieved 2.22% validation error for a single hidden-layer
network with a radius of 4 and NPS of 20 (see Figure 6B; see appendix D for
details). For the CIFAR-10 data set, a one-hidden-layer structured network
using CSM algorithm achieves 34% training error and 49.5% validation er-
ror after 250 epochs, a significant improvement compared to the fully con-
nected one-layer network. This structured network had a radius of 4 and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1314 S. Qin, N. Mudur, and C. Pehlevan

NPS of 3. A two-hidden-layer structured network yielded a training error
of 46.8% and a validation error of 51.4% after 200 epochs. Errors reported
for the structured runs are the averages of five trials. The results for all fully
connected and structured networks are reported in appendix D and E.

4 Discussion

In this letter, we propose a new solution to the credit assignment problem
by generalizing the similarity matching principle to the supervised domain
and proposed a biologically plausible supervised learning algorithm, the
contrastive similarity matching algorithm. In CSM, a supervision signal is
introduced by minimizing the energy difference between a free phase and
a nudged phase. CSM differs significantly from other energy-based algo-
rithms in how the contrastive function is constructed. We showed that when
a nonnegativity constraint is imposed on neural activity, the anti-Hebbian
learning rule for the lateral connections makes the representations sparse
and biologically relevant. We also derived the CSM algorithm for neural
networks with structured connectivity.

The idea of using representational similarity for training neural net-
works has taken various forms in previous work. The similarity matching
principle has recently been used to derive various biologically plausible
unsupervised learning algorithms (Pehlevan & Chklovskii, 2019), such as
principal subspace projection (Pehlevan & Chklovskii, 2015), blind source
separation (Pehlevan, Mohan, & Chklovskii, 2017), feature learning (Obeid
et al., 2019), and manifold learning (Sengupta, Pehlevan, Tepper, Genkin,
& Chklovskii, 2018). It has been used for semisupervised classification
(Genkin, Sengupta, & Chklovskii, 2019). Similarity matching has also been
used as part of a local cost function to train a deep convolutional network
(Nøkland & Eidnes, 2019), where instead of layer-wise similarity matching,
each hidden layer aims to learn representations similar to the output layer.
Representational similarity matrices derived from neurobiology data have
recently been used to regularize CNNs trained for image classification. The
resulting networks are more robust to noise and adversarial attacks (Li et al.,
2019). It would be interesting to study the robustness of neural networks
trained by the CSM algorithm.

Like other constrastive learning algorithms, CSM operates with two
phases: free and nudged. Previous studies in contrastive learning provided
various biologically possible implementations of such two-phased learning.
One proposal is to introduce the teacher signal into the network through an
oscillatory coupling with a period longer than the timescale of neural activ-
ity converging to a steady state. Baldi and Pineda (1991) proposed that such
oscillations might be related to rhythms in the brain. In more recent work,
Scellier and Bengio (2017) provided an implementation of EP also applica-
ble to CSM with minor modifications. They proposed that synaptic update
happens only in the nudged phase with weights continuously updating

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1315

according to a differential anti-Hebbian rule as the neuron’s state moves
from the fixed point at free phase to the fixed point at the nudged phase.
Further, such differential rule can be related to spike-time-dependent plas-
ticity (Xie & Seung, 2000; Bengio, Mesnard, Fischer, Zhang, & Wu, 2015).
CSM can use the same mechanism for feedforward and feedback updates.
Lateral connections need to be separately updated in the free phase. The dif-
ferential updating of synapses in different phases of the algorithm can be
implemented by neuromodulatory gating of synaptic plasticity (Brzosko,
Mierau, & Paulsen, 2019; Bazzari & Parri, 2019).

A practical issue of CSM and other energy-based algorithms such as EP
and CHL is that the recurrent dynamics takes a long time to converge.
Recently, a discrete-time version of EP has shown much faster training
(Ernoult, Grollier, Querlioz, Bengio, & Scellier, 2019), and the application
to the CSM could be an interesting future direction.

Appendix A: Derivation of a Supervised Similarity Matching Neural
Network

The supervised similarity matching cost function, equation 2.1, is formu-
lated in terms of the activities of units, but a statement about the architec-
ture and the dynamics of the network has not been made. We will derive all
these from the cost function, without prescribing them. To do so, we need
to introduce variables that correspond to the synaptic weights in the net-
work. As it turns out, these variables are dual to correlations between unit
activities (Pehlevan et al., 2018).

To see this explicitly, following the method of Pehlevan et al. (2018), we
expand the squares in equation 2.1 and introduce new dual variables W1 ∈
R

m×n, W2 ∈ R
k×m, and L1 ∈ R

m×m using the following identities:

− 1
T2

T∑
t=1

T∑
t′=1

y�
t yt′ x�

t xt′ = min
W1

− 2
T

T∑
t=1

y�
t W1xt + TrW�

1 W1,

1
T2

T∑
t=1

T∑
t′=1

y�
t yt′ y�

t yt′ = max
L1

2
T

T∑
t=1

y�
t L1yt − TrL�

1 L1,

− 1
T2

T∑
t=1

T∑
t′=1

y�
t yt′zl�

t zl
t′ = min

W2

− 2
T

T∑
t=1

zl�
t W2yt + TrW�

2 W2. (A.1)

Plugging these into equation 2.1, and changing orders of optimization,
we arrive at the following dual, minimax formulation of supervised simi-
larity matching:

min
W1,W2

max
L1

1
T

T∑
t=1

lt (W1, W2, L1, xt, zl
t), (A.2)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1316 S. Qin, N. Mudur, and C. Pehlevan

where

lt := TrW�
1 W1 − TrL�

1 L1 + TrW�
2 W2

+ min
yt

2(−y�
t W1xt + y�

t L1yt − y�
t W�

2 zl
t). (A.3)

A stochastic optimization of the above objective can be mapped to a
Hebbian/anti-Hebbian network following steps in Pehlevan et al. (2018).
For each training datum, {xt, zl

t}, a two-step procedure is performed.
First, optimal yt that minimizes lt is obtained by a gradient flow until
convergence:

ẏ = W1xt − 2L1yt + W�
2 zl

t . (A.4)

We interpret this flow as the dynamics of a neural circuit with linear activa-
tion functions, where the dual variables W1, W2, and L1 are synaptic weight
matrices (see Figure 7A). In the second part of the algorithm, we update the
synaptic weights by a gradient descent-ascent on equation A.3 with yt fixed.
This gives the following synaptic plasticity rules:

�W1 = η(ytx�
t − W1), �L1 = η(yty�

t − L1), �W2 = η(zl
ty

�
t − W2).

(A.5)

The learning rate η of each matrix can be chosen differently to achieve best
performance.

Overall, the network dynamics, equation A.4, and the update rules,
equation A.5, map to an NN with one hidden layer, with the output
layer clamped to the desired state. The updates of the feedforward weight
are Hebbian, and updates of the lateral weight are anti-Hebbian (see
Figure 7A).

For prediction, the network takes an input data point, xt , and runs with
unclamped output until convergence. We take the value of the z units at the
fixed point as the network’s prediction.

Because the z units are not clamped during prediction and are dynamical
variables, the correct outputs are not necessarily the fixed points of the net-
work in the prediction phase. To make sure that the network produces cor-
rect fixed points, at least for training data, we introduce the following step
to the training procedure. We aim to construct a neural dynamics for the
output layer in the prediction phase such that its fixed point z corresponds
to the desired output zl . Since the output layer receives input W2y from the
previous layer, a decay term that depends on z is required to achieve a sta-
ble fixed point at z = zl . The simplest way is introducing lateral inhibition.
And now the output layer has the following neural dynamics:

ż = W2y − L2z, (A.6)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1317

Figure 7: A linear NN with Hebbian/anti-Hebbian learning rules. (A) During
the learning process, the output neurons (blue) are clamped at their desired
states. After training, prediction for a new input x is given by the value of z at
the fixed point of neural dynamics. (B) The network is trained on a linear task:
zl

t = Axt . Test error, defined as the mean square error between the network’s pre-
diction, zp

t , and the ground-truth value, zl
t , 1/T

∑T
t=1 ||zp

t − zl
t ||2F , decreases with

the gradient ascent-descent steps during learning. (C) Scatter plot of the pre-
dicted value versus the desired value (element-wise). (D) The algorithm learns
the correct mapping between x and z even in the presence of small gaussian
noise. In these examples, x ∈ R

5, A ∈ R
2×5, elements of x and A are drawn from

a uniform distribution in the range [−1, 1], y ∈ R
2, and z ∈ R

2. In panels C and
D, 200 data points are shown.

where the lateral connections L2 are learned such that the fixed point z∗ ≈
zl . This is achieved by minimizing the following target function:

min
L2

1
T

T∑
t=1

||W2yt − L2zl
t ||22. (A.7)

Taking the derivative of the above target function with respect to L2

while keeping the other parameters and variables evaluated at the fixed

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1318 S. Qin, N. Mudur, and C. Pehlevan

point of neural dynamics, we get the following “delta” learning rule
for L2:

�L2 = η(W2yt − L2zl
t)zl�

t . (A.8)

After learning, the NN makes a prediction about a new input x by run-
ning the neural dynamics of y and z, equations A.4 and A.6, until they con-
verge to a fixed point. We take the value of z units at the fixed point as the
prediction. As shown in Figures 7B to 7D, the linear network and weight
update rule solve linear tasks efficiently.

Although the above procedure can be generalized to multilayer and non-
linear networks, one has to address the issue of spurious fixed points of non-
linear dynamics for a given input xt . The CSM algorithm presented in the
main text overcomes this problem, which borrows ideas from energy-based
learning algorithms such as contrastive Hebbian learning and equilibrium
propagation.

Appendix B: Supervised Deep Similarity Matching

In this appendix, we follow Obeid et al. (2019) to derive the minimax dual
of deep similarity matching objective function. We start from rewriting the
objective function, equation 2.3, by expanding its first term and combining
the same terms from adjacent layers, which gives

min
a1 ≤ rp

t ≤ a2
t = 1, . . . , T
p = 1, . . . , P

P∑
p=1

γ p−P

2T2

T∑
t=1

T∑
t′=1

(
r(p)�

t r(p)
t′ r(p−1)�

t r(p−1)
t′

− 1 + γ (1 − δpP)
2

c(p)r(p)�
t r(p)

t′ r(p)�
t r(p)

t′

)

+
P∑

p=1

2γ p−P

T

T∑
t=1

F(r(p)
t)�1 + β

T

T∑
t=1

∥∥∥r(P)
t − zl

t

∥∥∥2

2
, (B.1)

where c(p) is a parameter that changes the relative importance of within-
layer and between-layer similarity; we set it to be 1/2 in our numerical sim-
ulations. Plug the following identities:

− 1
T2

T∑
t=1

T∑
t′=1

r(p)�
t r(p)

t′ r(p−1)�
t r(p−1)

t′

= min
W(p)

− 2
T

T∑
t=1

r(p)�
t W(p)r(p−1)

t + TrW(p)�W(p), (B.2)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1319

1
T2

T∑
t=1

T∑
t′=1

r(p)�
t r(p)

t′ r(p)�
t r(p)

t′

= max
L(p)

2
T

T∑
t=1

r(p)�
t L(p)r(p)

t − TrL(p)�L(p), (B.3)

in equation B.1 and exchange the optimization order of r(p)
t and the weight

matrices. We turn the target function, equation 2.3, into the following min-
max problem,

min
{W(p)}

max
{L(p)}

1
T

T∑
t=1

lt
(
{W(p)}, {L(p)}, r(0)

t , zl
t, β

)
, (B.4)

where we have defined an “energy” term (equation 2.5). The neural dynam-
ics of each layer can be derived by following the gradient of lt :

du(p)
t

dt
∝ − ∂lt

∂r(p)
t

= 2γ p−P
[
−u(p) + b(p)

t + W(p)r(p−1)
t + γ (1 − δpP)W(p+1)�r(p+1)

t

− [1 + γ (1 − δpP)]c(p)L(p)r(p)
t − 2βδpP(r(P)

t − zl
t)

]
,

r(p)
t = f (u(p)). (B.5)

Define τ−1
p = 2γ p−P, and the above equation becomes equation 2.6.

Appendix C: Supervised Similarity Matching for Neural Networks with
Structured Connectivity

In this appendix, we derive the supervised similarity matching algorithm
for neural networks with structured connectivity. Structure can be intro-
duced to the quartic terms in equation B.1:

− 1
T2

N(p)∑
i

N(p−1)∑
j

T∑
t

T∑
t′

r(p)
t,i r(p)

t′,i r
(p−1)
t, j r(p−1)

t′, j sW,(p)
i j ,

− 1
T2

N(p)∑
i

N(p)∑
j

T∑
t

T∑
t′

r(p)
t,i r(p)

t′,i r
(p)
t, j r(p)

t′, js
L,(p)
i j , (C.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1320 S. Qin, N. Mudur, and C. Pehlevan

where sW,(p)
i j and sL,(p)

i j specify the feedforward connections of layer p with
p-1 layer and lateral connections within layer p, respectively. For example,
setting them to be zeros eliminates all connections. Now we have the fol-
lowing deep structured similarity matching cost function for supervised
learning:

min
a1 ≤ rp

t ≤ a2
t = 1, . . . , T
p = 1, . . . , P

P∑
p=1

γ p−P

2T2

T∑
t=1

T∑
t′=1

(
r(p)�

t r(p)
t′ r(p−1)�

t r(p−1)
t′ sW,(p)

i j

− 1 + γ (1 − δpP)
2

r(p)�
t r(p)

t′ r(p)�
t r(p)

t′ sL,(p)
i j

)

+
P∑

i=1

2γ p−P

T

T∑
t=1

F(r(p)
t)�1 + β

T

T∑
t=1

∥∥∥r(P)
t − zl

t

∥∥∥2

2
. (C.2)

For each layer, we can define dual variables for W(p)
i j and L(p)

i j for interactions
with positive constants and define the following variables:

W̄ (p)
i j =

⎧⎨
⎩

W (p)
i j , sW,(p)

i j �= 0

0, sW,(p)
i j = 0

, L̄(p)
i j =

⎧⎨
⎩

L(p)
i j , sL,(p)

i j �= 0

0, sL,(p)
i j = 0

(C.3)

Now we can rewrite equation C.2 as

min
{W̄(p)}

max
{L̄(p)}

1
T

T∑
t=1

l̄t
(
{W̄(p)}, {L̄(p)}, r(0)

t , zl
t, β

)
, (C.4)

where

l̄t := min
a1 ≤ r(p)

t ≤ a2
p = 1, . . . , P

P∑
p=1

γ p−P

{ ∑
i, j

sW,(p)
i j �= 0

W (p)2

i j −
∑

i, j

sL,(p)
i j �= 0

1 + γ (1 − δpP)

sL,(p)
i j

L(p)2

i j

+ [
1 + γ (1 − δpP)

]
r(p)

t L(p)r(p)
t − 2r(p)�

t W(p)r(p−1)
t + 2F

(
r(p)

t

)�
}

+ β

∥∥∥r(P)
t − zl

t

∥∥∥2

2
. (C.5)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1321

Table 2: Comparison of the Training and Validation Errors of Different Algo-
rithms for One Hidden-Layer NNs on the MNIST Data Set.

Training Validation Number
Algorithm Learning Rate Error (%) Error (%) of Epochs

EP: ±β αW = 0.1, 0.05 0 2.53 40
EP: +β αW = 0.5, 0.125 0.034 2.18 100
EP: lateral αW = 0.5, 0.25, αL = 0.75 0 2.29 25
CSM αW = 0.5, 0.375, αL = 0.01 0 2.16 25

The neural dynamics follows the gradient of equation C.5, which is

τp
du(p)

t

dt
= −u(p) + b(p)

t + W̄(p)r(p−1)
t + γ (1 − δpP)W̄(p+1)�r(p+1)

t

− [1 + γ (1 − δpP)]L̄(p)r(p)
t − βδpP(r(P)

t − zl
t),

r(p)
t = f (u(p)), p = 1, . . . , P. (C.6)

Local learning rules follow the gradient descent and ascent of equation C.5:

�W (p)
i j ∝

⎛
⎝r(p)

j r(p−1)
i −

W (p)
i j

sW,(p)
i j

⎞
⎠ , (C.7)

�L(p)
i j ∝

⎛
⎝r(p)

j r(p)
i −

L(p)
i j

sL,(p)
i j

⎞
⎠ . (C.8)

Appendix D: Hyperparameters and Performance in Numerical
Simulations with the MNIST Data Set

D.1 One Hidden Layer. Table 2 reports the training and validation er-
rors of three variants of the EP algorithm and the CSM algorithm for a single
hidden-layer network on MNIST. The models were trained until the train-
ing error dropped to 0% or as close to 0% as possible (as in the case of EP
algorithm with β > 0); errors reported here correspond to errors obtained
for specific runs and do not reflect ensemble averages. The training and val-
idation errors below are reported at an epoch when the training error has
dropped to 0%, or at the last epoch for the run (e.g., for EP, β > 0). This
epoch number is recorded in the last column.

D.2 Three Hidden Layers. In Table 3, the CSM algorithm employs a
scheme with decaying learning rates. Specifically, the learning rates for

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1322 S. Qin, N. Mudur, and C. Pehlevan

Table 3: Comparison of the Training and Validation Errors of Different Algo-
rithms for Three-Hidden Layer NNs on the MNIST Data Set.

Training Validation Number
Algorithm Learning Rate Error (%) Error (%) of Epochs

EP: ±β αW=0.128, 0.032, 0.008, 0.002 0 2.73 250
EP: +β αW =0.128, 0.032, 0.008, 0.002 0 2.77 250
EP lateral αW=0.128, 0.032, 0.008, 0.002;

αL = 0.192, 0.048, 0.012
0 2.4 250

CSM αW =0.5, 0.375, 0.281, 0.211;
αL =0.75, 0.562, 0.422

0 4.82 250

CSM Adaptive αW =0.5, 0.375, 0.281, 0.211;
αL =0.75, 0.562, 0.422

0 3.52 250

Table 4: Comparison of the Training and Validation Errors of Different Algo-
rithms for One Hidden-Layer NNs with Structured Connectivity on the MNIST
Data Set.

Training Validation Number
Algorithm Learning Rate Error (%) Error (%) of Epochs

R4, NPS4, Full αW = 0.5, 0.375; αL =0.01 0.02 2.71 50
R4, NPS16, Full αW = 0.5, 0.25; αL =0.75 0 2.41 49
R4, NPS20, Full αW = 0.664, 0.577; αL =0.9 0 2.22 50
R8, NPS80, Crop αW = 0.664, 0.577; αL =0.9 0.01 2.27 20
R4, NPS4, Crop αW = 0.099, 0.065; αL =0.335 0.08 2.98 100
R8, NPS4, Crop αW = 0.099, 0.065; αL =0.335 0 2.73 100
R8, NPS20, Crop αW = 0.664, 0.577; αL =0.9 0 2.23 79

lateral updates are divided by a factor of 5, 10, 50, and 100 when the training
error dropped below 5%, 1%, 0.5%, and 0.1%, respectively.

D.3 Structured Connectivity. In this section, we explain the simula-
tion for structured connectivity and report the results. Every hidden layer
in these networks can be considered as multiple two-dimensional grids
stacked onto each other, with each grid containing neurons or units at peri-
odically arranged sites. Each site receives inputs only from selected nearby
sites. In this scheme, we consider lateral connections only between neu-
rons sharing the same (x, y) coordinate, and the length and width of the
grid are the same. In Table 4, “Full” refers to simulations where the in-
put is the 28 × 28 MNIST input image, and “Crop” refers to simulations
in which the input image is a cropped 20 × 20 MNIST image. The first
three, annotated by Full, correspond to the simulations reported in the main
text. Errors are reported at the last epoch for the run. In networks with

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1323

Table 5: Comparison of the Validation Errors of Different Algorithms for Dif-
ferent Networks on the CIFAR-10 Data Set.

Algorithm, Connectivity, Training Validation Number
Number of Hidden Layers Learning Rate Error (%) Error (%) of Errors

CSM, FC, 1HL αW = 0.059, 0.017 1.77 59.21 ± 0.08 1000
αL = 0.067

CSM, FC, 2HL αW = 0.018, 7.51 ×
10−4, 3.07 × 10−5

17.96 51.76 ± 0.002 3584

αL = 0.063, 2.59 × 10−3

CSM, Str, 1HL αW = 0.050, 0.0375 34 ± 3.7 49.5 ± 0.7 250
αL = 0.01

CSM, Str, 2HL αW = 0.265, 0.073, 0.020 46.8 ± 0.6 51.4 ± 0.7 200
αL = 0.075, 0.020

EP, FC, 1HL αW = 0.014, 0.011 0.76 57.60 ± 0.06 1000
EP, FC, 2HL αW = 0.014, 0.011, 1.25 1.25 53.43 ± 0.04 1000

structural connectivity, additional hyperparameters are required to con-
strain the structure, which are enumerated below:

• Neurons per site (nps): The number of neurons placed at each site in
a given hidden layer, that is, the number of two-dimensional grids
stacked onto each other. The nps for the input is 1.

• Stride: Spacing between adjacent sites, relative to the input channel.
The stride of the input is always 1, that is, sites are placed at (0, 0), (0,
1), (1, 0), so on, on the two-dimensional grid. If the stride of the lth
layer is s, the nearest sites to the site at the origin will be (0, s) and
(s, 0). The stride increases deeper into the network. Specifying the
stride also determines the dimension of the grid. A layer with stride s
and nps n will have d × d × n units, where d = 28/s for the Full runs
and d = 20/s for the Crop runs. The nps values and stride together
assign coordinates to all the units in the network.

• Radius: The radius of the circular two-dimensional region that all
units in the previous layer must lie within in order to have nonzero
weights to the current unit. Any units in the previous layer, lying out-
side the circle, will not be connected to the unit.

Appendix E: Hyperparameters and Performance in Numerical
Simulations with the CIFAR-10 Data Set

Table 5 records the training and validation errors obtained for the CSM
and EP algorithms for fully connected networks, as well as for CSM with
structured networks, on the CIFAR-10 data set. The validation error column
for fully connected runs reports the mean of the last 20 validation errors

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1324 S. Qin, N. Mudur, and C. Pehlevan

Table 6: Validation Errors at the End of the Training Period for a Fully
Connected One-Hidden-Layer Network Trained on MNIST, with Different β

Values.

Mean Validation Minimum Validation Maximum Validation
β value Error (%) Error (%) Error (%)

0.01 89.70 89.70 89.70
0.1 90.09 90.09 90.09
0.25 46.20 2.28 90.09
0.5 2.19 2.17 2.21
0.75 2.42 2.22 2.51
1.0 2.36 2.26 2.48
1.2 23.30 2.36 85.91
1.5 2.62 2.40 2.75
2.0 79.55 79.55 79.55

Notes: For values that lay within the parameter range that converged to low
(< 3%) validation errors, four trials were run, and the mean, minimum, and
maximum errors over the trials have been reported. In all runs, γ = 1.

Table 7: Validation Errors at the End of the Training Period for a Fully
Connected One-Hidden-Layer Network Trained on MNIST, with Different γ

Values.

Mean Validation Minimum Validation Maximum Validation
γ value Error (%) Error (%) Error (%)

0.2 2.75 2.64 2.85
0.5 2.51 2.43 2.60
0.7 2.38 2.24 2.47
0.8 2.41 2.32 2.47
0.9 2.26 2.21 2.31
1.0 2.45 2.38 2.53
1.1 2.46 2.37 2.63
1.2 2.35 2.26 2.48
1.3 2.43 2.28 2.54
1.5 83.16 83.16 83.16
1.8 90.09 90.09 90.09

Notes: For parameters that converged to low (<3%) validation errors, four
trials were run, and the mean, minimum, and maximum errors over the trials
have been reported. In all runs, β = 1.

reported at the end of the training period, as well as the standard error on
the mean. For the structured runs, the training and validation errors re-
ported are the average of the last epoch’s reported errors from five trials
and the standard error on the means. This is done in order to account for
fluctuations in the error during training.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1325

Figure 8: Validation error of a single hidden-layer network trained by the CSM
algorithm on the MNIST data set as a function of parameter β (A) and γ (B). Four
trials were conducted for values for which the validation error was less than 3%.
Dots indicate the mean validation error over trials, and error bars indicate the
standard deviation over trials.

Appendix F: Performance of CSM as a Function of Nudge Strength and
Feedback Strength

In the nudged deep similarity matching objective, equation 2.3, β controls
the strength of nudging, while γ specifies the strength of feedback input
compared with the feedforward input. Scellier and Bengio (2017) used β =
1 in their simulations. In all the simulations reported here in the main text,
we have set β = 1, γ = 1. In this appendix, we trained a single hidden-layer
network using CSM on MNIST, while systematically varying the value of β

and γ and keeping other parameters fixed. The validation errors for these
experiments are documented in Tables 6 and 7 and plotted in Figure 8. We
find that the network has optimal values for γ less than 1.5 and β in the
range bounded by 0.5 and 1. At these values, the network is able to converge
to low validation errors (<3%).

Acknowledgments

This work was supported by NIH (1UF1NS111697-01), the Intel Corpora-
tion through Intel Neuromorphic Research Community, and a Google Fac-
ulty Research Award. We thank Dina Obeid and Blake Bordelon for helpful
discussions.

References

Anderson, J. R., & Peterson, C. (1987). A mean field theory learning algorithm for
neural networks. Complex Systems, 1, 995–1019.

Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillations. Neural
Computation, 3(4), 526–545.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1326 S. Qin, N. Mudur, and C. Pehlevan

Bazzari, A. H., & Parri, H. R. (2019). Neuromodulators and long-term synaptic plas-
ticity in learning and memory: A steered-glutamatergic perspective. Brain Sci-
ences, 9(11), 300.

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2018). Greedy layerwise learning can scale
to imagenet. arXiv:1812.11446.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., & Wu, Y. (2015). STDP as presynaptic
activity times rate of change of postsynaptic activity. arXiv:1509.05936.

Brzosko, Z., Mierau, S. B., & Paulsen, O. (2019). Neuromodulation of spike-timing-
dependent plasticity: Past, present, and future. Neuron, 103(4), 563–581.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337(6203), 129–
132.

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., & Scellier, B. (2019). Updates of
equilibrium prop match gradients of backprop through time in an RNN with
static input. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’AlchéBuc, E, Fox,
& R. Garnett (Eds.), Advances in neural information processing systems, 32 (pp. 7079–
7089). Red Hook, NY: Curran.

Genkin, A., Sengupta, A. M., & Chklovskii, D. (2019). A neural network for semi-
supervised learning on manifolds. In Proceedings of the International Conference on
Artificial Neural Networks (pp. 375–386). Berlin: Springer.

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral
temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8),
536–548.

Guerguiev, J., Lillicrap, T. P., & Richards, B. A. (2017). Towards deep learning with
segregated dendrites. eLife, 6, e22901.

Hinton, G. E., & McClelland, J. L. (1988). Learning representations by recirculation.
In D. Anderson (Ed.), Neural information processing systems (pp. 358–366). College
Park, MD: American Institute of Physics.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., & Hudspeth, A. (2000).
Principles of neural science. New York: McGraw-Hill.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., . . . Bandet-
tini, P. A. (2008). Matching categorical object representations in inferior temporal
cortex of man and monkey. Neuron, 60(6), 1126–1141.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images (Mas-
ter’s thesis, Department of Computer Science). Toronto: University of Toronto.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST handwritten digit database. http:
//yann. lecun.com/exdb/mnist.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference target propagation.
In Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 498–515). Berlin: Springer.

Li, Z., Brendel, W., Walker, E., Cobos, E., Muhammad, T., Reimer, . . . J., Tolias,
A. (2019). Learning from brains how to regularize machines. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’AlchéBuc, E. Fox, & R. Garnett (Eds.), Advances
in neural information processing systems, 32 (pp. 9525–9535). Red Hook, NY: Curran.

Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic
feedback weights support error backpropagation for deep learning. Nature Com-
munications, 7, 13276.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

Contrastive Similarity Matching for Supervised Learning 1327

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backprop-
agation and the brain. Nature Reviews Neuroscience, 21, 335–336.

Movellan, J. R. (1991). Contrastive Hebbian learning in the continuous Hopfield
model. In D. S. Touretzky, J. L. Ellman, T. J. Sejnowski, & G. E. Hinton (Eds.),
Connectionist models (pp. 10–17). Amsterdam: Elsevier.

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural net-
works. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), Ad-
vances in neural information processing systems, 29 (pp. 1037–1045). Red Hook, NY:
Curran.

Nøkland, A., & Eidnes, L. H. (2019). Training neural networks with local error signals.
arXiv:1901.06656.

Obeid, D., Ramambason, H., & Pehlevan, C. (2019). Structured and deep simi-
larity matching via structured and deep Hebbian networks. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances
in neural information processing systems, 32, (pp. 15377–15386). Red Hook, NY:
Curran.

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opin-
ion in Neurobiology, 14(4), 481–487.

Ororbia, A. G., & Mali, A. (2019). Biologically motivated algorithms for propagat-
ing local target representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, 33 (pp. 4651–4658). Palo Alto, CA: AAAI.

Pehlevan, C., & Chklovskii, D. (2015). A normative theory of adaptive dimensional-
ity reduction in neural networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
& R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2269–
2277). Red Hook, NY: Curran.

Pehlevan, C., & Chklovskii, D. B. (2019). Neuroscience-inspired online unsupervised
learning algorithms: Artificial neural networks. IEEE Signal Processing Magazine,
36(6), 88–96.

Pehlevan, C., Mohan, S., & Chklovskii, D. B. (2017). Blind nonnegative source
separation using biological neural networks. Neural Computation, 29(11), 2925–
2954.

Pehlevan, C., Sengupta, A. M., & Chklovskii, D. B. (2018). Why do similarity
matching objectives lead to Hebbian/anti-Hebbian networks? Neural Computa-
tion, 30(1), 84–124.

Richards, B. A., & Lillicrap, T. P. (2019). Dendritic solutions to the credit assignment
problem. Current Opinion in Neurobiology, 54, 28–36.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–536.

Sacramento, J., Costa, R. P., Bengio, Y., & Senn, W. (2018). Dendritic cortical micro-
circuits approximate the backpropagation algorithm. In S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural
information processing systems, 31 (pp. 8721–8732). Red Hook, NY: Curran.

Scellier, B., & Bengio, Y. (2017). Equilibrium propagation: Bridging the gap be-
tween energy-based models and backpropagation. Frontiers in Computational Neu-
roscience, 11, 24.

Sengupta, A., Pehlevan, C., Tepper, M., Genkin, A., & Chklovskii, D. (2018).
Manifold-tiling localized receptive fields are optimal in similarity-preserving

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

1328 S. Qin, N. Mudur, and C. Pehlevan

neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems 31
(pp. 7080–7090). Red Hook, NY: Curran.

Theano Development Team, Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C.,
Bahdanau, D., Ballas, N., . . . Zhang, Y. (2016). Theano: A Python framework for fast
computation of mathematical expressions. arXiv:1605.02688.

Whittington, J. C., & Bogacz, R. (2017). An approximation of the error backprop-
agation algorithm in a predictive coding network with local Hebbian synaptic
plasticity. Neural Computation, 29(5), 1229–1262.

Whittington, J. C., & Bogacz, R. (2019). Theories of error backpropagation in the
brain. Trends in Cognitive Sciences, 23, 235–250.

Xie, X., & Seung, H. S. (2000). Spike-based learning rules and stabilization of per-
sistent neural activity. In S. Solla, T. Leen, & K. Müller (Eds.), Advances in neural
information processing systems, 12 (pp. 199–208). Cambridge, MA: MIT Press.

Xie, X., & Seung, H. S. (2003). Equivalence of backpropagation and contrastive Heb-
bian learning in a layered network. Neural Computation, 15(2), 441–454.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to
understand sensory cortex. Nature Neuroscience, 19(3), 356.

Received July 23, 2020; accepted November 23, 2020.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/5/1300/1909018/neco_a_01374.pdf by guest on 19 April 2021

