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Abstract. Recent works have suggested that finite Bayesian neural networks
may sometimes outperform their infinite cousins because finite networks can flex-
ibly adapt their internal representations. However, our theoretical understanding
of how the learned hidden layer representations of finite networks differ from the
fixed representations of infinite networks remains incomplete. Perturbative finite-
width corrections to the network prior and posterior have been studied, but the
asymptotics of learned features have not been fully characterized. Here, we argue
that the leading finite-width corrections to the average feature kernels for any
Bayesian network with linear readout and Gaussian likelihood have a largely
universal form. We illustrate this explicitly for three tractable network architec-
tures: deep linear fully-connected and convolutional networks, and networks with
a single nonlinear hidden layer. Our results begin to elucidate how task-relevant
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learning signals shape the hidden layer representations of wide Bayesian neural
networks.

Keywords: Machine learning
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1. Introduction

The expressive power of deep neural networks critically depends on their ability to
learn to represent the features of data [1-24]. However, the structure of their hidden
layer representations is only theoretically well-understood in certain infinite-width lim-
its, in which these representations cannot flexibly adapt to learn data-dependent features
[3-11, 24]. In the Bayesian setting, these representations are described by fixed, deter-
ministic kernels [3—11]. As a result of this inflexibility, recent works have suggested that
finite Bayesian neural networks (henceforth BNNs) may generalize better than their
infinite counterparts because of their ability to learn representations [10].
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Theoretical exploration of how finite and infinite BNNs differ has largely focused on
the properties of the prior and posterior distributions over network outputs [12—17].
In particular, several works have studied the leading perturbative finite-width cor-
rections to these distributions [12—16]. Yet, the corresponding asymptotic correc-
tions to the feature kernels, which measure how representations evolve from layer
to layer, have only been studied in a few special cases [16]. Therefore, the struc-
ture of these corrections, as well as their dependence on network architecture, remain
poorly understood. In this paper, we make the following contributions towards the
goal of a complete understanding of feature learning at asymptotically large but finite
widths:

e We argue that the leading finite-width corrections to the posterior statistics of the
hidden layer kernels of any BNN with a linear readout layer and Gaussian likeli-
hood have a largely prescribed form (conjecture 1). In particular, we argue that the
posterior cumulants of the kernels have well-defined asymptotic series in terms of
their prior cumulants, with coefficients that have fixed dependence on the target
outputs.

e We explicitly compute the leading finite-width corrections for deep linear fully-
connected networks (section 4.1), deep linear convolutional networks (section 4.2),
and networks with a single nonlinear hidden layer (section 4.3). We show that
our theory yields quantitatively accurate predictions for the result of numerical
experiment for tractable linear network architectures, and qualitatively accurate pre-
dictions for deep nonlinear networks, where quantitative analytical predictions are
intractable.

Our results begin to elucidate the structure of learned representations in wide BNNs.
The assumptions of our general argument are satisfied in many regression settings, hence
our qualitative conclusions should be broadly applicable.

2. Preliminaries

We begin by defining our notation, setup, and assumptions. We will index training and
test examples by Greek subscripts pu, v, ..., and layer dimensions (that is, neurons) by
Latin subscripts j, [, . ... Layers will be indexed by the script Latin letter £. Matrix- or
vector-valued quantities corresponding to a given layer will be indexed with a parenthe-
sized superscript, while scalar quantities that depend only on the layer will be indexed
with a subscript. Depending on context, || - || will denote the 5 norm on vectors or the
Frobenius norm on matrices. We denote the standard Euclidean inner product of two
vectors a,b € R" by a - b.

2.1. Bayesian neural networks with linear readout

Throughout this paper, we consider deep Bayesian neural networks with fully connected
linear readout. Such a network f:R"™ — R™ with d layers can be written as

f(x; W9 W) = \/%W(d)’l,b(XQW), (1)
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where the feature map ¥ (-; W) : R™ — R"™-! includes all d — 1 hidden layers, collectively
parameterized by W. Here, @ can be some combination of fully-connected feedforward
networks, convolutional networks, recurrent networks, et cetera; we assume only that it
has a well-defined infinite-width limit in the sense of section 2.2. We let the widths of
the hidden layers be ny, ns, ..., ng 1; we define the width of a convolutional layer to be
its channel count [7]. We assume isotropic Gaussian priors over the trainable parameters
[1-23], with T/Vi(jd) ~i1aN(0,03) in particular.

In our analysis, we fix an arbitrary training dataset D = {(x,,y,)},-, of p examples.
We define the input and output Gram matrices of this dataset as [G..]w =1 lxM - X,

and [G ), = n;'y, - y., respectively. For analytical tractability, we consider a Gaussian
likelihood p(D | ©) x exp(—LFE) for

B©:D) = |3 [£(x,:0) - v, )

pn=1

where 5 > 0 is an inverse temperature parameter that sets the variance of the likelihood
and © = {W@ W} [23]. We then introduce the Bayes posterior over parameters given
these data:

_p(D[O)p(O) .

we denote averages with respect to this distribution by (-). By tuning [, one can then
adjust whether the posterior is dominated by the prior (8 < 1) or the likelihood (8 > 1).
We will mostly focus on the case in which the input dimension is large and the training
dataset can be linearly interpolated; the low-temperature limit 5 — oo then enforces the
interpolation constraint.

2.2. The Gaussian process limit

We consider the limit of large hidden layer widths ny, ns, ..., ng1 — oo with ng, ng, p,
and d fixed. More precisely, we consider a limit in which ny, = ayn for £=1,...,d—1,
where oy € (0,00) and n — oo, as studied by [3-15, 17-19, 24] and others. Importantly,
we note that size of ngy relative to n is unimportant for our results, whereas n;/n and
d/n must be small [10, 12, 17].

In this limit, for % built out of compositions of most standard neural network
architectures, the prior over function values f tends to a Gaussian process (GP) [3-8].
Moreover, with our choice of a Gaussian likelihood, the posterior over function values
also tends weakly to the posterior induced by the limiting GP prior [25]. The kernel
of the limiting GP prior is given by the deterministic limit K™ of the inner product
kernel of the postactivations of the final hidden layer,

1

KU4(x, x') =
(ox) =~

¢<X7 W) ’ ¢<X,a W)v (4)
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multiplied by the prior variance o3 [3-8]. For a broad range of network architectures,

K™Y can be computed recursively [5—8]. For brevity, we define the kernel matrix
evaluated on the training data: [K(*Y],, = K" Y(x,,x,).

3. Elementary perturbation theory for finite Bayesian neural networks

We first present our main result, which shows that the form of the leading perturbative
correction to the average hidden layer kernels of a BNN is tightly constrained by the
assumptions that the readout is linear, that the cost is quadratic, and that the GP limit
is well-defined.

3.1. Finite-width corrections to the posterior cumulants of hidden layer observables
Our main result is as follows:

Conjecture 1 Consider a BNN of the form (1), with posterior (3). Assume that this
network admits a well-defined GP limit as discussed in section 2.2. Let O be a hidden
layer observable, that is, a function of the hidden layer activations and/or parameters
that is not a function of the readout weights W,. Assume that O tends in probability
to a finite, deterministic limit O, under the posterior in the GP limit.

Then, the posterior cumulants of this observable admit well-behaved asymptotic
series at large widths in terms of its joint prior cumulants with the postactiviation
kernel K'Y, In particular, the asymptotic expansion of the posterior mean (O) has
leading terms

1 < .
(0) = EpO + §ndz 02071 Gy, D = T 7Y eov(0, K5 + -+, (5)

pA=1

where I' = K¢V + B~to %1, Here, the cumulants of the kernels are computed with
respect to the prior, and are themselves given by asymptotic series at large widths. The
ellipsis denotes terms that are of subleading order in the inverse hidden layer widths, for
which we give formal expressions in appendix B in the supplementary material (https://
stacks.iop.org/JSTAT /2022/114008 /mmedia).

In appendix B, we derive this result perturbatively by expanding the posterior cumu-
lant generating function of O in powers of the deviations of O and K'Y from their
deterministic infinite-width values. There, we also give an asymptotic formula for the
posterior covariance of two observables, as well as the aforementioned formal expressions
for higher-order terms in the perturbation series. However, the resulting perturbation
series may mnot rigorously be an asymptotic series, and this method does not yield
quantitative bounds for the width-dependence of the terms. We therefore frame it as a
conjecture. We note that similar methods can be applied to compute asymptotic correc-
tions to the posterior predictive statistics; we comment on this possibility in appendix
G. We also remark that this conjecture does not rely on the assumption that the feature
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map ¥ is in fact a neural network, and would thus apply to more general nearly-Gaussian
processes (see supplemental material).’

Though this conjecture applies to a broad class of hidden layer observables, the
observables of greatest interest are the preactivation or postactivation kernels of the
hidden layers within the feature map 1. We will focus on the postactivation kernels
K(f), which measure how the similarities between inputs evolve as they are propagated
through the network [5-10].

Conjecture 1 posits that there are two possible types of leading finite-width cor-
rections to the average kernels. The first class of corrections are deviations of E, K (®)
from K.. These terms reflect corrections to the prior, and do not reflect non-trivial
representation learning as they are independent of the outputs. For fully-connected
networks, also known as multilayer perceptrons (MLPs), work by Yaida [12] and by
Gur-Ari and colleagues [18, 19] shows that Ey K = K9+ O(n~'). The second type
of correction is the output-dependent term that depends on covW(K,SQ,Kg_I)). For
deep linear MLPs or MLPs with a single hidden layer, Eyy K is exactly equal to
K%Y at any width (see appendix C) [3, 12, 18], and only the covariance term con-
tributes. More broadly, these prior works show that COVW(K/(L?,K/()(iil)) = O(n™!) for
MLPs, and that higher cumulants are of O(n?) [12, 18, 19]. Some of these results
have recently been extended to convolutional networks by Andreassen and Dyer [27].
Thus, the finite-width correction to the prior mean should not dominate the feature-
learning covariance term, and the terms hidden in the ellipsis should indeed be
suppressed.

The leading output-dependent correction has several interesting features. First, it
includes a factor of m,, reflecting the fact that inference in wide Bayesian networks
with many outputs is qualitatively different from that in networks with few outputs
relative to their hidden layer width [10]. If n,/n does not tend to zero with increas-
ing n, the infinite-width behavior is not described by a standard GP [8, 10]. More-
over, we note that the matrix I' is invertible at any finite temperature, even when
K s singular. Therefore, provided that one can extend the GP kernel by con-
tinuity to non-invertible G,,, conjecture 1 can be applied in the data-dense regime
ny < p as well as the data-sparse regime ny > p. Furthermore, we observe that the cor-
rection depends on the outputs only through their Gram matrix G,,. This result is
intuitively sensible, since with our choice of likelihood and prior the function-space pos-
terior is invariant under simultaneous rotation of the output activations and targets.
Finally, G, is transformed by factors of the matrix I'"!, hence the correction depends

on certain interactions between the output similarities and the GP kernel K fgfl).

5 The version of conjecture 1 stated here clarifies and generalizes the statement in the conference version of this work [26]. First,
in appendix B.3 we provide a more systematic treatment of the perturbation series than was included in the conference version,
yielding formal expressions for higher-order terms. Second, we now state clearly that the formal expansion as presented in (5)
applies to general nearly-Gaussian processes; it does not assume a particular functional form for the feature map.
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3.2. High- and low-temperature limits of the leading correction

To gain some intuition for the properties of the leading finite-width corrections, we
consider their high- and low-temperature limits. These limits correspond to tuning the
posterior (3) to be dominated by the prior or the likelihood, respectively. At high tem-
peratures (B0 < 1), expanding I'"! as a Neumann series (see appendix A and [28])
yields

Ud_QP_InyP_1 ~I= —Boil, + (B03)*(0,°Gyy + Kgg—n) +0[(Bo)’]. (6)

Thus, at high temperatures, the outputs only influence the average kernels of conjecture
1 to subleading order in both width and 3, which reflects the fact that the likelihood is
discounted relative to the prior in this regime. Moreover, the leading output-dependent
contribution averages together G, and Kégfl), hence, intuitively, there is no way to
‘cancel’ the GP contributions to the average kernels. We note that, at infinite temper-
ature (8 = 0), the posterior reduces to the prior, and all finite-width corrections to the

average kernels arise from the discrepancy between Ey K0 and K O
At low temperatures (802 > 1), the behavior of I'"! differs depending on whether

or not K™V is of full rank. Assuming for simplicity that it is invertible, we have

0, TG, =T = [KY) H(0,Gyy — KE)KEY] + O[(Bod) 1] (7)
in the non-invertible case there are additional contributions involving projectors onto the
null space of Kéff‘”. Therefore, the leading-order low temperature correction depends
on the difference between the target and GP kernels, while the leading non-trivial high
temperature correction depends on their sum.

4. Learned representations in tractable network architectures

Having derived the general form of the leading perturbative finite-width correction to
the average feature kernels, we now consider several example network architectures. For
these tractable examples, we provide explicit formulas for the feature-learning correc-
tions to the hidden layer kernels, and test the accuracy of our theory with numerical
experiments.

4.1. Deep linear fully-connected networks

We first consider deep linear fully-connected networks with no bias terms. Con-
cretely, we consider a network with activations h() € R™ recursively defined via h') =

ne_ll/QW(e)h“_l) with base case h'”) = x, where the prior distribution of weights is
(WO, ~i50. N(0,02). For such a network, the hidden layer kernels [K()],, = n(jlhff) -
h{ have deterministic limits K\” = m2G,,, where m2 = 0202 ,...0? is the product
of prior variances up to layer ¢. Higher prior cumulants of the kernels are easy to
compute with the aid of Isserlis’ theorem for Gaussian moments (see appendix C)

29, 30], yielding

https://doi.org/10.1088/1742-5468 /ac98a6 7
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<K(€)> . Nq 1 2 1 2
) s () Gur g, TG 00, ()
¢ =1

where I' = G, + I,/(fm?3) and £ = 1,...,d — 1. In appendix D, we show that this result
can be derived directly through an ab initio perturbative calculation of the cumulant
generating function of the kernels, without relying on our heuristic argument for the
general version of conjecture 1. Moreover, in appendix E, we show that the form of
the correction remains the same even if one allows arbitrary forward skip connections,
though the dependence on width and depth is given by a more complex recurrence
relation.

Thus, the leading corrections to the normalized average kernels (K () /m? are identi-
cal across all hidden layers up to a scalar factor that encodes the width-dependence of the
correction. This sum-of-inverse-widths dependence was previously noted by Yaida [12] in
his study of the corrections to the prior of a deep linear network. For a network with hid-
den layers of equal width n, we have the simple linear dependence 23:1 (ng/ne) = ngl/n.
If one instead includes a narrow bottleneck in an otherwise wide network, this depen-
dence predicts that the kernels before the bottleneck should be close to their GP values,
while those after the bottleneck should deviate strongly.

This result simplifies further at low temperatures, where, by the result of section 3.2,
we have

K© ZK n
: m? i = G + < nd> (m;Qny o Gm") + (’)(7172, 671) (9)
¢ r=1"

in the regime in which G,, is invertible. We thus obtain the simple qualitative picture
that the low-temperature average kernels linearly interpolate between the input and
output Gram matrices. In appendix F, we show that this limiting result can be recovered
from the recurrence relation derived through other methods by Aitchison [10], who did
not use it to compute finite-width corrections. We note that the low-temperature limit is
peculiar in that the mean predictor reduces to the least-norm pseudoinverse solution to
the underlying underdetermined linear system XW = Y; we comment on this property
in appendix G.

We can gain some additional understanding of the structure of the correction by using
the eigendecomposition of G,,. As G,, is by definition a real positive semidefinite matrix,
it admits a unitary eigendecomposition G,, = UA U' with non-negative eigenvalues Ay
In this basis, the average kernel is

UKD = A + (Z @> (mf]\UTnyU[\ - AA) +0(n?), (10)
7

'=1

1
2
m;

where we have defined the diagonal matrix A = Sm2A(I, + Sm2A)~'. As BmZA > 0, the
diagonal elements of A are bounded as 0 < /~XW < 1. Thus, the factors of I 'G,, by
which G, is conjugated have the effect of suppressing directions in the projection of G,
onto the eigenspace of G, with small eigenvalues. We can see that this effect will be

https://doi.org/10.1088/1742-5468 /ac98a6 8
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Figure 1. Learned representations in two-hidden-layer linear fully-connected neural
networks with varying widths trained via Langevin sampling on 5000 MNIST images
(see appendix I for more details). (a) The Frobenius norm of the deviation of the
empirical average kernel of each layer from its GP value (in this case, simply G,;)
for varying widths. We see perfect match with theoretical predictions, which are
shown as dashed lines. We obtain the predicted 1/n decay with increasing width
and the linear scaling with the depth where the deviations for first and second
layers differ by a factor of 2. (b), (c¢) Scatter plot of individual elements of the
experimental (ordinate) and theoretical (abscissa) kernels for both layers. For low
widths a slight deviation is visible between experiment and theory, while for larger
widths the agreement is better.

enhanced at high temperatures (3 < 1) and small scalings (m? < 1), and suppressed
at low temperatures and large scalings. For this linear network, similarities are not
enhanced, only suppressed. Moreover, if G,, is diagonal, then a given element of the
average kernel will depend only on the corresponding element of Gy,.

We now seek to numerically probe how accurately these asymptotic corrections
predict learned representations in deep fully-connected linear BNNs. Using Langevin
sampling [31, 32], we trained deep linear networks of varying widths, and compared the
difference between the empirical and GP kernels with theory predictions. We provide
a detailed discussion of our numerical methods in appendix I. In figure 1, we present
an experiment with a two-layer linear neural network trained on the MNIST dataset of
handwritten digit images [33] using the Neural Tangents library [34]. We find an excel-
lent agreement with our theory, confirming the inverse scaling with width and linear
scaling with depth for the deviations from GP kernel.

4.2. Deep linear convolutional networks

To demonstrate the applicability of conjecture 1 to non-fully-connected BNNs, we con-
sider deep convolutional linear networks with no bias terms. Here, the appropriate notion
of width is the number of channels in each hidden layer [7]. Following the setup of Novak
et al [7] and Xiao et al [35], we consider a network consisting of d — 1 linear convolutional
layers followed by a fully-connected linear readout layer. For simplicity, we restrict our
attention to convolutions with periodic boundary conditions, and do not include internal
pooling layers (see appendix C for more details). Concretely, we consider a network with

https://doi.org/10.1088/1742-5468 /ac98a6 9
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hidden layer activations hl +» Where 7 indexes the n, channels of the layer and a is a spa-
tial multi-index. The hidden layer activations are then defined through the recurrence

-1

W (x

z,u

ng Ju—i—b (11)

with base case hl(L (x) = x4, where i indexes the input channels (e.g. image color chan-

nels). The feature map is then formed by flattening the output of the last hidden

layer into an n, ;s-dimensional vector, where s is the total dimensionality of the inputs

(see appendix C for details). We fix the prior distribution of the filter elements to be
()

Wija N (0, 02v,), where v, > 0 is a weighting factor that sets the fraction of receptive

field variance at location a (and is thus subject to the constraint ) v, = 1). For inputs
[z,]i0 and [x,]; 4, we introduce the four-index hidden layer kernels

Ny

uuab = Z hza x# hz(,f ) (12)

With the given readout strategy, the two-index feature map kernel appearing in
conjecture 1 is related to the four-index kernel of the last hidden layer by Kf[iﬁl) =
12 K L, ua We discuss other readout strategies in appendix C, but use this vectorization
strategy in our numerical experiments.

As shown by Xiao et al [35], the infinite-width four-index kernel obeys the recurrence

[Kg?]uu,ab = UEQZ Ue [Kgil)]/wy(a“)(b“) 13)
c

with base case [K9],.a0 = [Gual oo = nlozl [z )ialzy]ip. This gives convolutional linear
networks a sense of spatial hierarchy that is not present in the fully-connected case: even
at infinite width, the kernels include iterative spatial averaging.

In appendix C, we derive the kernel covariances appearing in conjecture 1. As in
the fully-connected case, this computation is easy to perform with the aid of Isserlis’
theorem. The general result is somewhat complicated, but things simplify under the
assumption that readout is performed using vectorization. Then, one finds that

) 1 +(H> (Z ) LS Kt K+ O™,

=1 p =1

(14)

where we have defined @, = [0,*T'G,,I""' —T""'],\ for brevity. Thus, the correction
to the convolutional kernel is quite similar to that obtained in the fully-connected case.
To this order, the difference between these network architectures manifests itself largely
through the difference in the infinite-width kernels. In appendix C, we show that a
similar simplification holds if readout is performed using global average pooling over
space.

https://doi.org/10.1088/1742-5468 /ac98a6 10
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Figure 2. The MNIST image dataset and experiments for neural networks with
two 1D convolutional layers. (a) A 10 x 10 MNIST image downsized from 28 x 28
pixels. (b) Input Gram matrix for 300 MNIST images. (c¢) A single (i, v) component
of the input tensor [G,,],. a6 Obtained using equation (13). (d) The output Gram
matrix. (e) The Frobenius norm of the correction to the 1D convolutional GP kernel
is inversely proportional to the width. Here, the dashed lines are the theoretical
predictions. (f) Scatter plots of individual elements of the empirical corrections to
the GP kernels against the theoretical predictions for both layers show excellent
agreement.

As we did for fully-connected networks, we test whether our theory accurately pre-
dicts the results of numerical experiment, using the MNIST digit images illustrated in
2(a)—(d). We consider a network with one-dimensional (figures 2(e) and (f)) and two-
dimensional (figure 3) convolutional hidden layers, trained to classify 50 MNIST images
(see appendix I for details of our numerical methods). As shown in figures 2(e) and (f)
(figures 3(a) and (b) for 2D convolutions), we again obtain good quantitative agreement
between the predictions of our asymptotic theory and the results of numerical experi-
ment. In figure 3(c), we directly visualize the learned feature kernels for 2D convolutional
layers, illustrating the good agreement between theory and experiment. Therefore, our
asymptotic theory can be applied to accurately predict learned representations in deep
convolutional linear networks.

4.3. Networks with a single nonlinear hidden layer

Finally, we would like to gain some understanding of how including nonlinearity affects
the structure of learned representations. However, for a nonlinear MLP, it is usually
not possible to analytically compute COVW(K;%),KS\FD) to the required order [9, 12,
18, 19]. Here, we consider the case of a network with a single nonlinear layer and no

https://doi.org/10.1088/1742-5468 /ac98a6 11


https://doi.org/10.1088/1742-5468/ac98a6

Asymptotics of representation learning in finite Bayesian neural networks*

L] le=3 le=3
a) . e layerl b) °* « width=s0 04l e+ width =50
N © layer2 0] ® width=150 «  width = 150
’ = width = 400 02{ = Wwidth =400
w
B m e:8 . 00
N3 . =5 o
. " RS-0 <,
I ) [
o —
3 . S04 s
%4 . < 04
= N .
10-1 N : . -06
[
>~ -0.8
bau 0 -0.8
~10
Sx100 107 RKA0:; 5310 X10° -1.0 -0.8 -0.6 -0.4 -0.2 0.0 02 0.4 : -1.0 -0.8 =06 -04 -0.2 0.0 0.2 04
i 1e-3 2) _ g2} te-3
Width Kty — KR K&~k

Kt K((;lg K

(1)
exp KGP

0.03
0.02
0.01

0.00

e

'
2
2
2
22
22z
<
z
<
e

-0.01

Figure 3. Learned representations in two-hidden-layer linear 2D convolutional net-
works of varying channel widths. (a) The Frobenius norm of the correction to the
GP kernel is inversely proportional to the width. Here, the dashed lines represent
theory predictions. (b) Scatter plots of individual elements of the empirical cor-
rections to the GP kernels against the theoretical predictions for both layers show
good agreement. (c) A single component (u,v) of the learned feature kernels in
two-layer CNN experiments for both convolutional layers. While the experimental
kernel looks quite similar the GP (first and second columns), their difference shows
the finite width corrections to the GP (last column).

bias terms, in which we can both summarize the key obstacles to studying deep nonlin-
ear networks and gain some intuitions about how they might differ from linear BNNs.
Concretely, we consider a network with feature map (x; W) = ¢(n, Y *WWx) for an
elementwise activation function ¢, where the weight matrix ") has prior distribution
(WU ~i50 N(0,0%). The only hidden layer kernel of this network is the feature map
postactivation kernel K,,, defined in (4), where we drop the layer index for brevity. As
detailed in appendix H, for such a network we have the exact expressions

[Koo]/w - EWKMV - E[¢(hu)¢(hu)]7 (15)
n1C0VW(Kuw Kp)\) = E[¢(hu)¢(hu)¢(hp)¢(hx)] - [KOO]W[KOO]/)M (16)
where expectations are taken over the p-dimensional Gaussian random vector h,,

which has mean zero and covariance cov(h,, h,) = 07[Gy.],m. Unlike for deeper non-

linear networks, here there are no finite-width corrections to the prior expectations
(3, 12, 18].

Though these expressions are easy to define, it is not possible to evaluate the
four-point expectation in closed form for general Gram matrices G, and activation
functions ¢, including ReLLU and erf. This obstacle has been noted in previous studies
[9, 12, 15], and makes it challenging to extend approaches similar to those used here
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Figure 4. Three-hidden layer neural network with ReLU activations trained via
Langevin sampling on 1000 MNIST images (see appendix I). (a) The empirical
average kernels subtracted from their corresponding GP kernels for all layers with
varying widths. Labels on the y-axes indicate the widths of each layer. We observe
that for networks with bottleneck layers, the deviation from Kéﬁ) is largest at the
bottleneck indicating representation learning; without a bottleneck deviations are
considerably less (the last row). (b) Hidden layer kernel deviation from GP kernels
as a function of width for bottleneck networks. While the first layer shows 1/n
scaling, the bottleneck layer and the 3rd layer deviations stay almost constant.
This behavior is predicted analytically for linear networks. (¢) As in (b) for networks
without a bottleneck. Consistent with our theory, all layers display 1/n decay.

to deeper nonlinear networks. For polynomial activation functions, the required expec-
tations can be evaluated using Isserlis’ theorem (see appendix A). However, even for
a quadratic activation function ¢(z) = 2%, the resulting formula for the kernel will
involve many elementwise matrix products, and cannot be simplified into an intuitively
comprehensible form.

If the input Gram matrix G, is diagonal, the four-point expectation becomes
tractable because the required expectations factor across sample indices. In this simple
case, there is an interesting distinction between the behavior of activation functions that
yield E¢(h) = 0 and those that yield E¢(h) # 0. As detailed in section 4.1, if E¢(h) = 0,
K is diagonal, and a given element of the leading finite-width correction to (K) depends
only on the corresponding element of G,,. However, if E¢(h) # 0, then K. includes a
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rank-1 component, and each element of the correction depends on all elements of G,,.
This means that the case in which G,, is diagonal is qualitatively distinct from the case
in which there is only a single training input for such activation functions.

5. Learned representations in deep nonlinear networks

In the preceding section, we noted that analytical study of learned representations in
deep nonlinear BNNs is generally quite challenging. Here, we use numerical experiments
to explore whether any of the intuitions gained in the linear setting carry over to nonlin-
ear networks. Concretely, we study how narrow bottlenecks affect representation learning
in a more realistic nonlinear network. We train a network with three hidden layers and
ReLU activations on a subset of the MNIST dataset [33]. Despite its analytical simplic-
ity, ReLU is among the activation functions for which the covariance term in conjecture
1 cannot be evaluated in closed form (see section 4.3). However, it is straightforward to
simulate numerically. Consistent with the predictions of our theory for linear networks,
we find that introducing a narrow bottleneck leads to more representation learning in
subsequent hidden layers, even if those layers are quite wide (figure 4). Quantitatively, if
one increases the width of the hidden layers between which the fixed-width bottleneck is
sandwiched, the deviation of the first layer’s kernel from its GP value decays roughly as
1/n with increasing width, while the deviations for the bottleneck and subsequent layers
remain roughly constant. In contrast, the kernel deviations throughout a network with
equal-width hidden layers decay roughly as 1/n (figure 4). These observations are qual-
itatively consistent with the width-dependence of the linear network kernel (8), as well
as with previous studies of networks with infinitely-wide layers separated by a finite bot-
tleneck [36]. Keeping in mind the obstacles noted in section 4.3, precise characterization
of nonlinear networks will be an interesting objective for future work.

6. Related work

Our work is closely related to several recent analytical studies of finite-width BNNss.
First, Aitchison [10] argued that the flexibility afforded by finite-width BNNs can be
advantageous. He derived a recurrence relation for the learned feature kernels in deep
linear networks, which he solved in the limits of infinite width and few outputs, nar-
row width and many outputs, and infinite width and many outputs. As discussed in
section 4.1 and in appendix F, our results on deep linear networks extend those of his
work. Furthermore, our numerical results support his suggestion that networks with
narrow bottlenecks may learn interesting features.

Moreover, our analytical approach and the asymptotic regime we consider mirror
recent perturbative studies of finite-width BNNs. As noted in section 3 and appendix
B, we make use of the results of Yaida [12], who derived recurrence relations for the
perturbative corrections to the cumulants of the finite-width prior for an MLP. However,
Yaida did not attempt to study the statistics of learned features; the goal of his work
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was to establish a general framework for the study of finite-width corrections. Bounds
on the prior cumulants of a broader class of observables have been studied by Gur-Ari
and colleagues [18, 19, 27]; these results could allow for the identification of observables
to which conjecture 1 should apply. Finally, perturbative corrections to the network
prior and posterior have been studied by Halverson et al [13] and Naveh et al [15],
respectively. Our work builds upon these studies by perturbatively characterizing the
internal representations that are learned upon inference.

Following the appearance of our work in preprint form, Roberts, Yaida, and Hanin
[37] announced an alternative derivation of the zero-temperature limit of conjecture 1
for MLPs; we have adopted their terminology of hidden layer observables. As in Yaida
[12]’s earlier work, they rely on sequential perturbative approximation of the prior over
preactivations as the hidden layers are marginalized out in order from the first to the last.
While our elementary perturbative argument for conjecture 1 does not require assuming
a particular network architecture for the hidden layers, it takes as input information
regarding the prior cumulants that would have to be approximated using such methods.
Moreover, the approach of layer-by-layer approximation to the prior could enable a
fully rigorous version of conjecture 1 to be proved on an architecture-by-architecture
basis [38].

Our work, like most studies of wide BNNs [3-15, 17-19, 24|, focuses on the regime
in which the sample size p is held fixed while the hidden layer width scale n tends
to infinity, i.e. p < m. One can instead consider regimes in which p is not negligible
relative to n, in which deviations from the GP limit could emerge even at very large
widths. The behavior of deep linear BNNs in this regime was recently studied by Li and
Sompolinsky [16], who computed asymptotic approximations for the predictor statistics
and hidden layer kernels. In appendix F, we show that our result (9) for the zero-
temperature kernel can be recovered as the p/n | 0 limit of their result. As the dataset
size p appears only implicitly in our approach, we leave the incorporation of large-p
corrections as an interesting objective for future work. We note, however, that alternative
methods developed to study the large-p regime [16, 39] cannot overcome the obstacles
to analytical study of deep nonlinear networks encountered here.

Finally, we comment on recent advances since the acceptance of the conference ver-
sion of our work [26]. First, Hanin [40] has recently provided a rigorous analysis the of
prior cumulants that appear in conjecture 1 for MLPs. This lays necessary groundwork
for a rigorous proof of conjecture 1 in this setting. Second, we have further explored
representation learning and generalization in deep linear BNNs. In [41], we showed that
the average kernel of the first hidden layer of a deep fully-connected linear network with
an (ng = 1)-dimensional output can be written non-perturbatively as G, plus an aver-
age of the matrix appearing in the leading-order correction in (8) over a data-dependent
effective distribution of scales m?. This gives analytical evidence that the perturbative
correction captures the structure of learned features in deep linear networks with scalar
outputs reasonably well. In [42], we analyzed the effect of representational flexibility
on zero-temperature generalization performance for random Gaussian input data in the
limit where the dataset size p tends to infinity with the width n. There, we showed that
the leading-order perturbative correction (in p/n) to the average generalization error,
computed in appendix G of this work for generic data, cannot distinguish between
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random feature models with only the readout layer trained and deep networks with
all layers trained. These results illustrate how perturbative results can afford useful
insight into the behavior of deep networks near the kernel limit, but also show that one
must carefully consider what questions can be usefully addressed within perturbation
theory.

7. Conclusions

In this paper, we have shown that the leading perturbative feature learning corrections
to the infinite-width kernels of wide BNNs with linear readout and least-squares cost
should be of a tightly constrained form. We demonstrate analytically and with numerical
experiments that these results hold for certain tractable network architectures, and
conjecture that they should extend to more general network architectures that admit a
well-defined GP limit.

Limitations. We emphasize that our perturbative argument for conjecture 1 is not
rigorous, and that we have not obtained quantitative bounds on the remainder for
general network architectures. It is possible that there are non-perturbative contribu-
tions to the posterior statistics that are not captured by conjecture 1; non-perturbative
investigation of feature learning in finite BNNs will be an interesting objective for
future work [17, 41, 42]. More broadly, we leave rigorous proofs of the applicability
of our results to more general architectures and of the smallness of the remainder
as objective for future work. As mentioned above, one could attempt such a proof
on an architecture-by-architecture basis [12, 37, 38]. Alternatively, one could attempt
to treat all sufficiently sensible architectures uniformly [8, 9]. Furthermore, we have
considered only one possible asymptotic regime: that in which the width is taken to
infinity with a finite training dataset and small output dimensionality. As discussed
above in reference to the work of Aitchison [10] and Li and Sompolinsky [16], investi-
gation of alternative limits in which output dimension, dataset size, depth, and hidden
layer width are all taken to infinity with fixed ratios may be an interesting subject for
future work [41].
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