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In this short note, we reify the connection between work on the stor-
age capacity problem in wide two-layer treelike neural networks and
the rapidly growing body of literature on kernel limits of wide neural
networks. Concretely, we observe that the “effective order parameter”
studied in the statistical mechanics literature is exactly equivalent to the
infinite-width neural network gaussian process kernel. This correspon-
dence connects the expressivity and trainability of wide two-layer neural
networks.

The study of two-layer neural networks in the limit of large hidden layer
width has a long history in the statistical physics of learning (Barkai,
Hansel, & Sompolinsky, 1992; Engel, Kohler, Tschepke, Vollmayr, & Zip-
pelius, 1992). This work focuses on the Gardner storage capacity problem,
which measures the computational power of a neural network by the largest
random binary classification data set it can “memorize” (Gardner, 1988;
Gardner & Derrida, 1988). In this problem, one performs Bayesian inference
of network weights using a likelihood that is flat on the set of weights that
yield zero classification error and vanishes uniformly otherwise. Memoriza-
tion is possible if the support of the resulting Bayes posterior has nonzero
volume, that is, if there exists a nonnegligible set of weights for which all
examples are correctly classified. In the thermodynamic limit where the in-
put dimensionality N and data set size P tend to infinity with fixed ratio
a = P/N, there is a sharp transition between memorization with probabil-
ity one and memorization with probability zero at some critical ratio «.,
referred to as the storage capacity.

These statistical mechanics calculations rely on studying functions of the
overlap g between the hidden unit weight vectors of identical copies, known
as replicas, of the network, which is termed the “order parameter.” Classic
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work by Barkai et al. (1992) and Engel et al. (1992) for treelike networks
with sign function hidden layer activations revealed a remarkable simpli-
fication in the limit where the number of hidden units K was taken to be
large: the equations reduced to those of a perceptron (Gardner, 1988; Gard-
ner & Derrida, 1988), with the order parameter replaced by an “effective”
order parameter ges(q). This result was recently extended to rectified lin-
ear unit activation functions by Baldassi et al. (2019) and general activation
functions in our own work (Zavatone-Veth & Pehlevan, 2021, hereafter ZP).

Beginning with pioneering work by Neal (1996) and Williams (1997), a
parallel line of research in the machine learning community has character-
ized the infinite-width limits of Bayesian neural networks with gaussian
priors over their weights. This work also revealed a remarkable simplifi-
cation: for a two-layer network with hidden layer activation function f,
infinite-width inference is equivalent to shallow gaussian process (GP) in-
ference with kernel!

Ki(x,y) =E[f(W-x)f(W-y) : w~N(0.T)] (1)

given by the deterministic infinite-width limit of the Gram matrix of hid-
den layer activations. Here, x, y € R are interpreted as two inputs to the
network, and w ~ N(0, I) is a random weight vector. In recent years, this
neural network-gaussian process (NNGP) correspondence has proven to
be an extremely fruitful tool in the theory of deep learning thanks to the
observation that it can be extended to networks with more than a single
hidden layer (Lee et al., 2018; Matthews et al., 2018). Importantly, this cor-
respondence does not apply only at the level of the prior, but also at the level
of the Bayes posterior. For sensible likelihoods that model the targets as be-
ing conditionally independent of the network weights given the network
outputs, the function-space posterior distribution tends to that induced by
the limiting gaussian process prior (Hron et al., 2020). Moreover, the con-
nection between infinitely wide neural networks and kernel machines has
been extended to study gradient-based training (Jacot, Gabriel, & Hongler,
2018).

However, a precise connection between these two lines of research on
Bayesian inference in infinitely wide two-layer neural networks has yet to
be drawn. In this brief note, we reinterpret results on the storage capacity
problem in terms of the behavior of the NNGP kernel. This observation
allows us to clarify the conceptual and technical connections between these
parallel lines of work on wide and deep neural networks.

We start by observing that for unit-norm inputs x, y € SN-1 the infinite-
width NNGP kernel, equation 1, can be expressed as a function of the

'For clarity of exposition, we make the simplifying assumptions that the network has
no bias terms and the prior weight variance is unity.
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overlap g = x-y € [-1, +1] (Cho & Saul, 2009; Lee et al., 2018; Matthews,
Hron, Rowland, Turner, & Ghahramani, 2018; Neal, 1996; Williams, 1997):

E[f(x)* : x ~N(0,1)], ifg=1
B [x N 0 1 ¢ o 1eg<
Ky(q) = ]E|:f(x)f(]/).<y> /\/<<0>,<q 1))} if —1<g<1
E[f(x)f(=x) : x ~ N(0,1)], ifg=—1.

@
For functions f that are square-integrable with respect to gaussian measure,
K¢(g) is a continuous function on the closed interval [-1, 1], with a power
series that converges throughout that interval (Bogachev, 1998; Daniely,
Frostig, & Singer, 2016; Zavatone-Veth & Pehlevan, 2021).
The NNGP kernel coincides exactly with the effective order parameter
studied in the statistical mechanics literature:?

et (9) = Kr(q)- (3)

In particular, the result of ZP shows that the storage capacity remains finite
in the infinite-width limit if the left derivative,

Ky(1) — Ky(q)

= @

0 Keg=1)= 1%1

of the kernel at g = 1 is finite, and diverges otherwise. For the special cases
of f(x) =sign(x), which yields infinite capacity, and f(x) = ReLU(x) =
max({0, x}, which yields finite capacity, this was noted by Barkai et al. (1992)
and Baldassi et al. (2019), respectively, based on direct computations of
Kisign(q) and KreLu (q).3 Thus, the relationship of the limiting behavior of the
NNGP kernel for sign activation functions to the expressivity of infinitely
wide networks was implicitly studied 30 years ago.

Therefore, the storage capacity of a treelike committee machine is re-
lated to the behavior of the NNGP kernel for nearly colinear arguments. In
ZP, we gave a general argument based on Fourier-Hermite expansions that
d_K(q = 1) is finite if and only if the activation function f is in the Sobolev
space of functions that are square-integrable with respect to gaussian mea-
sure and have weak derivatives that are also square-integrable with respect
to gaussian measure (Bogachev, 1998). Roughly speaking, a kernel with a

: Possibly up to irrelevant constant offsets. In ZP we defined the effective order param-
eter as Gesf(q) = Kr(q) — [Exn.1) f ()1
In the machine learning literature, kernels of this family were studied systematically
by Cho and Saul (2009).

d-ajo11B/008U/NPa W }0BIIP//:dRY WOy papeojumod

©008U/,.298002/9€ | L/S/YE/P

220z AN €| uo pueyose|\ euowey Aq ypd 6110



Neural Network Kernels and the Storage Capacity Problem 1139

cusp at g =1 will yield divergent capacity. Intuitively, 3_K;(q = 1) mea-
sures the ability of the kernel to discriminate between nearly colinear in-
puts, which has a natural relationship to expressivity (Paccolat, Spigler, &
Wyart, 2021; Poole, Lahiri, Raghu, Sohl-Dickstein, & Ganguli, 2016).

The relationship between d_K(q = 1) and the expressivity of deep net-
works was noted in a different context by Poole et al. (2016). Those authors
studied the expressivity of infinitely wide and deep, fully connected net-
works with random weights in terms of the fixed points of K¢() under
iteration. For networks without bias terms, their results have a close rela-
tionship to those of ZP, which we will illustrate in a simple setting. We as-
sume that all inputs lie on the sphere and normalize the activation function
such that K¢(qg = 1) = 1. Then the result of Poole et al. (2016) shows that net-
works with d_K¢(gq = 1) > 1 display chaotic behavior in the sense that the
fixed points of K¢(q) are unstable, while those with 3_K(g = 1) < 1 display
ordered behavior. Those authors proposed that the sharp enhancement of
differences between inputs by networks in the chaotic regime is a signature
of expressivity. We remark that capacity calculation is conceptually distinct
from the settings of GP inference and Poole et al. (2016) in that the effective
order parameter measures the similarity between the weight vectors of two
different replicas for a random input example, while the kernel measures
the similarity of two input examples for a random weight vector.

The connection between the storage capacity problem and the NNGP
kernel also helps to clarify the relationship of ZP to Panigrahi, Shetty, and
Goyal’s (2020) study of gradient descent training in two-layer networks
with fixed readout weights. In their setting, the speed of training is gov-
erned by the minimum eigenvalue of the “gradient Gram matrix” evaluated
on the training examples, schematically given as G¢(x, y) = x - yKp(x, y).*
Working under the assumption that all inputs lie on the sphere, they
showed that activation functions with a discontinuity in their derivatives
yield rapid gradient descent training under a weaker bound on the max-
imum overlap q between any two training examples than is required for
smooth activation functions.

As we have G¢(q) = gKr(q) for inputs on the sphere, we can apply the
above intuition for the relationship between the left derivative 3_K¢(q = 1)
and discriminability. By the results noted, functions f with discontinuous
first derivatives will result in divergent left derivatives d_G¢(g = 1) and
thus sharp discrimination capabilities. This sharp discrimation capability
will yield better separation between diagonal and off-diagonal elements
of Gf(q) for q near one. By the Gershgorin circle theorem, this should in
turn yield better lower bounds on the minimum eigenvalue of the Gf as a
function of g than would hold for G¢(g) with finite _G¢(q = 1), possibly

“Here, the activation function f is always assumed to be at least Lipschitz continu-
ous and is assumed to have weak derivative f’ that is square-integrable with respect to
gaussian measure such that G is well defined.
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decreasing training time (Horn & Johnson, 2012). Therefore, the link be-
tween trainability and the second weak derivative of the activation function
noted by Panigrahi et al. (2020) and the link between storage capacity and
the first weak derivative of the activation function noted in ZP bear a close
conceptual relation: both depend on the discrimination capabilities of the
appropriate kernel for nearly colinear inputs.

To conclude, the storage capacity of a wide two-layer treelike neural net-
work is determined by the behavior of the corresponding NNGP kernel for
nearly colinear inputs on the sphere. This connection yields an intuitive ex-
planation for the varying behavior of the storage capacity in terms of input
discriminability (Baldassi et al., 2019; Barkai et al., 1992; Engel et al., 1992;
Gardner, 1988; Gardner & Derrida, 1988; Zavatone-Veth & Pehlevan, 2021),
as well as a more precise description of the relationship of this line of re-
search to work on kernel limits of neural networks (Cho & Saul, 2009; Hron
et al., 2020; Jacot et al., 2018; Lee et al., 2018; Matthews et al., 2018; Neal,
1996; Panigrahi et al., 2020; Poole et al., 2016; Williams, 1997).

Further research will be required to fully understand the connections
between studies of the storage capacity problem in statistical physics and
results on the NNGP limit. Though both lines of research focus on Bayesian
inference of network weights, they consider different settings. The statisti-
cal physics literature largely focuses on simple two-layer models in a limit
where the input dimension tends to infinity with the hidden layer width
(Baldassi et al., 2019; Barkai et al., 1992; Engel et al., 1992; Zavatone-Veth
& Pehlevan, 2021), while most studies of the NNGP limit consider deeper
fully connected networks with finite-dimensional inputs (Hron et al., 2020;
Lee et al., 2018; Matthews et al., 2018; Neal, 1996; Williams, 1997). Given the
growing interest in applying tools from statistical physics to study inference
in wide neural networks,® we hope that the connections noted in this work
will spark more detailed investigation of possible commonalities between
these seemingly disparate settings.
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