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The expressive power of artificial neural networks crucially depends on the nonlinearity of their activation
functions. Though a wide variety of nonlinear activation functions have been proposed for use in artificial
neural networks, a detailed understanding of their role in determining the expressive power of a network has not
emerged. Here, we study how activation functions affect the storage capacity of treelike two-layer networks. We
relate the boundedness or divergence of the capacity in the infinite-width limit to the smoothness of the activation
function, elucidating the relationship between previously studied special cases. Our results show that nonlinearity
can both increase capacity and decrease the robustness of classification, and provide simple estimates for the
capacity of networks with several commonly used activation functions. Furthermore, they generate a hypothesis
for the functional benefit of dendritic spikes in branched neurons.
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The expressive power of artificial neural networks is well
known [1–4], but a complete theoretical account of how
their remarkable abilities arise is lacking [5–8]. In particular,
though a diverse array of nonlinear activation functions have
been employed in neural networks [5,6,9–14], our understand-
ing of the relationship between activation function choice and
computational capability is incomplete [9–11,15]. Methods
from the statistical mechanics of disordered systems have
enabled the interrogation of this link in several special cases
[11–19], but these previous works have not yielded a general
theory.

In this Letter, we characterize how pattern storage capac-
ity depends on activation function in a tractable two-layer
network model known as the treelike committee machine
(henceforth TCM). In addition to their uses in machine learn-
ing, TCMs have been used to model nonlinear computations
in dendrite-bearing neurons [20,21]. We find that the storage
capacity of a TCM remains finite in the infinite-width limit
provided that the activation function is weakly differentiable,
and it and its weak derivative are square-integrable with re-
spect to Gaussian measure. For example, the capacity with
sign activation functions diverges, while that with rectified
linear unit or error function activations is finite. We predict
that nonlinearity should increase capacity, but may reduce
the robustness of classification. These connections between
expressive power and smoothness begin to shed light on the
influence of activation functions on the capabilities of neural
networks and branched neurons.

The treelike committee machine. The TCM is a two-layer
neural network with N inputs divided among K hidden units
into disjoint groups of N/K and binary outputs [Fig. 1(a)]
[11–14,19]. For a hidden unit activation function g, a set of
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hidden unit weight vectors {w j ∈ RN/K}K
j=1, a readout weight

vector v ∈ RK , and a threshold ϑ ∈ R, its output is given as

y(x) = sgn[s(x)] for (1)

s(x; {w j}, v, ϑ ) = 1√
K

K∑
j=1

v jg

(
w j · x j√

N/K

)
− ϑ, (2)

where x j denotes the vector of inputs to the jth hidden unit. In
this model, the readout weight vector and threshold are fixed,
and only the hidden unit weights are learned. The perceptron
can thus be viewed as the special case of a TCM with identity
activation functions and equal readout weights [16,17].

Statistical mechanics of pattern storage. To characterize
this network’s ability to classify a random data set of P exam-
ples subject to constraints on the hidden unit weights imposed
by a probability measure ρ, we define the Gardner volume
[16,17]

Z =
∫

dρ({w j})
P∏

μ=1

�[yμs(xμ; {w j}, v, ϑ ) − κ], (3)

which measures the fractional volume in weight space such
that all examples are classified correctly with margin at least
κ . We consider “spherical” committee machines, in which
the hidden unit weight vectors lie on the sphere of radius
(N/K )1/2 [11–14,16–19]. As in most studies of the Gardner
volume, we consider a data set in which the components of the
inputs and the target outputs are independent and identically
distributed as xμ

jk = ±1 and yμ = ±1 with equal probability
[11–14,16–19].

We will study a sequential infinite-width limit in which
we first take N, P → ∞ with load α ≡ P/N = O(1) and then
take K → ∞ [22]. The infinite-width limit is of both theoreti-
cal and practical interest, as extremely wide networks are now
commonly used in applications [7,9,23,24]. In this limit, we
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FIG. 1. Pattern storage in treelike committee machines. (a) Net-
work architecture. (b) Capacity αc as a function of margin κ for
several common activation functions. Solid and dashed lines indi-
cate estimates of the capacity under replica-symmetric and one-step
replica-symmetry-breaking Ansätze, respectively.

expect the free entropy per weight f = N−1 log Z to be self-
averaging, and for there to exist a critical load αc, termed the
capacity, below which the classification task is solvable with
probability one and above which Z vanishes [14,16–18]. The
special case of this model with sign activation functions was
intensively studied in the late 20th century, showing that the
capacity diverges as K → ∞ [12,13,19,25,26]. In contrast,
Baldassi et al. [11] showed in a recent Letter that the capacity
with rectified linear unit (ReLU) activations remains bounded
in the infinite-width limit. Our primary objective in this work
is to identify the class of activation functions for which the
capacity remains finite.

We begin our analysis by specifying our choice of gen-
eral constraints on the activation function, readout weights,
and threshold. We will require the K → ∞ limit to be well
defined in the sense that the output preactivation s has finite
variance. In this limit, the central limit theorem implies that
the hidden unit preactivations converge in distribution to a
collection of independent Gaussian random variables [27].
Therefore, the activation function g must lie in the Lebesgue
space L2(γ ) of functions that are square-integrable with re-
spect to the Gaussian measure γ on the reals. Furthermore,
as var(s) ∝ ‖v‖2

2/K , we must have ‖v‖2 = O(
√

K ). As ‖v‖2

sets the effective scale of ϑ and κ but does not affect the zero-
margin capacity, we fix ‖v‖2 = √

K . To ensure that s has mean
zero, we set ϑ = K−1/2(Eg)

∑K
j=1 v j , where Eg = ∫

dγ g is
the average hidden unit activation. This choice maximizes
the capacity for the symmetric data sets of interest [22], and
generalizes the conditions on v and ϑ considered in previous
works [11–13,19].

To compute the limiting quenched free entropy, we apply
the replica trick, which exploits a limit identity for logarithmic
averages and a nonrigorous interchange of limits to write

f = lim
n↓0

lim
K→∞

lim
N→∞

1

nN
logEx,yZn

N,αN,K , (4)

where the validity of analytic continuation of the moments
from positive integer n to n ↓ 0 is assumed [16,18,28]. This
calculation is standard, and we defer the details to the Supple-
mental Material [22].

In this limit, the quenched free entropy can be expressed
using the method of steepest descent as an extremization over
the Edwards-Anderson order parameters qab

j = (K/N )wa
j · wb

j
[16,18,28], which represent the average overlap between the
preactivations of the jth hidden unit in two different replicas
a and b. Under a replica- and hidden-unit-symmetric (RS)
Ansatz qab

j = q, one finds that

fRS = extrq

{
α

∫
dγ (z) log H

(
κ + √

q̃(q)z√
σ 2 − q̃(q)

)

+ 1

2

[
q

1 − q
+ log(1 − q)

]}
, (5)

where H (z) = ∫ ∞
z dγ (x) is the Gaussian tail distribution

function, σ 2 = Eg2 − (Eg)2 is the variance of the activation,
and

q̃(q) = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
0,

[
1 q
q 1

])]
(6)

is an effective order parameter describing the average overlap
between the activations of a given hidden unit in two different
replicas. This expression for fRS is equivalent to that given
in Ref. [11] for ReLU activations, but we adopt a different
definition for the effective order parameter that has a clearer
statistical interpretation.

To find the replica-symmetric capacity αRS, one must take
the limit q ↑ 1 in the saddle-point equation that defines the
extremum with respect to q, as the Gardner volume tends to
zero in this limit [11–14,16,17]. As q ↑ 1, q̃ ↑ σ 2, but the
asymptotic properties of q̃ as a function of ε ≡ 1 − q de-
pend on the choice of activation function. Making the general
Ansatz that σ 2 − q̃ ∼ ε
 for some 
 > 0, we find that αRS ∼
ε
−1 [22]. Therefore, the RS capacity diverges if 
 < 1 and
vanishes if 
 > 1, while the boundary case 
 = 1 is special
in that the capacity is bounded but nonvanishing. For the spe-
cial cases of sgn(x) and g(x) = ReLU(x), this behavior was
noted by Baldassi et al. [11]. For sign, one has σ 2 − q̃ ∼ √

ε,
and αRS diverges in the infinite-width limit, while for ReLU,
σ 2 − q̃ ∼ ε, and αRS remains finite. However, Ref. [11] and
other previous studies [12,13] relied on direct computation
of the effective order parameters for all values of q, which is
not tractable for most activation functions, and does not yield
general insight.

Asymptotics of the effective order parameter. To under-
stand the asymptotic behavior of q̃(q) as q ↑ 1 for general
activation functions g, we apply tools from the theory of
Gaussian measures [29]. As g is in L2(γ ) by assumption, it
has a Fourier-Hermite series g(x) = ∑∞

k=0 gkHek (x), where
{Hek} is the set of orthonormal Hermite polynomials [22].
We note that the L2(γ ) norm of g can then be written
as ‖g‖2

γ = ∑∞
k=0 g2

k , and that g0 = Eg. To express q̃(q) in
terms of these coefficients, we recall the Mehler expan-
sion of the standard bivariate Gaussian density ϕ(x, y; q)
[30,31], ϕ(x, y; q) = ϕ(x)ϕ(y)

∑∞
k=0 qkHek (x)Hek (y), where

ϕ(x) = exp(−x2/2)/
√

2π is the univariate Gaussian density.
Then, we can evaluate the expectation in (6), yielding q̃(q) +
g2

0 = ∑∞
k=0 g2

kqk , which, by Abel’s theorem, is a bounded,
continuous function of q ∈ (−1, 1] because q̃(1) + g2

0 =
‖g‖2

γ is finite. Writing q ≡ 1 − ε, we expand (1 − ε)k in a
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binomial series and formally interchange the order of sum-
mation to obtain q̃(ε) + g2

0 = ∑∞
l=0

(−ε)l

l!

∑∞
k=l (k)l g2

k , where
(k)l = k(k − 1) · · · (k − l + 1) is the falling factorial. We rec-
ognize the sums over k as the norms of the weak derivatives
of g, which have formal Fourier-Hermite series g(l )(x) =∑∞

k=l gk
√

(k)lHek−l (x), which follow from the recurrence
relation He′

k (x) = √
kHek−1(x) [29]. Therefore, q̃ admits a

formal power series expansion in ε as

q̃(ε) + g2
0 =

∞∑
l=0

(−1)l

l!
‖g(l )‖2

γ εl . (7)

For the RS capacity to remain bounded, we merely require
that the first two terms in this series are finite, not for the series
to converge at any higher order for nonvanishing ε. Therefore,
the RS capacity is finite for once weakly differentiable acti-
vations g such that the L2 norms of the function and its weak
derivative with respect to Gaussian measure, ‖g‖γ and ‖g′‖γ ,
are finite. This class of functions is precisely the Sobolev class
H1(γ ) [29]. We provide additional background material on
H1(γ ) and weak differentiability in the Supplemental Mate-
rial [22].

Storage capacity. For any activation function in the class
H1(γ ), we find that

αRS(κ ) = ‖g′‖2
γ

σ 2
αG

( κ

σ

)
, (8)

where

αG(κ ) =
[∫ ∞

−κ

dγ (z) (κ + z)2

]−1

(9)

is Gardner’s formula for the perceptron capacity [16,22]. In
terms of Fourier-Hermite coefficients, we have σ 2 = ∑∞

k=1 g2
k

and ‖g′‖2
γ = ∑∞

k=1 kg2
k . Thus, we have ‖g′‖2

γ � σ 2, with
equality if and only if all nonlinear terms (those corresponding
to Hermite polynomials of degree two or greater) vanish.
Therefore, introducing nonlinearity always increases the zero-
margin RS capacity. However, as αG(κ ) is a monotonically
decreasing function, the capacity at large margins can be re-
duced by nonlinearity if σ < 1. We note that the zero-margin
capacity is invariant under rescaling of the activation func-
tion and hidden unit weights as g 
→ c1g, v 
→ c2v for some
constants c1 and c2. For finite margin, rescaling can increase
or decrease the capacity by changing σ . Thus, in the sense
of classification margin, introducing nonlinearity or rescaling
can reduce the robustness of classification.

Using this result, we can characterize the RS capacity
of wide TCMs for several commonly used activation func-
tions [22]. For a linear activation function, our result reduces
to Gardner’s perceptron capacity [16], which is expected
given the equivalence between such a TCM and the per-
ceptron in the K → ∞ limit. As the sign function is not
weakly differentiable, we recover the result that the ca-
pacity diverges [12,13,19]. ReLU is weakly differentiable,
and we recover the result of [11] that αRS = 2π/(π −
1) � 2.933 88. Considering sigmoidal activations, we find
that αRS = 2 arcsin(2/3)/π � 2.451 40 for the error function,
while αRS � 2.355 61 for the hyperbolic tangent and the logis-
tic. As an example of a nonmonotonic activation function, we
consider a quadratic, which yields αRS = 4. We plot the RS

capacity as a function of margin for these activation functions
in Fig. 1(b), illustrating how nonlinearity can reduce the large-
margin capacity while increasing the zero-margin capacity.

However, for nonlinear activation functions, one gener-
ically expects the energy landscape to become locally
nonconvex, and for replica symmetry breaking (RSB) to occur
[11–14,18,28]. The RS estimate of the capacity is therefore
only an upper bound, and one must account for RSB effects
in order to obtain a more accurate estimate [11–14,18,19,28].
To that end, we have calculated the capacity under a one-step
replica-symmetry-breaking (1-RSB) Ansatz, extending the re-
sults of earlier work [11–13] to arbitrary activation functions.
Under the 1-RSB Ansatz, the replicas are divided into groups
of size m, with intergroup overlap q0 and intragroup overlap
q1. Then, the capacity is extracted by taking the limit q1 ↑ 1,
m ↓ 0, with r ≡ m/(1 − q1) finite [11–14,28].

As detailed in the Supplemental Material [22], this cal-
culation yields an expression for α1-RSB as the solution
to a two-dimensional minimization problem over q0 and
r. Importantly, the finite-capacity condition at 1-RSB is
the same as that with RS. For functions in H1(γ ), the
resulting minimization problem must usually be solved nu-
merically, hence we give results for only a few tractable
examples. RSB does not occur for linear activation func-
tions [16–18,32]. For ReLU, we obtain α1-RSB � 2.66428 at
(q∗

0, r∗) � (0.757 16, 16.6374), which is consistent with the
result of Baldassi et al. [11] (see Ref. [33]). For erf, we obtain
α1-RSB � 2.375 00 at (q∗

0, r∗) � (0.754 63, 7.756 82). Finally,
for the quadratic, we have α1-RSB � 3.374 66 at (q∗

0, r∗) �
(0.284 52, 6.392 99). In Fig. 1, we plot the 1-RSB capacity
for these activation functions at nonzero margins. The gap
between the RS and 1-RSB results for the quadratic is larger
than that for erf or ReLU, both in the numerical value of the
capacity and in the difference between q∗

0 and q∗
1. Though the

capacities at 1-RSB are reduced relative to the RS result, their
ordering for these activation functions is preserved.

For general activation functions in H1(γ ), we can obtain
informative upper bounds on α1-RSB by considering candidate
solutions with fixed values of the interblock overlap q0. From
q0 ↑ 1, we have α1-RSB � αRS. As shown in the Supplemental
Material [22], we can also obtain an upper bound for α1-RSB

at zero margin as a function of αRS by taking q0 = 0 and
optimizing over r alone. For αRS � 5/2, these two bounds
coincide, while the q0 = 0 bound is tighter for αRS > 5/2.
In particular, for αRS � 1, this yields α1-RSB = O(log αRS).
The q0 = 0 bound allows us to define an accessible region
in (αRS, α1-RSB) space, as illustrated in Fig. 2. Our numerical
estimates for the 1-RSB capacities of ReLU, erf, and the
quadratic all lie within this allowed area, and are relatively
close to the q0 = 0 bound [22].

These bounds suggest that RSB strongly affects the ca-
pacity for activation functions with large derivative norm and
thus large αRS. This is illustrated by the example of Hermite
polynomial activation functions. For g(x) = Hek (x), we have
αRS(κ = 0) = 2k, hence one can obtain an arbitrarily large,
but finite, zero-margin RS capacity by taking k � 1. How-
ever, as shown in the Supplemental Material [22], the 1-RSB
capacity grows extremely slowly—sublogarithmically—with
degree. This result is sensible given the oscillatory nature of
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FIG. 2. The accessible region in (αRS, α1-RSB) space defined by
the q0 = 0 bound. The allowed region is shaded in gray, and the
locations of the four example activation functions for which we
estimate α1-RSB are indicated by colored dots.

high-degree Hermite polynomials, which one expects to yield
a highly nonconvex energy landscape.

Discussion. We have shown that the storage capacity of
treelike committee machines with activation functions in
H1(γ ) remains bounded in the infinite-width limit. Our re-
sults follow from a replica analysis of the Gardner volume,
with the capacity given by a simple closed-form expression
under a replica-symmetric Ansatz and a two-dimensional min-
imization problem with one-step replica-symmetry breaking.
Depending on the activation function, a fully accurate deter-
mination of the capacity would likely require higher levels
in the Parisi hierarchy of replica-symmetry-breaking Ansätze
[28]. Furthermore, it can be challenging to rigorously prove
that the capacity results obtained using the replica method at
any level of the Parisi hierarchy are correct [18,28,32,34,35].
With these caveats in mind, our results begin to elucidate
how nonlinear activation functions affect the ability of neural
networks to robustly solve classification problems.

Though our analysis focused on a regime in which the input
distribution is symmetric, inputs in both biological and arti-
ficial neural networks are often only sparsely active [36,37].
Our analysis of the RS capacity can be extended to this regime
[22], following Gardner’s [16] work on the perceptron. Pro-
vided that the input and target output distributions are not
both infinitely sparse, the condition for the capacity to remain
finite in the infinite-width limit remains the same. However,
if the activation function can be linearized about zero, the
zero-margin capacity for a symmetric target distribution de-
creases to that of the perceptron in the limit of very sparsely
active inputs. This holds, for instance, for erf or tanh, but not
for ReLU, for which the zero-margin capacity is independent
of sparsity. This example illustrates how introducing simple
yet realistic forms of data structure can affect pattern storage.
Investigating how other forms of data structure affect storage
capacity will be an important objective for future work [8,38–
40].

In addition to its use as a model system in machine learn-
ing, the TCM has been proposed as an abstract model for
computation in dendrite-bearing neurons [20,21,41]. In this

application, each hidden unit represents a dendritic unit that
integrates some set of synaptic inputs to generate a signal that
is transmitted to the soma, which in turn generates a “spike” if
the total current exceeds a threshold [20,21]. The most striking
form of nonlinearity observed in measurements of dendritic
signal processing is the generation of dendritic spikes [42,43].
Though it is difficult to argue that biological nonlinearities can
be infinitely sharp, previous works have modeled dendritic
spikes using non-weakly-differentiable activation functions
[20,21,41]. Our work therefore generates a hypothesis for the
functional benefit of dendritic spikes: Nonsmooth dendritic
nonlinearities allow the capacity to grow without bound as
the number of branches increases and to remain robustly large
even when inputs are very sparse. It will be interesting to test
this hypothesis using computational models that incorporate
greater biophysical realism [21].

The Gardner volume is agnostic to the choice of learning
algorithm used to train the weights of the network. This fea-
ture makes it a general approach to studying storage capacity,
but means that it can provide only limited insight into the
practical realizability of the extant solutions [11–14,44]. As a
result, it is challenging to directly test theories of the Gardner
volume. It is nevertheless possible to experimentally falsify
such theories; we have failed to do so [22]. More broadly, this
distinction between satisfiability and learnability, combined
with its dependence on data and focus on perfect classifica-
tion, means that the Gardner volume is one of many metrics
that should be considered in evaluating activation function
choice [9,10,36,44]. In a recent study of least-squares function
approximation by wide fully connected networks, Panigrahi
et al. [9] have shown that the speed and robustness of gradient
descent learning is related to activation function smoothness.
Their result is suggestively similar to that of this Letter,
though it is as yet unclear whether a similar link between
smoothness and trainability exists for treelike networks.

In this Letter, we have studied the activation function de-
pendence of the storage capacity of wide TCMs. This network
architecture is particularly convenient to study in the infinite-
width limit, but it is far removed from the deep networks
used in practical applications [5]. As a more realistic model,
one could consider a fully connected committee machine
(FCM), in which each hidden unit is connected to the full
set of inputs. Prior work on such networks with sign activa-
tion functions suggests that some qualitative aspects of the
behavior of TCMs should still hold true [12,13,45]. However,
FCMs possess a symmetry with respect to permutation of the
hidden units, which is broken at loads below the RS capacity
[12]. This phenomenon and the presence of correlations be-
tween hidden units complicate the study of their infinite-width
limit. Accurate determination of how FCM storage capacity
depends on activation function will therefore require further
work, in which the insights developed in this study should
prove broadly useful.
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Appendix A: Gaussian measures, Hermite polynomials, and weak differentiability

In this appendix, we review relevant background material from the theory of Gaussian measures. Our discussion is
a specialization of the more general discussion in Chapter 1 of Bogachev [1] to the one-dimensional case. We merely
seek to summarize the relevant definitions and results, and will not attempt to provide rigorous proofs.

We let γ be the standard Gaussian probability measure on R, which has density exp(−x2/2)/
√

2π with respect to
Lebesgue measure. We let L2(γ) be the Lebesgue space of functions on R that are square-integrable with respect to
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γ, and, for brevity, denote the norm on this space as ‖ · ‖γ . The natural orthonormal basis for L2(γ) is given by the
set of Hermite polynomials {Hek}∞k=0, which can be defined by the formula

Hek(x) =
(−1)k√
k!

exp

(
x2

2

)
dk

dxk
exp

(
−x

2

2

)
. (A1)

The Hermite polynomials satisfy the recurrence relation

He′k(x) =
√
kHek−1(x) = xHek(x)−

√
k + 1 Hek+1(x) (A2)

for k ≥ 1, with He0 ≡ 1. For a given function g ∈ L2(γ), we define its Fourier-Hermite coefficients

gk =

∫
gHek dγ, (A3)

and the Fourier-Hermite series

g(x) =

∞∑
k=0

gk Hek(x), (A4)

which is guaranteed to converge in mean-square by the fact that ‖g‖2γ =
∑∞
k=0 g

2
k is finite.

Then, using the recurrence relation He′k(x) =
√
kHek−1(x) and the fact that He′0 ≡ 0, we can express the lth weak

derivative of g as a formal Fourier-Hermite series

g(l)(x) =

∞∑
k=l

gk
√

(k)l Hek−l(x), (A5)

where (k)r = k(k − 1) · · · (k − r + 1) is the falling factorial. If, for some r ≥ 0, the sum

‖g(r)‖2γ =

∞∑
k=r

(k)rg
2
k (A6)

is finite, then the Fourier-Hermite series for g and its weak derivatives up to order r converge in mean-square. The
class of functions satisfying this condition is the Sobolev class Hr(γ), which has Sobolev norm

‖g‖Hr(γ) =

(
r∑
l=0

‖g(l)‖2γ

)1/2

. (A7)

Having defined Hr(γ) in terms of Fourier-Hermite expansions, we now connect this definition to a more generic
notion of weak differentiability. Let C∞0 (R) be the set of all infinitely-differentiable functions with compact support,
and let p ≥ 1. For a locally integrable function f , we define its weak derivative f ′ as a locally integrable function that
satisfies the integration by parts formula∫

R
φ′(x)f(x) dx = −

∫
R
φ(x)f ′(x) dx (A8)

for every φ ∈ C∞0 (R). The subset of functions in L2(R) with weak derivatives up to order r of finite L2 norm forms
the Sobelev class Hr(R). We can then define the class Hrloc(R) as the set of all functions f on R such that φf ∈ Hr(R)
for all φ ∈ C∞0 (R). Hr(γ) coincides with the class of all functions f ∈ Hrloc(R) such that f and its weak derivatives
up to order r have finite L2(γ) norm, and the corresponding weak derivatives coincide as well. In one dimension,
the criterion that the (r − 1)th derivative is differentiable almost everywhere and is equal almost everywhere to the
Lebesgue integral of its derivative implies the required weak differentiability condition. Furthermore, by Rademacher’s
theorem, every function that is locally Lipschitz continuous belongs to H1

loc(R).

Appendix B: Finite-size effects in treelike committee machines

The treelike committee machine has three relevant scales: the total number of inputs N , the number of hidden
units K, and the number of inputs per hidden unit N/K. We note that we implicitly assume that N ≥ K throughout,
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and ignore whether these three scales are truly integer valued. In our calculations, we consider a limit in which N is
first taken to infinity for fixed K (hence N/K tends to infinity), and then K is taken to infinity. In this appendix, we
discuss how this limit relates to alternative infinite-size limits, and how finite size effects in each of these scales might
affect our results.

For finite N , a phase transition in the Gardner volume is not possible. Instead, the fraction of realizable dichotomies
decays smoothly from one to zero with increasing load. A rigorous analysis of this effect for the perceptron with zero
margin (κ = 0) is provided by Cover’s theorem [2]. Cover’s theorem identifies the critical load αc for finite N as that
for which half of all dichotomies are realizable, and shows that this value is independent of N . As N →∞, the decay
at αc becomes infinitely sharp. The combinatorial methods used by Cover are not easily extensible to multilayer
networks [2–4], rendering rigorous analysis of finite-N effects more difficult. However, one expects these finite-size
effects to be qualitatively similar even in two-layer models [3, 5–7].

Taking the limit K → ∞ substantially simplified our calculations, as the resulting limiting distribution of the
output preactivation is Gaussian. One could systematically study finite-K corrections to this limit by expanding
the distribution of the output preactivation in powers of K−1/2 as an Edgeworth series [8]. However, studying the
behavior of networks with small K is analytically challenging for general choices of activation function, as one must
deal directly with the full distributions of the hidden unit activations rather than just their first few cumulants.

For sign activation functions, one can derive a combinatorial expression for the finite-K capacity thanks to the fact
that the required distributions are discrete [5, 7, 9]. In particular, the capacity is a monotonically increasing function
of K, and scales with

√
logK for K � 1 [3, 5, 7, 9]. Such a simplification is not in general possible for weakly

differentiable activation functions, as the resulting hidden unit activation distributions will contain a continuous
component provided that the activation function is not almost-everywhere constant.

The fact that small-K output preactivation distributions can have substantial qualitative differences from the
K → ∞ Gaussian limit is illustrated by the simple example of ReLU activation functions. If there are only a few
hidden units, a substantial fraction of the total probability mass will be concentrated as a Dirac mass at −ϑ, which is
a measure-zero event in the infinite-width limit. Such considerations suggest that the behavior of treelike committee
machines with only a few hidden units may differ noticeably from that of infinitely-wide networks.

Finally, given a generative model in which the components of the input patterns are independent and identically
distributed with mean zero and unit variance, the mean field theory depends on the number of inputs to each hidden
unit N/K only through the fact that the distribution of preactivations is taken to be Gaussian. If N/K were finite,
this should be a reasonable approximation provided that this ratio is not too small. Alternatively, one could simply
take the input distribution to be Gaussian, which can be technically convenient if one aims to provide rigorous proofs
[10]. Heuristically, this suggests that our results should carry over to an alternative thermodynamic limit in which
one simultaneously takes N,K →∞ with a large but fixed integer ratio N/K = O(1).

Appendix C: The Gardner volume of the treelike committee machine

In this appendix, we give a detailed account of the computation of the Gardner volume of the treelike committee
machine using the replica method. As described in the main text, the treelike committee machine [5–7, 11] is a
two-layer neural network with a total of N inputs divided into disjoint groups of N/K among K hidden units, with
output

y(x; {wj},v, ϑ) = sign
(
s(x; {wj},v, ϑ)

)
(C1)

for

s(x; {wj},v, ϑ) =
1√
K

K∑
j=1

vjg

(
wj · xj√
N/K

)
− ϑ, (C2)

where xj ∈ RN/K is the vector of inputs to the jth hidden unit, {wj ∈ RN/K}Kj=1 are the hidden unit weight vectors,

v ∈ RK is the fixed readout weight vector, g is the activation function, and ϑ ∈ R is a threshold. We want to
characterize the ability of this network to classify a dataset of P independent and identically distributed random
examples {(xν , yν)}Pµ=1, where xν ∈ {−1, 1}N and yν ∈ {−1, 1}, in terms of the Gardner volume [12, 13]

ZN,P,K =

∫
dρ({wj})

P∏
ν=1

Θ (yνs(xν ; {wj},v, ϑ)− κ) , (C3)
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where ρ is a measure on the space of hidden unit weights. We will compute the limiting quenched free entropy per
weight f in the sequential limit N,P →∞, K →∞, with load N/P → α ∈ (0,∞) using the replica trick as

f ≡ lim
K→∞

lim
N→∞

fN,αN,K = lim
K→∞

lim
N→∞

1

N
Ex,y logZN,αN,K = lim

n↓0
lim
K→∞

lim
N→∞

1

nN
logEx,yZ

n
N,αN,K , (C4)

where Ex,y denotes expectation over the quenched Bernoulli disorder represented by the dataset.
We take the elements of xν to be independent and identically distributed, with equal probability of being positive

or negative. We allow the distribution of yν to be asymmetric, with P(yν = +1) = 1 − P(yν = −1) = p for some
p ∈ [0, 1]. We consider the case of spherical weights [5, 7, 11–13], in which the hidden unit weight vectors are
uniformly distributed on the N/K-sphere of radius (N/K)1/2. The total volume of weight space, which determines
the normalizing constant required to make ρ a probability measure, is then SKN/K , where

SD ≡
2πD/2

Γ(D/2)
D(D−1)/2 (C5)

is the surface area of the D-dimensional sphere of radius
√
D. We will assume that ‖v‖2 =

√
K, but will not initially

impose further conditions on the readout weights or threshold. Finally, we assume that g ∈ L2(γ).
Introducing replicas indexed by a = 1, . . . , n, we can write the nth quenched moment of the Gardner volume as

Ex,yZ
n = Ex,y

∫ ∏
a

dρ({wa
j })
∏
a,ν

Θ

yν
 1√

K

∑
j

vjg

(
wa
j · xνj√
N/K

)
− ϑ

− κ
 . (C6)

We observe immediately that the fact that the different patterns are independent and identically distributed implies
that

Ex,yZ
n =

∫ ∏
a

dρ({wa
j })

Ex,y

∏
a

Θ

y
 1√

K

∑
j

vjg

(
wa
j · xj√
N/K

)
− ϑ

− κ
P , (C7)

allowing us to simplify our notation by eliminating the pattern index ν. We now consider the local fields

haj ≡
√
K

N
wa
j · xj , (C8)

which have mean zero and covariance

cov(haj , h
b
l ) = δjl

K

N
wa
j · xj . (C9)

In this setting, the natural order parameters are the Edwards-Anderson (EA) order parameters [12, 14, 15]

qabj ≡
K

N
wa
j ·wb

j (a 6= b), (C10)

which measure the overlap between the weight vectors of each hidden unit in two different replicas. As we have
chosen the weight vectors to lie on the sphere, the self-overlap of each hidden unit is fixed to unity, and the EA order
parameters are bounded between negative one and one. In terms of the EA order parameters, we have

cov(haj , h
b
l ) = δjl[δab + qabj (1− δab)]. (C11)

Then, as each of the local fields is the sum of N/K independent random variables and their covariance is finite, by
central limit theorem they converge in distribution as N → ∞ for any fixed K to a multivariate Gaussian with the
same mean and covariance [16, 17]. We note that this limiting result would alternatively follow by inserting Fourier
representations of the delta function to enforce the definition of the variables haj , evaluating the averages over the
inputs, and expanding the result to lowest order in 1/N .

We then define the function

G1({qabj }) ≡
1

n
logEyEh

∏
a

Θ

y
 1√

K

∑
j

vjg(haj )− ϑ

− κ
 , (C12)
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where the average Eh is taken over the qabj -dependent Gaussian distribution of the local fields. Introducing Lagrange

multipliers q̂abj to enforce the definitions of the order parameters qabj , we obtain

Ex,yZ
n =

∫ ∏
b<a,j

dqabj dq̂abj
2πiK/N

exp

−N
K

∑
b<a,j

qabj q̂
ab
j +NnαG1({qabj })

∫ ∏
a

dρ({wa
j }) exp

∑
b<a,j

q̂abj wa
j ·wb

j

 ,

(C13)

where we have, by convention, rescaled the Lagrange multipliers to absorb the factor of K/N in the definition of
the order parameters [12]. With the choice that the weight vectors of each branch are uniformly distributed on the

N/K-sphere of radius
√
N/K, the integral over the weights expands as

1

SKN/K

∫ ∏
a,j

dwa
j

∏
a,j

δ

(
‖wa

j ‖2 −
N

K

) exp

∑
b<a,j

q̂abj wa
j ·wb

j

 . (C14)

To enforce this normalization constraint, we introduce Lagrange multipliers Êaj , allowing us to factor the integrals
over the input dimensions of each branch. Furthermore, we note that

lim
N→∞

K

N
logSN/K =

1 + log(2π)

2
(C15)

for any fixed K. Then, defining the function

G2({qabj }, {q̂abj }, {Êaj }) ≡
1

2nK

∑
a,j

Êaj −
1

nK

∑
b<a,j

qabj q̂
ab
j −

1 + log(2π)

2

+
1

nK

∑
j

log

∫ ∏
a

dwaj exp

(
−1

2

∑
a

Êaj (waj )2 +
∑
b<a

q̂abj w
a
jw

b
j

)
, (C16)

we can write

Ex,yZ
n =

∫ ∏
a,j

dÊaj
4πi

∫ ∏
b<a,j

dqabj dq̂abj
2πiK/N

exp
(
Nn

[
αG1({qabj }) +G2({qabj }, {q̂abj }, {Êaj })

])
(C17)

in the limit N →∞. In this limit, we can evaluate the integrals over the order parameters and the Lagrange multipliers
using the method of steepest descent, which yields an expression for the quenched free entropy as

f = lim
n↓0

extr
{qab

j },{q̂ab
j },{Êa

j }

{
αG1({qabj }) +G2({qabj }, {q̂abj }, {Êaj })

}
. (C18)

We note that the function G1 represents the energetic contribution to the quenched free entropy, while the function
G2 represents the entropic contribution.

Appendix D: Replica-symmetric solution

In this appendix, we study the quenched free entropy derived in Appendix C using a replica-symmetric ansatz
[6, 12–15]. In addition, as we expect the different hidden units to be equivalent to one another after averaging over
patterns [5, 7], we make the ansatz that the order parameters are the same across all hidden units. Concretely, we
make the ansatz 

Êaj = Ê

qabj = q

q̂abj = q̂

(D1)

which substantially simplifies the saddle point equations.
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1. The replica-symmetric quenched free entropy

Considering the entropic contribution G2, we immediately obtain the simplification

G2 =
1

2
Ê − 1

2
(n− 1)qq̂ +

1

n
log

∫
dnw exp

(
−1

2
wTAw

)
− 1 + log(2π)

2
, (D2)

where we have defined the n× n matrix

A = (Ê + q̂)In − q̂1n1Tn . (D3)

Applying the matrix determinant lemma, we have

detA = (Ê + q̂)n
(

1− q̂

Ê + q̂
n

)
, (D4)

hence we find that

lim
n↓0

1

n
log

∫
dnw exp

(
−1

2
wTAw

)
=

1

2

[
log

2π

Ê + q̂
+

q̂

Ê + q̂

]
. (D5)

Then, as we would expect, the entropic contribution to the quenched free entropy is the same as for a perceptron [12],
yielding

lim
n↓0

G2 =
1

2

[
Ê + qq̂ + log

1

Ê + q̂
+

q̂

Ê + q̂
− 1

]
. (D6)

As the Lagrange multipliers Ê and q̂ appear only in G2, they can easily be eliminated from the saddle point equations,
yielding

lim
n↓0

G2 =
1

2

[
q

1− q
+ log(1− q)

]
(D7)

at the replica-symmetric saddle point.
We now consider the energetic term G1. With the replica- and branch-symmetric ansatz, the covariance matrix of

the Gaussian-distributed local fields simplifies to

cov(haj , h
b
l ) = δjl[δab + q(1− δab)]. (D8)

Then, as the local fields hj are independent, the internal fields

sa ≡ 1√
K

∑
j

vjg(haj )− ϑ (D9)

are the sums of K independent random variables, with mean

µ ≡ Ehsa =

[
1√
K

∑
j

vj

]
(Eg)− ϑ (D10)

and covariance

cov(sa, sb) =
1

K

K∑
j,l=1

vjvl cov(g(haj ), g(hbl )) =
1

K

K∑
j=1

v2j cov(g(haj ), g(hbj)) = cov(g(ha), g(hb)) (D11)

where we have used the fact the fields are independent and identically distributed across branches and the assumption
that ‖v‖22 = K. Then, if cov(g(ha), g(hb)) is finite, which holds for any g ∈ L2(γ), then the classical central limit
theorem implies that the internal fields sa converge in distribution as K → ∞ to a multivariate Gaussian with the
mean and variance given above [16, 17].

Defining the quantity

σ2 ≡ var [g(x) : x ∼ N (0, 1)] = ‖g‖2γ − (Eg)2 (D12)
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and the effective order parameter

q̃ = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
0,

[
1 q
q 1

])]
, (D13)

we can see from the joint distribution of the local fields ha that we can write the covariance matrix of the internal
fields as

cov(sa, sb) = σ2δab + q̃(1− δab). (D14)

Then, we can expand the first average in exp(nG1) in terms of the joint characteristic function of sa as∫ ∏
a

dsa dŝa

2π

[∏
a

Θ(−sa − κ)

]
exp

(
i
∑
a

saŝa − 1

2
(σ2 − q̃)

∑
a

(ŝa)2 − 1

2
q̃

[∑
a

ŝa
]2

+ iµ
∑
a

ŝa

)
. (D15)

To evaluate the remaining integrals, we perform a Hubbard-Stratonovich transformation, which is defined via the
integral identity [6]

exp

(
−1

2
x2
)

=

∫
dγ(z) exp(−ixz), (D16)

to decouple the replicas at the expense of introducing an auxiliary field z. From a statistical point of view, we can
see that this has the effect of shifting the mean of sa from µ to µ+

√
q̃z, which yields∫

dγ(z)

[∫
ds dŝ

2π
Θ(−s− κ) exp

(
isŝ− 1

2
(σ2 − q̃)ŝ2 + i(µ+

√
q̃z)ŝ

)]n
(D17)

=

∫
dγ(z)

[
H

(
κ+ µ+

√
q̃z√

σ2 − q̃

)]n
, (D18)

where H(z) =
∫∞
z
dγ(x) is the Gaussian tail distribution function. Analogously, we can see that the second term in

exp(nG1) can be written in a similar form, yielding

exp(nG1) = (1− p)
∫
dγ(z)

[
H

(
κ+ µ+

√
q̃z√

σ2 − q̃

)]n
+ p

∫
dγ(z)

[
H

(
κ− µ−

√
q̃z√

σ2 − q̃

)]n
. (D19)

Applying the identity

E log x = lim
n↓0

log(Exn)

n
, (D20)

upon passing to the limit n ↓ 0 we obtain the replica-symmetric free entropy

fRS = extr
q

{
(1− p)α

∫
dγ(z) logH

(
κ+ µ+

√
q̃z√

σ2 − q̃

)
+ pα

∫
dγ(z) logH

(
κ− µ−

√
q̃z√

σ2 − q̃

)

+
1

2

[
q

1− q
+ log(1− q)

]}
. (D21)

2. The replica-symmetric capacity

The replica-symmetric capacity αRS is determined by the value of α such that q ↑ 1 [5–7, 11–13]. Solving the saddle
point equation for q from the replica-symmetric free entropy fRS for α−1, we have

1

αRS
= lim

q↑1

(1− q)2

q

∂q̃

∂q

[
(1− p)

∫
dγ(z)

1

H(c+)

1√
2π

exp

(
−
c2+
2

)
1

(σ2 − q̃)3/2

(
κ+ µ+

zσ2

√
q̃

)
+ p

∫
dγ(z)

1

H(c−)

1√
2π

exp

(
−
c2−
2

)
1

(σ2 − q̃)3/2

(
κ− µ− zσ2

√
q̃

)]
, (D22)
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where, for brevity, we write

c± ≡
κ± µ±

√
q̃z√

σ2 − q̃
. (D23)

We can then see that the finiteness of the replica-symmetric critical capacity depends on the analytic properties of q̃
in the limit q ↑ 1. To study the properties of this limit, we make the change of variables q = 1 − ε. We generically
expect q̃ ↑ σ2, but the way in which q̃ approaches σ2 depends on the activation function. As observed by Baldassi
et al. [11], for g(x) = sign(x), σ2 − q̃ ∼

√
ε, while, for g(x) = ReLU(x), σ2 − q̃ ∼ ε. As shown in the main text, the

asymptotic scaling σ2 − q̃ ∼ ε holds for all g ∈ H1(γ). We thus make the ansatz

q̃ ∼ σ2 − βε` (D24)

for some parameters β, ` > 0. Then, the contribution of the first term in the saddle point equation above to α−1RS is
given to leading order as

ε1−`/2

1− ε
`(1− p)√

β

∫
dγ(z)

1

H(c+)

1√
2π

exp

(
−
c2+
2

)
1

(σ2 − q̃)3/2

(
κ+ µ+

zσ2√
σ2 − βε`

)
, (D25)

where we have reparameterized c+ in terms of ε. In the limit ε ↓ 0, c+ tends to +∞ if z ≥ −(κ + µ)/σ and to −∞
otherwise. Noting that

1

H(x)
∼

{
1 + (2πx2)−1/2 exp(−x2/2)

[
1− x−2 +O(x−4)

]
x� −1√

2πx exp(x2/2)
[
1 + x−2 +O(x−4)

]
x� +1

, (D26)

we can see that the only non-vanishing contribution comes from the interval z ≥ −(κ+ µ)/σ. Thus, to leading order,
this term is given as

ε1−`

1− ε
`(1− p)

β

∫ ∞
−(κ+µ)/σ

dγ(z)
(
κ+ µ+ z

√
σ2 − βε`

)(
κ+ µ+

zσ2√
σ2 − βε`

)
, (D27)

which we can further approximate as

`ε1−`
1− p
β

∫ ∞
−(κ+µ)/σ

dγ(z) (κ+ µ+ σz) . (D28)

By an identical procedure, we can derive the leading-order contribution to the second term, in which case the non-
vanishing contribution to the integral comes from z ≤ (κ− µ)/σ, yielding

1

αRS
= lim

ε↓0
`ε1−`

[
1− p
β

∫ ∞
−(κ+µ)/σ

dγ(z) (κ+ µ+ σz) +
p

β

∫ (κ−µ)/σ

−∞
dγ(z) (κ− µ− σz)

]
. (D29)

We note that this result can alternatively be obtained using the method of Engel et al. [5], which exploits the properties
of the function whose extremum with respect to q defines the free entropy fRS to avoid the need to explicitly compute
the saddle point equation.

Thus, we can see that the limit ε ↓ 0 vanishes for ` < 1, implying divergence of the replica-symmetric capacity. If
` ≥ 1, which holds for all functions g ∈ H1(γ), the capacity remains finite, and we have β = ‖g′‖2γ . We note that the

boundary case ` = 1, which corresponds to non-zero ‖g′‖2γ , is special, as the capacity vanishes if if ` > 1. For this
class of functions, we therefore obtain

1

αRS
=

σ2

‖g′‖2γ

[
(1− p)

∫ ∞
−(κ+µ)/σ

dγ(z)

(
κ+ µ

σ
+ z

)2

+ p

∫ ∞
−(κ−µ)/σ

dγ(z)

(
κ− µ
σ

+ z

)2
]
. (D30)

By inspection, we can see that if p = 1/2 and the output distribution is symmetric, αRS is maximized by taking µ = 0.
If the condition µ = 0 holds, the formula above simplifies to

1

αRS
=

σ2

‖g′‖2γ

∫ ∞
−κ/σ

dγ(z) (κ/σ + z)2, (D31)

as given in the main text.
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Appendix E: One-step replica-symmetry-breaking solution

In this appendix, we consider a one-step replica-symmetry-breaking (1-RSB) ansatz, in which we divide the n
replicas into groups of size m, known as the Parisi parameter, and allow the overlaps between groups to differ from
the overlaps within groups [5–7, 11, 14, 15]. Again, we assume that the order parameters are translation-invariant
across branches. We let q0 denote the overlaps between replicas in different groups, and q1 the overlap between replicas
within the same group, with corresponding Lagrange multipliers q̂0 and q̂1.

1. The 1-RSB quenched free entropy

With the 1-RSB ansatz, the entropic contribution G2 simplifies to

G2 =
1

2
Ê − 1

2
(n−m)q0q̂0 −

1

2
(m− 1)q1q̂1 +

1

n
log

∫
dnw exp

(
−1

2
wTCw

)
− 1 + log(2π)

2
, (E1)

where we have defined the n× n block Toeplitz matrix

C =


A B · · · B

B A
. . .

...
...

. . .
. . .

B · · · A

 , (E2)

where the m×m blocks are defined as

A = (Ê + q̂1)Im − q̂11m1T
m (E3)

and

B = −q̂01m1T
m, (E4)

respectively. Then, as the integral over w is Gaussian, it can easily be evaluated, yielding

1

n
log

∫
dnw exp

(
−1

2
wTCw

)
=

1

2
log(2π)− 1

2n
log detC. (E5)

To compute the determinant of C, we will use a convenient lemma. For n/m a power of two, we have

detC = det(A−B)n/m−1 det(A + (n/m− 1)B), (E6)

which follows from the identity

det

(
A B
B A

)
= det(A−B) det(A + B), (E7)

and induction on n/m in powers of two. By the matrix determinant lemma, we have

det(A−B) = (Ê + q̂1)m
(

1 +m
q̂0 − q̂1
Ê + q̂1

)
(E8)

and

det(A + (n/m− 1)B) = (Ê + q̂1)m
(

1 +m
(1− n/m)q̂0 − q̂1

Ê + q̂1

)
. (E9)

Therefore, for n/m a power of two, we have

1

n
log detC = log(Ê + q̂1) +

n−m
nm

log

(
1 +m

q̂0 − q̂1
Ê + q̂1

)
+

1

n
log

(
1 +

(m− n)q̂0 −mq̂1
Ê + q̂1

)
. (E10)
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Assuming the validity of analytic continuation to n ↓ 0, we have

lim
n↓0

1

n
log detC = log(Ê + q̂1)− q̂0

Ê + q̂1 +m(q̂0 − q̂1)
+

1

m
log

(
Ê + q̂1 +m(q̂0 − q̂1)

Ê + q̂1

)
. (E11)

Therefore, we obtain

lim
n↓0

G2 =
1

2
Ê +

1

2
q1q̂1 +

1

2
m(q0q̂0 − q1q̂1)− 1

2

+
1

2

[
log

(
1

Ê + q̂1

)
+

q̂0

Ê + q̂1 +m(q̂0 − q̂1)
+

1

m
log

(
Ê + q̂1

Ê + q̂1 +m(q̂0 − q̂1)

)]
. (E12)

We note that this result can alternatively be obtained with substantially more algebra by performing many Hubbard-
Stratonovich transformations [5]. As the Lagrange multipliers Ê, q̂0, and q̂1 appear only in G2, we can eliminate them
from the saddle point equations, yielding

lim
n↓0

G2 =
1

2

[
q0

1− q1 −m(q0 − q1)
+
m− 1

m
log(1− q1) +

1

m
log(1− q1 −m(q0 − q1))

]
(E13)

at the 1-RSB saddle point, which reduces to the replica-symmetric result if we take q0 = q1.
We now consider the energetic contribution G1. As in the replica-symmetric case, the central limit theorem implies

that the internal fields

sa ≡ 1√
K

∑
j

vjg(haj )− ϑ (E14)

converge in distribution to a Gaussian as K → ∞. Their mean µ is the same as before, but now their covariance is
given by the block Toeplitz matrix

C =


A B · · · B

B A
. . .

...
...

. . .
. . .

B · · · A

 , (E15)

with m×m blocks

A = (σ2 − q̃1)Im + q̃11m1T
m (E16)

and

B = q̃01m1T
m, (E17)

where σ2 = var[g(h)] as before and the effective order parameter now takes two values

q̃j = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
0,

[
1 qj
qj 1

])]
, j = 1, 2. (E18)

We now want to understand the structure of the joint characteristic function of the replicated internal fields, in terms
of which we will expand G1, such that we can decouple replicas by performing appropriate Hubbard-Stratonovich
transformations. Introducing Lagrange multipliers ŝ and indexing blocks by Greek superscripts, we have

ŝ ·Cŝ =

n/m∑
λ=1

ŝλ ·Aŝλ +
∑
ν 6=λ

ŝν ·Bŝλ = (σ2 − q̃1)(ŝ · ŝ) + (q̃1 − q̃0)

n/m∑
λ=1

(1m · ŝλ)2 + q̃0(1n · ŝ)2. (E19)

Then, we can see that we will need to perform one Hubbard-Stratonovich transformation to decouple the (1n · ŝ)2
term at the expense of introducing an auxiliary field z0, which has the effect of shifting the mean of sa from µ to
µ+
√
q̃0z0. To decouple the (1m · ŝλ)2 terms, we introduce n/m auxiliary fields zλ1 , which further shifts the mean of

sa from µ+
√
q̃0z0 to µ+

√
q̃0z0 +

√
q̃1 − q̃0zλ1 . Then, recognizing that the contribution of each replica within a block
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to the integral over the corresponding zλ1 is identical, and that the contribution of each block to the integral over z0
is in turn identical, the first average in exp(nG1) is given as∫

dγ(z0)

{∫
dγ(z1)

[∫
ds dŝ

2π
Θ(−s− κ) exp

(
isŝ− 1

2
(σ2 − q̃1)ŝ2 + i(µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)ŝ

)]m}n/m
(E20)

=

∫
dγ(z0)

{∫
dγ(z1)

[
H

(
κ+ (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]m}n/m
. (E21)

Analogously, we can see that the second term in exp(nG1) can be written in a similar form, yielding

exp(nG1) = (1− p)
∫
dγ(z0)

{∫
dγ(z1)

[
H

(
κ+ (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]m}n/m

+ p

∫
dγ(z0)

{∫
dγ(z1)

[
H

(
κ− (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]m}n/m
. (E22)

Therefore, passing to the limit n ↓ 0, we obtain the 1-RSB saddle point free entropy

f1-RSB = extr
q0,q1,m

{
1

m
(1− p)α

∫
dγ(z0) log

∫
dγ(z1)

[
H

(
κ+ (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]m

+
1

m
pα

∫
dγ(z0) log

∫
dγ(z1)

[
H

(
κ− (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]m
+

1

2

[
q0

1− q1 −m(q0 − q1)
+
m− 1

m
log(1− q1) +

1

m
log(1− q1 −m(q0 − q1))

]}
. (E23)

2. The 1-RSB capacity

To determine the capacity under the 1-RSB ansatz, we need to find the value of α such that q1 ↑ 1. In this limit,
we expect m ↓ 0 such that the non-negative quantity

r ≡ m

1− q1
(E24)

remains finite [5–7, 11, 14]. We thus re-parameterize the saddle point equations by writing q1 = 1 − ε and m = rε,
which yields

f1-RSB = extr
q0,ε,r

1

ε

{
1

r
(1− p)α

∫
dγ(z0) log

∫
dγ(z1)

[
H

(
κ+ (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]rε

+
1

r
pα

∫
dγ(z0) log

∫
dγ(z1)

[
H

(
κ− (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1

)]rε
+

1

2

[
q0

1 + r(1− q0 − ε)
+ ε log(ε) +

1

r
log(1 + r(1− q0 − ε))

]}
, (E25)

where q̃1 is now a function of ε alone.
To derive a formula for the 1-RSB critical capacity, we follow the method used by Engel et al. [5]. This method

starts by observing that the quantity inside the curly braces above must vanish in the limit ε ↓ 0 in order for the
extremum with respect to ε to be well-defined in this limit. This condition gives an implicit expression for α1-RSB as

0 = min
q0,r

{
q0

1 + r(1− q0)
+

1

r
log(1 + r(1− q0))− 2

r
α1-RSBψ(q0, r)

}
, (E26)

where

ψ(q0, r;κ) ≡ − lim
ε↓0

{
(1− p)

∫
dγ(z0) log

∫
dγ(z1) [H(c+)]

rε
+ p

∫
dγ(z0) log

∫
dγ(z1) [H(c−)]

rε

}
, (E27)
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and, for brevity, we write

c± =
κ± (µ+

√
q̃0z0 +

√
q̃1 − q̃0z1)√

σ2 − q̃1
. (E28)

As ψ ≥ 0 for all q0, r, and κ, we can explicitly express the capacity as

α1-RSB(κ) = min
q0,r

{
1

2ψ(q0, r;κ)

[
rq0

1 + r(1− q0)
+ log(1 + r(1− q0))

]}
. (E29)

We note that one could obtain the same formula for α as a function of the saddle-point values of q0 and r by solving
the saddle-point equation for ε for α and taking the limit ε ↓ 0.

We must now evaluate the limit ε ↓ 0 in the definition of ψ. Following our analysis of the RS critical capacity, we
focus on the symmetric case µ = 0, and make the ansatz that q̃0 ∼ σ2 − βε` for some β, ` > 0. The assumption of
symmetry yields the simplification

ψ(q0, r;κ) = − lim
ε↓0

∫
dγ(z0) log

∫
dγ(z1)

[
H

(
κ+
√
q̃0z0 +

√
q̃1 − q̃0z1√

σ2 − q̃1

)]rε
. (E30)

Expanding the argument of H to leading order in ε, we have

κ+
√
q̃0z0 +

√
q̃1 − q̃0z1√

σ2 − q̃1
∼ κ+

√
q̃0z0 +

√
σ2 − q̃0z1√

βε`
, (E31)

hence the argument of H tends to +∞ for z1 ≥ −(κ+
√
q̃0z0)/

√
σ2 − q̃0 and to −∞ otherwise. Noting that

H(x) ∼

{
1− (2πx2)−1/2 exp(−x2/2)

[
1− x−2 +O(x−4)

]
x� −1

(2πx2)−1/2 exp(−x2/2)
[
1− x−2 +O(x−4)

]
x� +1

, (E32)

we can then write the argument of the logarithm in the definition of ψ to leading order in ε as∫ −Q
−∞

dγ(z1)

[
1− 1√

2π

√
βε`/2

κ+
√
q̃0z0 +

√
σ2 − q̃0z1

exp

(
− (κ+

√
q̃0z0 +

√
σ2 − q̃0z1)2

2βε`

)]rε

+

∫ ∞
−Q

dγ(z1)

[
1√
2π

√
βε`/2

κ+
√
q̃0z0 +

√
σ2 − q̃0z1

exp

(
− (κ+

√
q̃0z0 +

√
σ2 − q̃0z1)2

2βε`

)]rε
, (E33)

where we have defined the function

Q ≡ κ+
√
q̃0z0√

σ2 − q̃0
(E34)

for brevity. Using the continuity of the logarithm and passing to the limit ε ↓ 0, this simplifies to∫ −Q
−∞

dγ(z1) +

∫ ∞
−Q

dγ(z1) lim
ε↓0

exp

(
−r(κ+

√
q̃0z0 +

√
σ2 − q̃0z1)2

2β
ε1−`

)
(E35)

for any ` > 0. If ` < 1, the remaining limit tends to unity, hence the argument of the logarithm tends to unity and
ψ vanishes, resulting in a divergent 1-RSB capacity. If g ∈ H1(γ), we have ` ≥ 1 and β = ‖g′‖2γ , hence the 1-RSB
capacity, like the RS capacity, remains finite. For functions of this class, evaluating the integrals over z1, we find that

ψ(q0, r;κ) = −
∫
dγ(z0) log

[
H(Q) +R exp

(
−1

2

r(κ+
√
q̃0z0)2

‖g′‖2γ + r(σ2 − q̃0)

)
H(−QR)

]
, (E36)

where Q is given as above and we have defined

R ≡

√
‖g′‖2γ

‖g′‖2γ + r(σ2 − q̃0)
(E37)
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for brevity.
To gain some understanding of the behavior of the 1-RSB capacity, we exploit the fact that it is defined as a

minimization problem to derive upper bounds by fixing the value of the inter-block overlap q0. Trivially, by taking
q0 ↑ 1 we recover the RS result and the bound α1-RSB ≤ αRS. If we instead fix q0 = 0, the problem simplifies
dramatically because q̃0 vanishes. Denoting this family of candidate capacities by α1-RSB0 , we have

α1-RSB0
(κ) = min

r≥0

{
log(1 + r)

2ψ(0, r;κ)

}
, (E38)

where

ψ(0, r;κ) = − log

[
H
(κ
σ

)
+

√
‖g′‖2γ

‖g′‖2γ + σ2r
exp

(
−1

2

κ2r

‖g′‖2γ + σ2r

)
H

(
−κ
σ

√
‖g′‖2γ

‖g′‖2γ + σ2r

)]
. (E39)

Evaluating this expression at κ = 0 and noting that αRS = 2‖g′‖2γ/σ2, we have

α1-RSB0
= min

s≥0
u(s), (E40)

where we have re-expressed the optimization problem in terms of s ≡ r/αRS and defined the function

u(s) ≡ 1

2

log(1 + αRSs)

log(2)− log(1 + 1/
√

1 + 2s)
. (E41)

For all s > −1/max{2, αRS}, u(s) is a continuously differentiable transcendental function of s, with u(s = 0) = αRS.
For all 0 < αRS ≤ 5/2, u′(s) is positive for all s > 0, hence it is minimized at the boundary. For αRS > 5/2, u′(s)
vanishes for some positive s, and the minimum is less than αRS. To obtain an asymptotic bound on the 1-RSB
capacity for large αRS, we can use the fact that

α1-RSB0 ≤ u(1) =
log(1 + αRS)

2 log(3−
√

3)
(E42)

for all αRS to obtain the asymptotic

α1-RSB = O(logαRS). (E43)

In summary, the 1-RSB and RS ansätze yield the same conditions on the activation function for the capacity
to remain finite in the infinite-width limit. For a given activation function, we can in principle determine α1-RSB

numerically by solving an explicit two-dimensional minimization problem over q0 ∈ [0, 1] and r0 ∈ [0,∞), though we
do not obtain a simple closed-form solution like that for αRS. Unlike in the calculation of the RS capacity, we cannot
in this case avoid the need to compute the effective order parameter q̃0(q0) for generic values of q0. We note that
expression for the 1-RSB capacity with g(x) = ReLU(x) from [11] is equivalent in functional form to that presented
here. We observe that the first-order conditions on q0 and r resulting from this minimization are precisely the saddle-
point equations for those order parameters. However, Engel et al. [5]’s prescription for expressing the 1-RSB capacity
as a minimization problem is advantageous relative to simply solving the saddle point equations as it allows one to
derive relatively tractable upper bounds. In particular, the q0 = 0 family of candidate solutions yields a tighter upper
bound on α1-RSB than αRS itself, showing that α1-RSB can grow at most logarithmically with αRS.

Appendix F: Computation of the capacity for common activation functions

In this appendix, we provide details of the computation of the RS and 1-RSB capacities for several commonly-used
activation functions. For these examples, we illustrate this minimization problem by plotting its landscape in Figure
S1. For comparison purposes, we include the landscape for linear activation functions, for which RSB does not occur
[12–14, 18]. Numerical computation of the 1-RSB capacity was performed in Matlab 9.6. Integrals with respect to
Gaussian measure were estimated using 20-point Gauss-Hermite quadrature [19], and minimization was performed
using the interior-point solver fmincon [20]. These results were then checked against computations performed in
Mathematica 12.1 using the numerical integrator NIntegrate and minimizer NMinimize with 100 digits of internal
precision. These methods were also used to generate and cross-check the contour plots in Figure S1.
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FIG. S1. The landscape of the function whose minimum determines the 1-RSB capacity as a function of the inter-block overlap
q0 and the rescaled Parisi parameter r ≡ m/(1 − q1) for several example activation functions. In each panel, the value of this
function is shown in false color, with the location of minimum indicated by an orange dot.

1. The rectified linear unit

The rectified linear unit ReLU(x) ≡ max{0, x} is the most commonly-used activation function in modern machine
learning appications [21, 22], and has weak derivative ReLU′(x) = Θ(x). With our conventions, the Hermite expansion
of ReLU is given as

ReLU(x) =
1√
2π

+
1

2
He1(x) +

1√
2π

∞∑
k=1

(−1)k+1

2k(2k − 1)k!

√
(2k)! He2k(x). (F1)

By direct computation of the required integrals, we have

σ2 =
1

2
− 1

2π
=
π − 1

2π
(F2)

and

‖ReLU′ ‖2γ = ‖Θ‖2γ = H(0) =
1

2
, (F3)

hence we recover the result of Baldassi et al. [11] that

αRS(κ = 0) =
2π

π − 1
' 2.93388. (F4)

For ReLU, we can express q̃(q) in closed form by direct integration or by summation of the series expansion resulting
from the function’s Hermite expansion as

q̃(q) =
q

4
+
q arcsin(q) +

√
1− q2 − 1

2π
. (F5)

Using this formula, we obtain the estimate

α1-RSB(κ = 0) ' 2.66428 (F6)

at (q∗0 , r
∗) ' (0.75716, 16.63737). This result is consistent with the upper bound α1-RSB . 2.85021 resulting from the

q0 = 0 family of candidate capacities.
This estimate of the 1-RSB capacity of a network with ReLU activations is consistent with the α1-RSB ' 2.6643

reported by Baldassi et al. [11] in an update to their Letter. Previous versions of their work reported an erroneous
value of α1-RSB ' 2.92, which does not agree with our estimate of α1-RSB and exceeds the q0 = 0 bound. To estimate
the 1-RSB capacity, they solved the saddle-point equations for q0 and r numerically rather than directly minimizing
over α1-RSB. After the appearance of our work in preprint form, they found that incorrect initialization had allowed
the solver to converge on the RS saddle point. Their revised estimate is consistent with ours.
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2. The Gauss error function

The Gauss error function

erf(z) =
2√
π

∫ z

0

dx exp(−x2) = 1− 2H(
√

2z) (F7)

is the most analytically convenient of the commonly-used sigmoidal activation functions. It has the Hermite expansion

erf(x) =
2√
3π

∞∑
k=0

(−1)k

3k(2k + 1)k!

√
(2k + 1)! He2k+1(x), (F8)

which allows us to easily obtain the closed-form expressions

q̃(q) =
4

3π

∞∑
k=0

(2k + 1)!

32k(k!)2(2k + 1)2
q2k+1 =

2

π
arcsin

(
2

3
q

)
(F9)

and

σ2 = q̃(1) =
2

π
arcsin

(
2

3

)
. (F10)

Similarly, we can easily work out that

‖ erf ′ ‖2γ =

∫
dγ(x)

[
2√
π

exp(−x2)

]2
=

4√
5π
. (F11)

This yields

αRS(κ = 0) =
4√

5 arcsin(2/3)
' 2.45140 (F12)

and

α1-RSB(κ = 0) ' 2.37500, (F13)

with (q∗0 , r
∗) ' (0.75463, 7.75682). This is consistent with our upper bounds for α1-RSB, which in this case simply

reduce to the RS capacity as it is less than 2.5.

3. The quadratic

In neuroscientific studies of two-layer network models, expansive activations such as a quadratic are sometimes
considered [23]. With g(x) = x2, we can trivially work out that q̃(q) = 2q2, hence we have σ2 = 2 and ‖g′‖22 =
‖2x‖2γ = 4. Thus, we find that

αRS(κ = 0) = 4 (F14)

and

α1-RSB(κ = 0) ' 3.37466, (F15)

with (q∗0 , r
∗) ' (0.28452, 6.39299). This result is consistent with the q0 = 0 bound of α1-RSB . 3.38100.

4. The hyperbolic tangent and logistic

Though it is less analytically convenient than the error function, the hyperbolic tangent and logistic sigmoid
g(x) = (tanh(x) + 1)/2 are more commonly used in practical applications [21]. We can numerically evaluate the
required integrals, yielding ‖ tanh ‖2γ ' 0.39429 and ‖ tanh′ ‖2γ ' 0.46440 and the estimate

αRS(κ = 0) ' 2.35561. (F16)

As the RS capacity is scale- and shift-invariant, the RS capacity of the logistic function is the same as that of the
hyperbolic tangent.
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FIG. S2. 1-RSB solutions for Hermite polynomial activation functions of varying degree. In each panel, the abscissa is the
degree of the polynomial. The leftmost panel shows the 1-RSB capacity α1-RSB, the middle panel the saddle-point value of the
inter-block overlap q0, and the rightmost panel the saddle-point value of the rescaled Parisi parameter r.

5. The “Swish” and “Mish” functions

Recent experimental works on deep neural networks have proposed various smooth, non-monotonic functions as
alternatives to the rectifier unit. One proposal is the product of a logistic function and a linear function, termed
“Swish” [22, 24]:

swish(x;β) =
x

1 + exp(−βx)
, (F17)

where β is a positive parameter. Conventionally, β is either fixed to unity or treated as a trainable weight, and yields
the limiting behavior limβ↓0 swish(x;β) = x, limβ→∞ swish(x;β) = ReLU(x). We can see that αRS is a monotone
increasing function of β, which tends to the perceptron result αRS(κ = 0) = 2 as β ↓ 0 and the ReLU result
αRS(κ = 0) = 2π/(π − 1) as β → ∞. With β = 1, we have ‖swish(· ; 1)‖2γ ' 0.31308 and ‖swish′(· ; 1)‖2γ ' 0.37948,
and the estimate

αRS(κ = 0) ' 2.42416. (F18)

Another alternative to ReLU is the “Mish” function, defined as [24]

mish(x) = x tanh log(1 + exp(x)), (F19)

for which we have ‖mish‖2γ ' 0.47908 and ‖mish′‖2γ ' 0.39455, and the estimate

αRS(κ = 0) ' 2.42852. (F20)

6. Hermite polynomials

To illustrate how slowly the 1-RSB capacity grows as a function of the RS capacity, we consider Hermite polynomial
activations, i.e.

gk(x) = Hek(x) (F21)

for k > 0. For Hek(x), we of course have σ2
k = 1, ‖He′k ‖2γ = k, and q̃k(q) = qk. Thus, the RS capacity at zero margin

is simply

αRS(k) = 2k. (F22)

As we have the simple expression q̃(q) = qk for any k, we can numerically estimate the 1-RSB capacity as a function
of degree, yielding the results shown in S2. Importantly, the 1-RSB capacity grows far slower than linearly with k;
in particular, it scales roughly as log k for k � 1. For this class of activation functions, the saddle point value of the
inter-block overlap q0 is nearly zero for k ≥ 3, hence the q0 = 0 upper bound is quite close to the actual estimated
value of α1-RSB. We observe that the saddle-point value for the rescaled Parisi parameter r scales roughly as a power
law for large k.
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Appendix G: The replica-symmetric capacity with sparsely active inputs

In this appendix, we generalize our previous calculation of the replica-symmetric capacity to input distributions
with sparsely active input units. Following Gardner [12], we consider a distribution with P(xµjk = +1) = (1 + r)/2,

where r = Exµjk ∈ [−1, 1] is the constrained magnetization of the input patterns. We will focus on the limit in which

inputs are very sparse (r ↑ 1), but allow the output distribution to potentially be symmetric (that is, we do not assume
that P(yµ = +1) = p is a function of r, as studied by Gardner [12]). We note that, as shown by Gardner [12], it is
possible to store more than O(N) patterns in the limit in which both the input and target output distributions are
infinitely sparse. However, such finely tuned matching is not generally realistic in supervised learning tasks. We will
follow our previous calculation of the replica-symmetric calculation, noting only where we must make adjustments to
account for the non-zero average input magnetization.

The local fields

haj ≡
√
K

N
wa
j · xj (G1)

now have non-zero mean

Exh
a
j = r

√
K

N

N/K∑
k=1

wajk (G2)

and covariance

covx(haj , h
b
l ) = (1− r2)δkl

K

N
wa
j ·wb

j . (G3)

We can then see that, in addition to the Edwards-Anderson order parameters qabj ≡ (K/N)wa
j ·wb

j , we will need to
introduce local magnetizations

ma
j ≡

√
K

N

N/K∑
k=1

wajk. (G4)

As noted by Gardner [12], the effect of the corresponding Lagrange multiplier on the entropic contribution to the
saddle-point free entropy can be neglected in the limit N →∞, as it is suppressed relative to the contribution from the
Lagrange multipliers corresponding to the EA order parameters by a factor of

√
K/N . Thus, the local magnetization

affects the free entropy only through its appearance in the energetic term.
Under a replica- and branch-symmetric ansatz, the defining moments of the local fields are given as

Ehaj = rm (G5)

and

cov(haj , h
b
l ) = (1− r2)δkl[δab + q(1− δab)]. (G6)

Then, by comparison to our previous results, we can see that we can map all of our reasoning onto the sparse case
provided that we take expectations with respect to the modified distribution. In particular, we will have effective
order parameters

m̃(m, r) = E
[
g(x) : x ∼ N (rm, 1− r2)

]
, (G7)

σ2(m, r) = var
[
g(x) : x ∼ N (rm, 1− r2)

]
, (G8)

and

q̃(q,m, r) = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
rm

[
1
1

]
, (1− r2)

[
1 q
q 1

])]
; (G9)
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the corresponding quantities in our original calculation are the r = 0 special case of these expressions. Defining the
average output preactivation

µ ≡ m̃ 1√
K

K∑
j=1

vj − ϑ, (G10)

the appropriate generalization of the energetic term in the K →∞ limit from our previous calculation is therefore

G1 = (1− p)
∫
dγ(z) logH

(
κ+ µ+

√
q̃z√

σ2 − q̃

)
+ p

∫
dγ(z) logH

(
κ− µ−

√
q̃z√

σ2 − q̃

)
, (G11)

where in our previous calculation µ was a constant.
The replica-symmetric free entropy is then given by

fRS = extr
q,m

{
αG1(q,m) +G2(q)

}
, (G12)

where, as noted above, the entropic term remains unchanged by the introduction of a non-zero magnetization, and is
given as

G2(q) =
1

2

[
q

1− q
+ log(1− q)

]
. (G13)

Under suitable smoothness conditions on the effective order parameters, we can then extract the RS capacity as

1

αRS
= lim

q↑1

2(1− q)2

q

∂G1

∂q

∣∣∣∣
m=m∗

, (G14)

where m∗ is the solution to the equation

lim
q↑1

∂G1

∂m
= 0. (G15)

Until this point, we have ignored the question of how the local magnetization m should scale with K, which affects
how µ scales with K. In particular, divergence of µ corresponds to a trivial committee machine that almost surely
predicts the same class for all inputs. In our previous calculation, we handled the scaling of µ post hoc, as for r = 0
it is a constant and the subsequent expressions have sensible |µ| → ∞ limits. Here, however, µ is a function of the
order parameter m. As we are interested in the case in which one changes the sparsity of the input distribution while
keeping the output distribution fixed, we will demand that µ = O(1). We note that solutions with diverging µ may be
optimal if one considers a target distribution that is always either positive or negative, but this is not in general the
case. This constraint matches that considered by Gardner [12] in her analysis of the perceptron, where she demanded
that the total magnetization

M =
1√
N

N∑
k=1

wk =
1√
K

K∑
j=1

mj =
√
Km (G16)

remain O(1), corresponding to the scaling m = O(K−1/2).

As we assume that
∑K
j=1 v

2
j = K, we should have |vj | = O(1), hence

∑K
j=1 vj = O(K) provided that the readout

weights do not exactly sum to zero. We note that this is precisely the case for the classic committee machine readout
vj = 1. As the zero-sum case results in µ = −ϑ independent of m, we choose to exclude it as it is in this sense trivial.
We then define the O(1) quantity

v̄ ≡ 1

K

K∑
j=1

vj , (G17)

in terms of which we have µ =
√
Kv̄m̃ − ϑ. Following our previous calculation, we choose the threshold such that

it cancels the constant component of
√
Kv̄m̃, i.e. we set ϑ =

√
Kv̄m̃0, where we have defined m̃0 ≡ m̃(0, r). This
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prevents µ from trivially diverging due to the addition of a constant offset to the activations. With these choices, we
have µ =

√
Kv̄(m̃− m̃0). Therefore, to have µ = O(1), we must have m̃− m̃0 = O(K−1/2).

We can now write down the K →∞ limit of the saddle point equation for m. Defining

c± ≡
κ∓ µ∓

√
q̃z√

σ2 − q̃
(G18)

for brevity, the saddle-point equation for m prior to taking the q ↑ 1 limit is

0 = (1− p)
∫
dγ(z)

√
σ2 − q̃φ(c−)

H(c−)

[√
Kv̄

∂m̃

∂m
− κ+ µ+

√
q̃z

2(σ2 − q̃)
∂σ2

∂m
+
κ+ µ+ σ2q̃−1/2z

2(σ2 − q̃)
∂q̃

∂m

]
+ p

∫
dγ(z)

√
σ2 − q̃φ(c+)

H(c+)

[
−
√
Kv̄

∂m̃

∂m
− κ− µ−

√
q̃z

2(σ2 − q̃)
∂σ2

∂m
+
κ− µ− σ2q̃−1/2z

2(σ2 − q̃)
∂q̃

∂m

]
. (G19)

All K-dependence in this equation is contained in the
√
Kv̄ and µ terms. Demanding that µ = O(1), it simplifies to

(1− p)
∫
dγ(z)

√
σ2 − q̃φ(c−)

H(c−)

∂m̃

∂m
= p

∫
dγ(z)

√
σ2 − q̃φ(c+)

H(c+)

∂m̃

∂m
(G20)

in the K →∞ limit.
We now have the necessary ingredients to compute the RS capacity in the limit of sparse inputs. We first would

like to gain some general understanding of whether the conditions for the RS capacity to remain finite are the same in
the sparse limit, assuming that p does not tend to unity with r. As in the non-sparse case, this depends on whether
the limit

β(m, r) = lim
q↑1

σ2(m, r)− q̃(q,m, r)
1− q

(G21)

is finite. We assume that r is not exactly equal to one, and that m is bounded. Then, all effective order parameters
are the non-sparse (r = 0) order parameters of a network with a transformed activation function

ḡ(x) = g(
√

1− r2x+ rm). (G22)

If g ∈ L2(γ), then ḡ must also be in L2(γ), which follows from the fact that g must be exponentially bounded at
infinity. The function ḡ is weakly differentiable if and only if g is weakly differentiable, which is easy to see based on
the fact that the linear transformation x 7→

√
1− r2x + rm is smooth and invertible. If g is weakly differentiable,

then the chain rule for the weak derivative implies that

ḡ′(x) =
√

1− r2g′(
√

1− r2x+ rm). (G23)

Furthermore, if g′ has finite L2(γ) norm, than the reasoning applied to ḡ above implies that ḡ′ also has finite norm.
Thus, by applying our arguments from the non-sparse case to ḡ, we find that β is finite if the weak derivative of g
exists and has finite norm. Therefore, changing the sparsity of the input distribution does not change whether or not
the capacity diverges in the infinite-width limit.

We now would like to characterize how the RS capacity of networks with weakly-differentiable activation functions
behaves in the sparse limit. However, directly applying the methods that allowed us to evaluate the q ↑ 1 limit in the
non-sparse case is more challenging, as we would need to compute the Fourier-Hermite coefficients of the transformed
activation ḡ for all r and m. Instead, we will focus on two simple cases: ReLU and analytic activations with non-
vanishing derivative at the origin. These cases cover most activation functions commonly used in neural networks,
and provide some insight into how sparsity can affect the capacity.

1. The rectified linear unit

For g(x) = ReLU(x), we can compute the effective local magnetization in closed form, yielding

m̃(m, r) =

√
1− r2

2π
exp

(
− (mr)2

2(1− r2)

)
+

1

2
mr

[
1 + erf

(
mr√

2(1− r2)

)]
. (G24)
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We note that the exponential term tends to zero as r ↑ 1 uniformly in m, while the second term tends to m as r ↑ 1
if m > 0, and to zero if m ≤ 0.

To obtain an O(1) value for
√
K(m̃(m, r)− m̃0), we adopt the scaling

m =
t√
K

(G25)

for t = O(1). This yields

lim
K→∞

√
K(m̃(m, r)− m̃0) =

1

2
rt (G26)

for any t and all |r| < 1; other scalings will not yield an O(1) value. Similarly, we find that

lim
K→∞

∂m̃

∂m
=

1

2
r. (G27)

Using the continuity of the effective order parameters in m and the fact that ReLU is a positive-homogeneous
function, we have

lim
K→∞

σ2(m, r) = σ2(m = 0, r) = (1− r2)σ2(m = 0, r = 0) = (1− r2)
π − 1

2π
(G28)

and

lim
K→∞

q̃(q,m, r) = q̃(q,m = 0, r) = (1− r2)q̃(q,m = 0, r = 0) (G29)

for any |r| < 1. This implies that

β(m = 0, r) = (1− r2)β(m = 0, r = 0) =
1

2
(1− r2). (G30)

Then, by the same reasoning we used to take the limit q ↑ 1 to obtain the RS capacity in the non-sparse case, we
find that the saddle-point equation for t becomes

(1− p)u1

(
κ+ v̄rt/2√
σ2(1− r2)

)
= p u1

(
κ− v̄rt/2√
σ2(1− r2)

)
, (G31)

where by a minor abuse of notation we now write σ2 = σ2(m = 0, r = 0), and we define

un(x) ≡
∫ ∞
−x

dγ(z) (x+ z)n. (G32)

for brevity. Similarly, the re-arranged saddle point equation for q yields

αRS =
π

π − 1

[
(1− p)u2

(
κ+ v̄rt/2√
σ2(1− r2)

)
+ p u2

(
κ− v̄rt/2√
σ2(1− r2)

)]−1
. (G33)

For p = 1/2, the fact that u1 is a monotonically increasing function implies that we must have t∗ = 0 for any κ,
yielding an RS capacity of

αRS =
π

π − 1

[
u2

(
κ√

σ2(1− r2)

)]−1
. (G34)

2. Analytic activation functions

We now consider analytic activation functions with non-zero derivative at the origin. As for ReLU, we intuitively
expect that the required scaling for µ to remain O(1) is m = t/

√
K for t = O(1). This intuition may be made more
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concrete by considering the small-m expansion of m̃ in the limit r ↑ 1:

m̃(m, r) =

∫ ∞
−∞

dx√
2π(1− r2)

exp

(
− (x− rm)2

2(1− r2)

)
g(x) (G35)

=

∫ ∞
−∞

dx√
2π(1− r2)

exp

(
− x2

2(1− r2)

)[
1 +

rxm

1− r2
+O(m2)

]
g(x) (G36)

=

∫ ∞
−∞

dx√
2π(1− r2)

exp

(
− x2

2(1− r2)

)
g(x)

+ rm

∫ ∞
−∞

dx√
2π(1− r2)

exp

(
− x2

2(1− r2)

)
g′(x) +O(m2) (G37)

→ g(0) +mg′(0) +O(m2), (G38)

where we have used the formula for Gaussian integration by parts to obtain the third line, and taken the limit r ↑ 1
on the fourth.

We will proceed under the assumption that r is close enough to unity such that we can expand σ2(r) as a power
series in 1− r2 by interchanging the expectation with the series expansion of g(x) about the origin. We note that this
is justified for sufficiently small 1− r2 by the assumption of analyticity. Then, by continuity, we have

lim
K→∞

√
K(m̃(t/

√
K, r)− m̃0) = g′(0)t+O(1− r2), (G39)

lim
K→∞

σ2(m, r) = σ2(m = 0, r) ≡ σ2(r) = [g′(0)]2(1− r2) +O[(1− r2)2], (G40)

and

lim
K→∞

q̃(q,m, r) = q̃(q,m = 0, r) ≡ q̃(q, r) = [g′(0)]2(1− r2)q +O[q2, (1− r2)2], (G41)

which yields

β(r) = lim
q↑1

σ2(r)− q̃(q, r)
1− q

= [g′(0)]2(1− r2) +O[(1− r2)2]. (G42)

Applying our previous results, we obtain the saddle-point equation for t and the expression for the capacity to leading
order in 1− r2 as

(1− p)u1

(
κ+ v̄g′(0)t∗√
[g′(0)]2(1− r2)

)
= p u1

(
κ− v̄g′(0)t∗√
[g′(0)]2(1− r2)

)
(G43)

and

1

αRS
= (1− p)u2

(
κ+ v̄g′(0)t∗√
[g′(0)]2(1− r2)

)
+ pu2

(
κ− v̄g′(0)t∗√
[g′(0)]2(1− r2)

)
, (G44)

respectively.
As for ReLU, if p = 1/2, the saddle-point equation has solution t∗ = 0, which yields

αRS =

[
u2

(
κ√

[g′(0)]2(1− r2)

)]−1
. (G45)

Comparison of these results reveals an interesting point. With ReLU activation functions, the zero-margin RS
capacity remains 2π/(π − 1) in the sparse limit. In contrast, the zero-margin RS capacity for an analytic activation
function of this type approaches that of the perceptron in this limit. For either, the capacity vanishes at any non-zero
margin as αRS ∼ 1− r2, as u2 ∼ x2 for x� 1.

The difference in the capacities in the sparse limit for ReLU or analytic activation functions is easy to justify
intuitively. For p = 1/2, one expects the local magnetization to vanish such that the distribution of the output
preactivation is symmetric, like that of the target output. Then, the remaining effect of sparsity is the 1− r2 variance
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of the hidden unit preactivations. For ReLU, this simply corresponds to an overall scaling of the output preactivation
by
√

1− r2. For analytic activation functions with non-zero derivative at the origin, we expect terms of quadratic
order and higher to be negligible if 1− r2 is small enough such that the preactivations are concentrated very near to
the origin. This leaves, approximately, a perceptron with an overall scaling factor of

√
1− r2g′(0). Then, as the zero-

margin capacity is scale-invariant, the zero-margin capacity for ReLU should remain the same as in the non-sparse
case, while that for analytic activation functions of this class should approach that of the perceptron. In either case,
one expects the capacity at non-zero margins to vanish as the output preactivation concentrates in some O(

√
1− r2)

neighborhood of zero. Thus, one can obtain the capacities calculated above via heuristic arguments.

Appendix H: Numerical experiments

The question of how to confront our theory with empirical data raises an important issue in the study of deep
networks: the questions of the existence and learnability of solutions to a classification task need not be equivalent
[25–27]. The Gardner volume seeks to quantify the existence of solutions, agnostic to how the weights might be
determined [5–7, 12, 13]. For the perceptron, one can prove that the eponymous learning algorithm will find solutions
whenever they exist [27]. However, there do not exist learning algorithms with corresponding convergence guarantees
for deep networks [21, 26, 28, 29]. In the absence of rigorous guarantees, one cannot be sure that a particular learning
algorithm will find the solutions which the Gardner volume aims to count. Thus, there exists an important distinction
between theories that study the Gardner volume and those that study the storage capacity of networks subject to
particular learning rules [12, 13, 27, 30].

With these considerations in mind, it is important to note that theories of the Gardner volume can be falsified
using particular learning algorithms. Concretely, the capacity computed using these methods constitutes a non-
rigorous upper bound on the true capacity. Therefore, it is possible to falsify such theories by showing empirically or
analytically that a particular learning algorithm can find solutions at loads higher than this predicted bound. However,
if one seeks to test the main prediction of our theory—that of diverging or finite capacity in the infinite-width limit—
one encounters an important problem: networks with activation functions that are not weakly differentiable are
not amenable to optimization via commonly-used gradient-based techniques [21, 26]. Instead, one must use ad hoc
algorithms developed for particular activation functions.

For “classical” treelike committee machines with sign activation functions and all readout weights equal to unity,
the most commonly-used learning algorithms are variants on an algorithm known as least action learning (LAL)
[3, 5, 6, 27, 31]. LAL is a greedy heuristic extension of the perceptron learning algorithm: if a training example
is classified incorrectly, the perceptron learning rule is applied to the hidden unit with preactivation closest to the
threshold among those that “voted” for the incorrect class. Engel et al. [5] found that the empirical capacity of a
slight variant of LAL appeared to be around 2 for committee machines of widths 3, 5, and 7, failing to increase with
width as predicted by their analysis of the Gardner volume. In particular, the 1-RSB estimate of the capacity with
three branches is approximately 3. More recently, Baldassi et al. [31] showed that a version of LAL that operates
batchwise can find solutions at loads approaching the 1-RSB estimate, but they only considered the three-branched
case. Because the maximum relative change in the output preactivation scales as 1/K, one expects the speed of
learning with LAL to become extremely slow in wide networks. Furthermore, the theoretical capacity with sign
activation functions diverges extremely slowly with width, scaling only as

√
logK [9].

We implemented the batch-LAL algorithm proposed in Baldassi et al. [31] in Matlab 9.6 and, following the system
size considered in that work, trained a treelike committee machine with sign activation functions with N = 990 inputs
and K = 3, 5, 9, 15, 33, or 99 hidden units to classify a randomly-generated dataset. We used a learning rate of
η = 0.005 and a batch size of 128 [31], allowing a maximum of 105 epochs with early stopping if zero classification
error was reached. As shown in Figure S3, the empirical capacities saturate at around 3 rather than increasing with
width. This apparent ceiling likely results from the imposed maximum number of training epochs, as we find that
the number of epochs required to achieve vanishing error increases superexponentially as the load approaches three
from below. Compute time is therefore an important limiting factor in determining the true algorithmic capacity of
batch-LAL; these simulations required more than fourteen days of compute time over 32 cores of an HPC node to
complete. In short, the batch-LAL algorithm behaves in our hands in much the same way as the variant of LAL
proposed by Engel et al. [5] did in 1992: if one imposes reasonable constraints the runtime of the algorithm, then one
does not observe substantial increases in the empirical capacity with increasing hidden layer width.

To study treelike committee machines with weakly differentiable activation functions, we train networks via mini-
mization of the hinge loss. The hinge loss is commonly used for training maximum margin binary classifiers, notably
support vector machines [26], and can be optimized using the subgradient methods commonly applied to ReLU net-
works in contemporary machine learning [21, 26]. We used this method to train treelike committee machines with
N = 1000 and K = 10, 50, 100, or 200 with ReLU, erf, or quadratic activation functions. We chose the total number
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FIG. S3. Training treelike committee machines with sign function activations to classify random datasets using batch-LAL.
The total number of inputs is N = 990 throughout, and the abscissa in each panel is the load α = P/N . In all panels, solid
lines indicate the average over 10 realizations, and shaded patches indicate 95% confidence intervals of the mean computed via
the bias-corrected and accelerated bootstrap method. In the left panel, the ordinate shows the fraction of the 10 realizations
at each load for which zero classification error was reached. The center panel shows the mean fraction of examples classified
correctly at the end of training at each load. Finally, the right panel shows the mean number of epochs at which training was
terminated, either due to early stopping or the fixed threshold.

of inputs to be a comparable finite size to that of our LAL simulations while being easily divisible among even numbers
of hidden units such that we could set half of the readout weights to +1 and the remainder to −1, thus satisfying our
constraint on the weights and threshold. We implemented the optimization using TensorFlow 2.0 [32] in Python
3.8 using the Adam [33] optimizer with default parameters and a batch size of 32. As shown in Figure S4, we find
much the same phenomena in this case as we did for LAL: the empirical capacity appears to be limited chiefly by the
maximum number of training epochs allowed. Here, we fixed the maximum number of training epochs to 5,000; each
of the 12 simulations reported in Figure S4 required between five and seven days of compute time on one NVIDIA
Tesla V100 GPU of an HPC node. In all cases, we find empirical capacities that are less than those predicted at
1-RSB, with committee machines with error function activations and 50 hidden units coming the closest to achieving
the predicted capacity. Therefore, these experiments fail to falsify our theory.
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FIG. S4. Training treelike committee machines with weakly-differentiable activation functions using stochastic gradient descent
on the hinge loss. The total number of inputs is N = 1000 throughout, and the abscissa in each panel is the load α = P/N .
In all panels, solid lines indicate the average over 10 realizations, and shaded patches indicate 95% confidence intervals of the
mean computed via the bias-corrected and accelerated bootstrap method. In the left panel, the ordinate shows the fraction of
the 10 realizations at each load for which zero classification error was reached. The center panel shows the mean fraction of
examples classified correctly at the end of training at each load. Finally, the right panel shows the mean number of epochs at
which training was terminated, either due to early stopping or the fixed threshold. Sub-figures (a), (b), and (c) show results
for ReLU, erf, and quadratic activation functions, respectively.
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